10 research outputs found

    Analysis of instability causes in the bi-dc converter and enhancing its performance by improving the damping in the IDA-PBC control

    Get PDF
    The poor damping of bidirectional dc (bi-dc) converter caused by constant power load makes power system prone to oscillation, and non-minimum phase characteristic also jeopardises voltage stability. To solve these challenges, the interconnection and damping assignment passivity-based control (IDA-PBC) is utilised to improve transient response. The influences of the right-half-plane (RHP) zero on the stability margin and controller design are illustrated by zero dynamics analysis. Then the port-controlled Hamiltonian modelling is used to obtain the IDA-PBC control law, which is suitable to the bi-dc converter and independent of the operation mode. The system dissipation property is modified, and thus the desired damping is injected to smooth the transient voltage. To remove the voltage error caused by RHP zero and adjust the damping ratio, an energy controller with an adjustment factor is introduced. Besides, a virtual circuit is established to explain the physical meaning of the control parameter, and the parameter design method is given. Passivity analysis assesses the controller performance. Simulation results are analysed and compared with other control strategies to test the proposed IDA-PBC strategy

    Virtual inertia for suppressing voltage oscillations and stability mechanisms in DC microgrids

    Get PDF
    Renewable energy sources (RES) are gradually penetrating power systems through power electronic converters (PECs), which greatly change the structure and operation characteristics of traditional power systems. The maturation of PECs has also laid a technical foundation for the development of DC microgrids (DC-MGs). The advantages of DC-MGs over AC systems make them an important access target for RES. Due to the multi-timescale characteristics and fast response of power electronics, the dynamic coupling of PEC control systems and the transient interaction between the PEC and the passive network are inevitable, which threatens the stable operation of DC-MGs. Therefore, this dissertation focuses on the study of stabilization control methods, the low-frequency oscillation (LFO) mechanism analysis of DC-MGs and the state-of-charge (SoC) imbalance problem of multi-parallel energy storage systems (ESS). Firstly, a virtual inertia and damping control (VIDC) strategy is proposed to enable bidirectional DC converters (BiCs) to damp voltage oscillations by using the energy stored in ESS to emulate inertia without modifications to system hardware. Both the inertia part and the damping part are modeled in the VIDC controller by analogy with DC machines. Simulation results verify that the proposed VIDC can improve the dynamic characteristics and stability in islanded DC-MG. Then, inertia droop control (IDC) strategies are proposed for BiC of ESS based on the comparison between conventional droop control and VIDC. A feedback analytical method is presented to comprehend stability mechanisms from multi-viewpoints and observe the interaction between variables intuitively. A hardware in the loop (HIL) experiment verifies that IDC can simplify the control structure of VIDC in the promise of ensuring similar control performances. Subsequently, a multi-timescale impedance model is established to clarify the control principle of VIDC and the LFO mechanisms of VIDC-controlled DC-MG. Control loops of different timescales are visualized as independent loop virtual impedances (LVIs) to form an impedance circuit. The instability factors are revealed and a dynamic stability enhancement method is proposed to compensate for the negative damping caused by VIDC and CPL. Experimental results have validated the LFO mechanism analysis and stability enhancement method. Finally, an inertia-emulation-based cooperative control strategy for multi-parallel ESS is proposed to address the SoC imbalance and voltage deviation problem in steady-state operation and the voltage stability problem. The contradiction between SoC balancing speed and maintaining system stability is solved by a redefined SoC-based droop resistance function. HIL experiments prove that the proposed control performs better dynamics and static characteristics without modifying the hardware and can balance the SoC in both charge and discharge modes

    Improving the Stability of Cascaded DC-DC Converter Systems via the Viewpoints of Passivity-Based Control and Port-Controlled Hamiltonian Framework

    No full text
    International audienceIt is known that the interactions between individually designed subsystems in cascaded can yield instability. To ensure the system stability, the Passivity-Based Controller (PBC) called Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) is addressed in this paper. The stability of the cascaded systems are proved via using the Hamiltonian function (storage function) as the Lyapunov candidate function. Especially the dynamic and the potential instability caused by the LC filter are regulated by rendering the LC filter into the Hamiltonian framework of the controlled subsystem. The performance of the proposed approach are illustrated in simulation and experiment

    Bibliography of Lewis Research Center technical publications announced in 1989

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1989. All the publications were announced in the 1989 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore