29,081 research outputs found

    London SynEx Demonstrator Site: Impact Assessment Report

    Get PDF
    The key ingredients of the SynEx-UCL software components are: 1. A comprehensive and federated electronic healthcare record that can be used to reference or to store all of the necessary healthcare information acquired from a diverse range of clinical databases and patient-held devices. 2. A directory service component to provide a core persons demographic database to search for and authenticate staff users of the system and to anchor patient identification and connection to their federated healthcare record. 3. A clinical record schema management tool (Object Dictionary Client) that enables clinicians or engineers to define and export the data sets mapping to individual feeder systems. 4. An expansible set of clinical management algorithms that provide prompts to the patient or clinician to assist in the management of patient care. CHIME has built up over a decade of experience within Europe on the requirements and information models that are needed to underpin comprehensive multiprofessional electronic healthcare records. The resulting architecture models have influenced new European standards in this area, and CHIME has designed and built prototype EHCR components based on these models. The demonstrator systems described here utilise a directory service and object-oriented engineering approach, and support the secure, mobile and distributed access to federated healthcare records via web-based services. The design and implementation of these software components has been founded on a thorough analysis of the clinical, technical and ethico-legal requirements for comprehensive EHCR systems, published through previous project deliverables and in future planned papers. The clinical demonstrator site described in this report has provided the solid basis from which to establish "proof of concept" verification of the design approach, and a valuable opportunity to install, test and evaluate the results of the component engineering undertaken during the EC funded project. Inevitably, a number of practical implementation and deployment obstacles have been overcome through this journey, each of those having contributed to the time taken to deliver the components but also to the richness of the end products. UCL is fortunate that the Whittington Hospital, and the department of cardiovascular medicine in particular, is committed to a long-term vision built around this work. That vision, outlined within this report, is shared by the Camden and Islington Health Authority and by many other purchaser and provider organisations in the area, and by a number of industrial parties. They are collectively determined to support the Demonstrator Site as an ongoing project well beyond the life of the EC SynEx Project. This report, although a final report as far as the EC project is concerned, is really a description of the first phase in establishing a centre of healthcare excellence. New EC Fifth Framework project funding has already been approved to enable new and innovative technology solutions to be added to the work already established in north London

    One Size Does Not Fit All: Meeting the Health Care Needs of Diverse Populations

    Get PDF
    Proposes a framework for meeting patients' cultural and linguistic needs: policies and procedures that support cultural competence, data collection, population-tailored services, and internal and external collaborations. Includes a self-assessment tool

    PICT-DPA: A Quality-Compliance Data Processing Architecture to Improve the Performance of Integrated Emergency Care Clinical Decision Support System

    Get PDF
    Emergency Care System (ECS) is a critical component of health care systems by providing acute resuscitation and life-saving care. As a time-sensitive care operation system, any delay and mistake in the decision-making of these EC functions can create additional risks of adverse events and clinical incidents. The Emergency Care Clinical Decision Support System (EC-CDSS) has proven to improve the quality of the aforementioned EC functions. However, the literature is scarce on how to implement and evaluate the EC-CDSS with regard to the improvement of PHOs, which is the ultimate goal of ECS. The reasons are twofold: 1) lack of clear connections between the implementation of EC-CDSS and PHOs because of unknown quality attributes; and 2) lack of clear identification of stakeholders and their decision processes. Both lead to the lack of a data processing architecture for an integrated EC-CDSS that can fulfill all quality attributes while satisfying all stakeholders’ information needs with the goal of improving PHOs. This dissertation identified quality attributes (PICT: Performance of the decision support, Interoperability, Cost, and Timeliness) and stakeholders through a systematic literature review and designed a new data processing architecture of EC-CDSS, called PICT-DPA, through design science research. The PICT-DPA was evaluated by a prototype of integrated PICT-DPA EC-CDSS, called PICTEDS, and a semi-structured user interview. The evaluation results demonstrated that the PICT-DPA is able to improve the quality attributes of EC-CDSS while satisfying stakeholders’ information needs. This dissertation made theoretical contributions to the identification of quality attributes (with related metrics) and stakeholders of EC-CDSS and the PICT Quality Attribute model that explains how EC-CDSSs may improve PHOs through the relationships between each quality attribute and PHOs. This dissertation also made practical contributions on how quality attributes with metrics and variable stakeholders could be able to guide the design, implementation, and evaluation of any EC-CDSS and how the data processing architecture is general enough to guide the design of other decision support systems with requirements of the similar quality attributes

    Safer clinical systems : interim report, August 2010

    Get PDF
    Safer Clinical Systems is the Health Foundation’s new five year programme of work to test and demonstrate ways to improve healthcare systems and processes, to develop safer systems that improve patient safety. It builds on learning from the Safer Patients Initiative (SPI) and models of system improvement from both healthcare and other industries. Learning from the SPI highlighted the need to take a clinical systems approach to improving safety. SPI highlighted that many hospitals struggle to implement improvement in clinical areas due to inherent problems with support mechanisms. Clinical processes and systems, rather than individuals, are often the contributors to breakdown in patient safety. The Safer Clinical Systems programme aimed to measure the reliability of clinical processes, identify defects within those processes, and identify the systems that result in those defects. Methods to improve system reliability were then to be tested and re-developed in order to reduce the risk of harm being caused to patients. Such system-level awareness should lead to improvements in other patient care pathways. The relationship between system reliability and actual harm is challenging to identify and measure. Specific, well-defined, small-scale processes have been used in other programmes, and system reliability has been shown to have a direct causal relationship with harm (e.g. care bundle compliance in an intensive care unit can reduce the incidence of ventilator-associated pneumonia). However, it has become evident that harm can be caused by a variety of factors over time; when working in broader, more complex and dynamic systems, change in outcome can be difficult to attribute to specific improvements and difficulties are also associated with relating evidence to resulting harm. The overall aim of Phase 1 of the Safer Clinical Systems programme was to demonstrate proof-of-concept that using a systems-based approach could contribute to improved patient safety. In Phase 1, experienced NHS teams from four locations worked together with expert advisers to co-design the Safer Clinical Systems programme

    Childhood Obesity: The Role of Health Policy

    Get PDF
    This first policy report from the CPRC and the NICHQ Childhood Obesity Action Network was released on March 18, 2008 in Miami Florida as part of the Second Childhood Obesity Congress

    Marshfield Clinic: Health Information Technology Paves the Way for Population Health Management

    Get PDF
    Highlights Fund-defined attributes of an ideal care delivery system and best practices, including an internal electronic health record, primary care teams, physician quality metrics and mentors, and standardized care processes for chronic care management
    • …
    corecore