6,729 research outputs found

    Transformation Based Ensembles for Time Series Classification

    Get PDF
    Until recently, the vast majority of data mining time series classification (TSC) research has focused on alternative distance measures for 1-Nearest Neighbour (1-NN) classifiers based on either the raw data, or on compressions or smoothing of the raw data. Despite the extensive evidence in favour of 1-NN classifiers with Euclidean or Dynamic Time Warping distance, there has also been a flurry of recent research publications proposing classification algorithms for TSC. Generally, these classifiers describe different ways of incorporating summary measures in the time domain into more complex classifiers. Our hypothesis is that the easiest way to gain improvement on TSC problems is simply to transform into an alternative data space where the discriminatory features are more easily detected. To test our hypothesis, we perform a range of benchmarking experiments in the time domain, before evaluating nearest neighbour classifiers on data transformed into the power spectrum, the autocorrelation function, and the principal component space. We demonstrate that on some problems there is dramatic improvement in the accuracy of classifiers built on the transformed data over classifiers built in the time domain, but that there is also a wide variance in accuracy for a particular classifier built on different data transforms. To overcome this variability, we propose a simple transformation based ensemble, then demonstrate that it improves performance and reduces the variability of classifiers built in the time domain only. Our advice to a practitioner with a real world TSC problem is to try transforms before developing a complex classifier; it is the easiest way to get a potentially large increase in accuracy, and may provide further insights into the underlying relationships that characterise the problem

    Memory-Efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment

    Full text link
    Ren et al. recently introduced a method for aggregating multiple decision trees into a strong predictor by interpreting a path taken by a sample down each tree as a binary vector and performing linear regression on top of these vectors stacked together. They provided experimental evidence that the method offers advantages over the usual approaches for combining decision trees (random forests and boosting). The method truly shines when the regression target is a large vector with correlated dimensions, such as a 2D face shape represented with the positions of several facial landmarks. However, we argue that their basic method is not applicable in many practical scenarios due to large memory requirements. This paper shows how this issue can be solved through the use of quantization and architectural changes of the predictor that maps decision tree-derived encodings to the desired output.Comment: BMVC Newcastle 201

    Learning Discriminative Stein Kernel for SPD Matrices and Its Applications

    Full text link
    Stein kernel has recently shown promising performance on classifying images represented by symmetric positive definite (SPD) matrices. It evaluates the similarity between two SPD matrices through their eigenvalues. In this paper, we argue that directly using the original eigenvalues may be problematic because: i) Eigenvalue estimation becomes biased when the number of samples is inadequate, which may lead to unreliable kernel evaluation; ii) More importantly, eigenvalues only reflect the property of an individual SPD matrix. They are not necessarily optimal for computing Stein kernel when the goal is to discriminate different sets of SPD matrices. To address the two issues in one shot, we propose a discriminative Stein kernel, in which an extra parameter vector is defined to adjust the eigenvalues of the input SPD matrices. The optimal parameter values are sought by optimizing a proxy of classification performance. To show the generality of the proposed method, three different kernel learning criteria that are commonly used in the literature are employed respectively as a proxy. A comprehensive experimental study is conducted on a variety of image classification tasks to compare our proposed discriminative Stein kernel with the original Stein kernel and other commonly used methods for evaluating the similarity between SPD matrices. The experimental results demonstrate that, the discriminative Stein kernel can attain greater discrimination and better align with classification tasks by altering the eigenvalues. This makes it produce higher classification performance than the original Stein kernel and other commonly used methods.Comment: 13 page
    corecore