1,937 research outputs found

    Improving the JADE algorithm by clustering successful parameters

    Get PDF
    Differential evolution (DE) is one of the most powerful and popular evolutionary algorithms for real parameter global optimisation problems. However, the performance of DE greatly depends on the selection of control parameters, e.g., the population size, scaling factor and crossover rate. How to set these parameters is a challenging task because they are problem dependent. In order to tackle this problem, a JADE variant, denoted CJADE, is proposed in this paper. In the proposed algorithm, the successful parameters are clustered with the k-means clustering algorithm to reduce the impact of poor parameters. Simulation results show that CJADE is better than, or at least comparable with, several state-of-the-art DE algorithms

    Report of the QCD Working Group

    Get PDF
    The activities of the QCD working group concentrated on improving the understanding and Monte Carlo simulation of multi-jet final states due to hard QCD processes at LEP, i.e. quark-antiquark plus multi-gluon and/or secondary quark production, with particular emphasis on four-jet final states and b-quark mass effects. Specific topics covered are: relevant developments in the main event generators PYTHIA, HERWIG and ARIADNE; the new multi-jet generator APACIC++; description and tuning of inclusive (all-flavour) jet rates; quark mass effects in the three- and four-jet rates; mass, higher-order and hadronization effects in four-jet angular and shape distributions; b-quark fragmentation and gluon splitting into b-quarks.Comment: 95 pages, 48 figures, contribution to Proceedings of the LEP2 Monte Carlo Workshop. References for NLO 4-jet matrix elements adde

    Event shapes in e+e- annihilation and deep inelastic scattering

    Full text link
    This article reviews the status of event-shape studies in e+e- annihilation and DIS. It includes discussions of perturbative calculations, of various approaches to modelling hadronisation and of comparisons to data.Comment: Invited topical review for J.Phys.G; 40 pages; revised version corrects some nomenclatur

    Finding Multiple Roots of Nonlinear Equation Systems via a Repulsion-Based Adaptive Differential Evolution

    Get PDF
    Finding multiple roots of nonlinear equation systems (NESs) in a single run is one of the most important challenges in numerical computation. We tackle this challenging task by combining the strengths of the repulsion technique, diversity preservation mechanism, and adaptive parameter control. First, the repulsion technique motivates the population to find new roots by repulsing the regions surrounding the previously found roots. However, to find as many roots as possible, algorithm designers need to address a key issue: how to maintain the diversity of the population. To this end, the diversity preservation mechanism is integrated into our approach, which consists of the neighborhood mutation and the crowding selection. In addition, we further improve the performance by incorporating the adaptive parameter control. The purpose is to enhance the search ability and remedy the trial-and-error tuning of the parameters of differential evolution (DE) for different problems. By assembling the above three aspects together, we propose a repulsion-based adaptive DE, called RADE, for finding multiple roots of NESs in a single run. To evaluate the performance of RADE, 30 NESs with diverse features are chosen from the literature as the test suite. Experimental results reveal that RADE is able to find multiple roots simultaneously in a single run on all the test problems. Moreover, RADE is capable of providing better results than the compared methods in terms of both root rate and success rate

    Cooperative agent-based SANET architecture for personalised healthcare monitoring

    Full text link
    The application of an software agent-based computational technique that implements Extended Kohonen Maps (EKMs) for the management of Sensor-Actuator networks (SANETs) in health-care facilities. The agent-based model incorporates the BDI (Belief-Desire-Intention) Agent paradigms by Georgeff et al. EKMs perform the quantitative analysis of an algorithmic artificial neural network process by using an indirect-mapping EKM to self-organize. Current results show a combinatorial approach to optimization with EKMs provides an improvement in event trajectory estimation compared to standalone cooperative EKM processes to allow responsive event detection for patient monitoring scenarios. This will allow healthcare professionals to focus less on administrative tasks, and more on improving patient needs, particularly with people who are in need for dedicated care and round-the-clock monitoring. ©2010 IEEE

    Estimating Mutual Information

    Get PDF
    We present two classes of improved estimators for mutual information M(X,Y)M(X,Y), from samples of random points distributed according to some joint probability density μ(x,y)\mu(x,y). In contrast to conventional estimators based on binnings, they are based on entropy estimates from kk-nearest neighbour distances. This means that they are data efficient (with k=1k=1 we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to non-uniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of k/Nk/N for NN points. Numerically, we find that both families become {\it exact} for independent distributions, i.e. the estimator M^(X,Y)\hat M(X,Y) vanishes (up to statistical fluctuations) if μ(x,y)=μ(x)μ(y)\mu(x,y) = \mu(x) \mu(y). This holds for all tested marginal distributions and for all dimensions of xx and yy. In addition, we give estimators for redundancies between more than 2 random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.Comment: 16 pages, including 18 figure

    On controllability of neuronal networks with constraints on the average of control gains

    Get PDF
    Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently
    corecore