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Abstract: Differential evolution (DE) is one of the most powerful and popular
evolutionary algorithms for real parameter global optimization problems. However, the
performance of DE highly depends on the selection of control parameters, e.g., the
population size, scaling factor and crossover rate. How to set these parameters is a
challenging task because they are problem dependent. In order to tackle this problem, a
JADE variant, denoted CJADE, is proposed in this paper. In the proposed algorithm,
the successful parameters are clustered with the K-means clustering algorithm to reduce
the impact of poor parameters. Simulation results show that CJADE is better than, or
at least comparable to, several state-of-the-art DE algorithms.

Keywords: differential evolution algorithm; k-means; successful parameters.

Biographical notes: Zhijian Li received the M.S. degree in Computer Science from
the Central China Normal University in 2016. His current research interests focus on
evolutionary computation, optimization algorithm and machine learning.

Jinglei Guo received the Ph.D. in Computer Science from Wuhan University in 2011.
Currently, she is an Associate Professor at the School of Computer, Central China
Normal University. Her research interests include artificial intelligence and evolutionary
computation.

Shengxiang Yang received the B.Sc. and M.Sc. degrees in automatic control and the
Ph.D. degress in system engineering from Northeastern University, China. He is currently
a Professor in Computational Intelligence and Director of the Centre for Computational
Intelligence, School of Computer Science and Informatics, De Montfort University,
U.K. His current research interests include evolutionary and genetic algorithms, swarm
intelligence, computational intelligence in dynamic and uncertain environments, artificial
neural networks for scheduling, and relevant real-world applications.

1 Introduction

Differential evolution (DE), proposed in R. Storn and
K. Price (1995), is a simple and efficient evolutionary
algorithm (EA) for global optimization in the continuous
space. However, unlike other EAs, DE perturbs the
current population members with the scaled difference
of randomly selected distinct population members (Das

and Suganthan, 2011). DE has been successfully applied
to various fields of real-world optimization problems,
such as pattern recognition (Koloseni et al., 2012; Kim
et al, 2008), image processing (Su et al., 2012), and
engineering design (Ghosh et al., 2012; Guo et al., 2001).
A detailed survey on DE can be found in Das and
Suganthan (Das and Suganthan, 2011).
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There are three main control parameters within the
DE algorithm: the mutation scale factor F , the crossover
constant Cr, and the population size NP . These
parameters have significant impact on the performance
of DE. In order to minimize the effects of these
parameters, a number of enhanced DE variants have
been proposed in the past decade. Most of those
algorithms are based on adaptive or self-adaptive
mechanisms and consider F and Cr separately. In this
paper, we propose a new self-adaptive scheme, where F
and Cr are considered as a point in the two-dimensional
space and we utilize the cluster analysis to reduce the
impact of poor parameters and to update the control
parameters automatically.

The rest of this paper is organized as follows. In
Section 2, we introduce the classical DE algorithm and
related work. JADE is described in Section 3. The
proposed approach is introduced in detail in Section 4.
Experimental studies are reported in Section 5. Finally,
Section 6 concludes this paper.

2 Background

2.1 Classical differential evolution

DE begins with a randomly initiated population of
NP individuals, each of which is a D-dimensional real
parameter vector to represent a candidate solution,
where NP is the population size and D is the number
of dimensions of the problem. The j th dimension of the
ith individual can be initialized according to:

xj,i = xj,min + randi,j(0, 1) · (xj,max − xj,min) (1)

where xj,min and xj,max are the predefined lower and
upper bounds of the j th dimension, randi,j(0, 1) is a
uniformly distributed random number in (0, 1).

After initialization, DE generates a mutant individual
Vi,g, called donor individual, for each population
member or target individual Xi,g in the current
generation by mutation. The most frequently used
strategy is defined as follows:

Vi,g = Xri1,g
+ F · (Xri2,g

−Xri3,g
) (2)

where the indices ri1, r
i
2, r

i
3 are mutually exclusive

integers randomly chosen from the range [1, NP ], which
are also different from the base individual index i. The
scaling factor F is a positive real number for scaling the
difference vectors.

Then, DE employs crossover operator to enhance the
potential diversity of the population. In the classical
version, a binomial crossover operation is employed by
DE as follows:

ui,j,g =

{
vi,j,g, if (randi,j(0, 1) ≤ Cr or j = jrand)

xi,j,g, otherwise
(3)

where jrand ∈ [1, 2, . . . , D] is a randomly chosen index,
which ensures that ui,j,g dose not duplicate xi,j,g.

Finally, a selection operator is used by DE to
determine whether the target or trial vector survives to
the next generation. The selection operation is described
as follows:

Xi,g+1 =

{
Ui,g, if f(Ui,g) ≤ f(Xi,g)

Xi,g, otherwise
(4)

where f(X) is the objective function (without loss of
generality, we assume minimization problems here).

2.2 Related Work

Zhang and Sanderson (Zhang et al., 2009) proposed an
adaptive DE with an optional external archive (JADE),
where the scaling factor F and the crossover rate Cr
are generated according to a normal distribution and
a Cauchy distribution, respectively. Fei et al. (2009)
applied two strategies together on the original JADE,
to dedicatedly improve the reliability of it (rJADE).
They first modified the control parameter adaptation
strategy of JADE by adding a weighting strategy. Then,
a restart with knowledge transfer strategy was applied by
utilizing the knowledge obtained from previous failures
to guide the subsequent search. Experimental studies
showed that the proposed rJADE achieved significant
improvements on a set of widely used benchmark
functions. Li et al. (2015) proposed a predictive approach
to the reproduction mechanism of new individuals
for differential evolution (DE) algorithms utilizing
cumulative correlation information already existing in
an evolutionary process. DE uses a distributed model
(DM) to generate new individuals, which is relatively
explorative, whilst evolution strategy (ES) uses a
centralized model (CM) to generate offspring, which
through adaptation retains a convergence momentum.

Pan, X. and Li, R. (2015) proposed an improved
differential evolution (DE) to solve parameter
optimisation problems. The new approach is called
ICBBDE, which is an enhanced version of bare bones
DE (BBDE). The ICBBDE employs an adaptive
strategy to dynamically adjust the crossover rate.
Moreover, a Cauchy mutation is used to improve the
exploration ability. Experiments are conducted on a set
of benchmark functions and two real-world parameter
optimisation problems. Simulation results demonstrate
the efficiency and effectiveness of our approach. Zhang
et al. (2015) presented a novel DE variant, Top-k elites-
based Oppositional Differential Evolution (TEODE),
which is based on a new opposition-based learning
strategy using the top-k elites (TEOBL) in the current
generation and employs similar schemes of ODE for
population initialisation and generation jumping with
TEOBL. Experiments are conducted on 17 benchmark
functions. The results confirm that TEODE outperforms
classical DE, ODE and COODE (opposition-based
differential evolution using the current optimum). You
et al. (2016) designed a new mutation operator to
improve the exploitation ability of DE. Experiments are



Improving the JADE Algorithm by Clustering Successful Parameters 3

carried out on 13 classical test functions. Simulation
results show that the new mutation scheme can help DE
to find better solutions than three other classical DE
mutation strategies.

3 Introduction of JADE

JADE, proposed by Zhang and Sanderson Zhang et al.
(2009), is a well-known adaptive DE, which uses a novel
mutation strategy named DE/Current-to-pbest and an
external archive for storing the inferior solutions. In
addition, F and Cr are generated according to a normal
distribution N(µCr, 0.1) and a Cauchy distribution
C(µF , 0.1), respectively.

3.1 DE/Current-to-pbest

In view of the fast convergence but less reliable
performance of DE/current-to-best and DE/best/1
strategy, Zhang (Zhang et al., 2009) proposed a new
mutation strategy, named DE/current-to-pbest, with
an optional archive. In DE/current-to-pbest/1 (with
archive), a mutation vector is generated in the following
manner:

Vi,g = Xi,g + Fi(X
p
best,g −Xi,g) + Fi(Xr1,g −Xr2,g)(5)

where Xp
best,g is randomly chosen as one of the top 100p%

individuals in the current population with p ∈ (0, 1], and
Fi is the mutation factor that is associated with Xi

and is re-generated at each generation by the adaptation
process introduced later in Eq. (6).

3.2 Parameter Adaptation

At each generation g, the mutation factor Fi and
crossover probability Cri of each individual Xi is
independently generated:

Fi = randci(µF, 0.1) (6)

Cri = randni(µCr, 0.1) (7)

where randci(µF, 0.1) and randni(µCr, 0.1) are the
random number generated according to Cauchy
distribution of (µF, 0.1) and normal distribution of
(µCr, 0.1). Fi is truncated as 1 when Fi > 1 and
regenerated when Fi ≤ 0. If Cri > 1 or Cri < 0, Cri
is set as 1 or 0. Denote SF and SCr as the set of all
successful mutation factors and crossover probabilities at
generation g. µF and µCr are initialized to be 0.5 and
then updated at the end of each generation as follows:

µF = (1− c) · µF + c ·meanL(SF ) (8)

µCr = (1− c) · µCr + c ·meanA(SCr) (9)

where c is a positive constant between 0 and 1, meanA(·)
is the usual arithmetic mean, and meanL(·) is the
Lehmer mean, defined as follows:

meanL(SF ) =

∑
F∈SF

F 2∑
F∈SF

F
. (10)

Algorithm 1 CJADE algorithm

1: Initialization
2: g := 0; {µ1

F , µ
2
F , · · · , µK

F } := {0.5};
3: {µ1

Cr, µ
2
Cr, · · · , µK

Cr} := {0.5}; p := 0.05;A := ∅;
4: Initialize population Pg = (x1,g, · · · , xNP,g)

randomly;
5: while The termination criteria are not met do
6: SF := ∅, SCr := ∅;
7: for i := 1 to NP do
8: Randomly choose µF , µCr from

{µ1
F , µ

2
F , · · · , µK

F } and {µ1
Cr, µ

2
Cr, · · · , µK

Cr}
9: Fi := randci(µF , 0.1);

10: Cri := randni(µCr, 0.1);
11: Generate Vi,g according to Eq. (5);
12: Generate Ui,g according to Eq. (3);
13: if f(Ui,g) ≤ f(Xi,g) then
14: Xi,g+1 := Ui,g, Xi,g −→ A;
15: Fi −→ SF , Cri −→ SCr;
16: else
17: xi,g+1 := xi,g;
18: end if
19: end for
20: Remove solutions randomly from A so that |A| ≤

NP ;
21: if SF 6= ∅ and SCr 6= ∅ then
22: Select randomly K initial cluster centers from

points set I := {(Fi, Cri)|Fi ∈ SF , Cri ∈ SCr};
23: for i := 1 to Iterations do
24: for j := 1 to |I| do
25: For each point Ij , find its closest cluster

center and assign point Ij to cluster;
26: end for
27: Update the cluster centers to be the average

of points contained within them;
28: end for
29: K clusters {(C1

F , C
1
Cr), (C2

F , C
2
Cr), · · · , (CK

F , C
K
Cr)}

30: for i := 1 to K do
31: µi

F = (1− c) · µi
F + c ·meanL(Ci

F )
32: µi

Cr = (1− c) · µi
Cr + c ·meanA(Ci

Cr)
33: end for
34: end if
35: g + +;
36: end while

4 THE PROPOSED APPROACH

As mentioned above, the performance of DE highly
depends on the control parameters F and Cr. Therefore,
it appears increasing to the DE community to study
adaptive or self-adaptive schemes to select suitable
parameter values during the evolution process. A good
volume of research work has been undertaken so far
to improve the ultimate performance of DE by tuning
its control parameters Das and Suganthan (2011). To
the best of our knowledge, most of these work consider
F and Cr separately. The trial vector, however, is a
result of the combination of F and Cr. Hence, in this
paper, we consider each F and Cr as a point in the
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two dimensional vector space and update the control
parameters automatically by clustering the successful
parameters with K-means method.

The parameters that generate individuals survived
to the next generation are called successful parameters,
which tend to generate individuals that are more likely to
survive and thus should be propagated to the following
generations. As with JADE, SF and SCr record the
successful F and Cr in the current generation and a set
of points is constructed as follows:

I = {(Fi, Cri)|Fi ∈ SF , Cri ∈ SCr}. (11)

We utilize the K-means cluster algorithm
to divide the set I into K clusters
{(C1

F , C
1
Cr), (C2

F , C
2
Cr), · · · , (CK

F , C
K
Cr)}. For the ith

cluster, µi
F and µi

Cr are updated as follows:

µi
F = (1− c) · µi

F + c ·meanL(Ci
F ) (12)

µi
Cr = (1− c) · µi

Cr + c ·meanA(Ci
Cr) (13)

where µi
F and µi

Cr are initialized to 0.5 at the beginning
according to Zhang et al. (2009), and meanL(Ci

F ) and
meanA(Ci

Cr) are calculated according to Eqs. (8) and
(9) respectively. The overall CJADE algorithm is shown
in Algorithm 1. Here, the number of iterations is set to
a fixed value to simplify the K-means algorithm, and
we use the Euclidean metric to measure the distance
between two points. Obviously, JADE is a special case
of CJADE with K = 1.

5 EXPERIMENTAL STUDY

5.1 Benchmark Functions

In order to verify the performance of our proposed
approach, we employ the benchmark functions used for
the 2014 IEEE Congress on Evolutionary Computation
(IEEE CEC) Competition on Single Objective Real-
parameter Numerical Optimization, which consists of 30
single objective benchmark functions Liang et al. (2013)
and is denoted IEEE CEC 2014 benchmark functions
in this paper. Based on their characteristics, the IEEE
CEC 2014 benchmark functions can be divided into the
following four classes. Functions cf1 − cf3 are unimodal,
functions cf4 − cf16 are simple multimodal functions,
functions cf17 − cf22 are hybrid, and functions cf23 −
cf30 are composition functions with a huge number of
local minima. A thorough description of this suit is
provided in Liang et al. (2013).

5.2 Effect of the Number of Iterations and Cluster
Centers

CJADE introduces a new parameter that need to be
predefined: the number of clusters K in the cluster
analysis. We compare the performance of K = 3 with

the performance of K = 2 in Table 1. It can be seen
from Table 1 that the number of cluster centers has
significant impact on the performance of CJADE on
CEC2014 benchmark functions. Specifically, the results
of K = 2 are better than those of K = 3 on 17 functions,
while worse than those of K = 3 on 4 functions.

5.3 Comparison of CJADE with Other DE
Algorithms

In this section, we compare CJADE with four other
state-of-the-art DE algorithms. For fair comparison, we
set the parameters of CJADE to be fixed: p = 0.05,
Iterations = 10, K = 2 and NP = 100. We follow the
parameter settings in the original paper of JADE (Zhang
et al., 2009), EPSDE (Mallipeddi et al., 2011), CoDE
(Wang et al., 2011), and MDE pBX (Islam et al., 2012).
For all algorithms, the maximum number of function
evaluations was set to 10000D. In addition, we judge the
results by performing the Wilcoxon’s rank-sum test at
the 0.05 significance level.

Table 2 summarizes the average error results of
51 independent runs for each algorithm on each 30-
dimensional function. Error value smaller than 10−8

will be taken as zero (Liang et al., 2013). For each
function, the best value of the results obtained by all the
algorithms is shown in bold font. b/n/w summarizes
the statistical results: b, n, and w denote the number
of functions for which CJADE performs significantly
better, not significantly different and significantly worse
than its peer, respectively.

1. Unimodal Functions cf1 − cf3: Clearly, CJADE
is the best among the five methods on these
three unimodal functions. It outperforms JADE,
EPSDE, CoDE and MDE pBX on one, one, one
and three test functions, respectively.

2. Multimodal Functions cf4 − cf16: On these
thirteen test functions, CJADE is significantly
better than JADE, EPSDE, CoDE, and MDE pBX
on four, twelve, twelve and ten test functions,
respectively. MDE pBX outperforms CJADE on
one test function, and JADE, EPSDE, and CoDE
cannot be significantly better than CJADE on
any test function. Hence, CJADE is the winner on
these thirteen test functions.

3. Hybrid Functions cf17 − cf22: For these six
functions, CJADE is slightly better than JADE
and CoDE. CJADE outperforms EPSDE on one
function (cf17) and is better than MDE pBX on
five functions (cf17 − cf19, cf21, cf22).

4. Composition Functions cf23 − cf30: These
composition functions are much harder than others
because they can have different properties for
different variables subcomponents Liang et al.
(2013). The performance of JADE and EPSDE is
slightly better than that of CJADE. In contrast,



Improving the JADE Algorithm by Clustering Successful Parameters 5

Table 1 CJADE Results on CEC2014 benchmarks using various K

CJADE(K=2) CJADE(K=3) CJADE(K=2) CJADE(K=3)

Prob. Mean St.D. Mean St.D. Prob. Mean St.D. Mean St.D.

cf1 2.15e+03 2.40e+03 4.39e+06 1.96e+06 − cf16 9.31e+00 3.18e-01 9.78e+00 2.72e-01 =

cf2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 = cf17 1.40e+03 4.59e+02 4.60e+05 3.12e+05 −
cf3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 = cf18 9.51e+01 4.05e+01 2.75e+02 2.46e+02 −
cf4 0.00e+00 0.00e+00 2.28e+01 3.02e+01 − cf19 4.83e+00 8.65e-01 6.58e+00 1.18e+00 −
cf5 2.03e+01 5.04e-02 2.02e+01 9.17e-02 + cf20 1.00e+03 1.94e+03 3.36e+01 2.29e+01 +

cf6 7.39e+00 3.38e+00 1.06e+01 1.76e+00 − cf21 1.77e+03 9.41e+03 6.70e+04 3.15e+04 −
cf7 5.32e-04 2.15e-03 4.92e-03 9.46e-03 − cf22 1.57e+02 7.01e+01 1.65e+02 6.11e+01 =

cf8 0.00e+00 0.00e+00 0.00e+00 0.00e+00 = cf23 3.15e+02 0.00e+00 3.15e+02 0.00e+00 =

cf9 2.26e+01 3.96e+00 3.23e+01 3.84e+00 − cf24 2.27e+02 4.45e+00 2.27e+02 3.18e+00 =

cf10 5.30e-03 9.06e-03 1.99e-01 7.71e-01 − cf25 2.08e+02 2.55e+00 2.10e+02 1.42e+00 −
cf11 1.58e+03 2.34e+02 1.88e+03 1.53e+02 − cf26 1.02e+02 1.39e+01 1.00e+02 0.00e+00 +

cf12 2.46e-01 4.02e-02 2.49e-01 4.31e-02 = cf27 3.50e+02 4.65e+01 4.05e+02 6.09e+01 −
cf13 2.13e-01 3.62e-02 2.43e-01 2.71e-02 − cf28 7.99e+02 3.67e+01 8.52e+02 2.96e+01 −
cf14 2.29e-01 3.33e-02 2.25e-01 3.62e-02 + cf29 7.46e+02 2.03e+01 1.37e+03 1.79e+02 −
cf15 2.99e+00 4.29e-01 3.84e+00 4.31e-01 = cf30 1.64e+03 3.66e+02 2.30e+03 5.98e+02 −

Total number of (+/=/-) 4/9/17

Table 2 The experimental results of 30-dimensional problems cf1 − cf30

CJADE JADE EPSDE CoDE MDE pBX

cf1 2.15e+03±2.40e+03 1.78e+03±2.09e+03 2.72e+05±2.14e+05† 1.35e+07±5.96e+06† 1.03e+07±6.04e+06†
cf2 0.00e+00±0.00e+00 0.00e+00±0.00e+00 0.00e+00±0.00e+00 0.00e+00±0.00e+00 3.92e+07±5.19e+07†
cf3 0.00e+00±0.00e+00 1.34e+00±2.13e+00† 0.00e+00±0.00e+00 0.00e+00±0.00e+00 8.03e-01±2.02e+00†
cf4 0.00e+00±0.00e+00 0.00e+00±0.00e+00 3.01e-03±1.05e-02† 1.27e+02±1.29e+01† 1.45e+02±3.64e+01†
cf5 2.03e+01±5.04e-02 2.03e+01±3.97e-02† 2.06e+01±6.04e-02† 2.05e+01±4.79e-02† 2.05e+01±1.02e-01†
cf6 7.39e+00±3.38e+00 9.29e+00±2.56e+00† 1.99e+01±1.37e+00† 1.81e+01±1.38e+00† 4.53e+00±1.53e+00‡
cf7 5.32e-04±2.15e-03 0.00e+00±0.00e+00 1.45e-04±1.03e-03 1.88e-07±9.26e-07† 1.30e+00±9.85e-01†
cf8 0.00e+00±0.00e+00 0.00e+00±0.00e+00 2.37e+01±2.78e+00† 0.00e+00±0.00e+00 1.54e+01±4.46e+00†
cf9 2.26e+01±3.96e+00 2.52e+01±3.73e+00† 1.17e+02±8.74e+00† 1.14e+02±8.82e+00† 2.73e+01±6.36e+00†
cf10 5.30e-03±9.06e-03 5.30e-03±1.08e-02 9.25e+02±1.59e+02† 1.73e-01±1.37e-01† 2.10e+02±1.54e+02†
cf11 1.58e+03±2.34e+02 1.66e+03±2.14e+02 4.82e+03±2.73e+02† 3.94e+03±2.71e+02† 2.62e+03±6.52e+02†
cf12 2.46e-01±4.02e-02 2.61e-01±3.99e-02 1.04e+00±1.26e-01† 7.57e-01±1.00e-01† 4.15e-01±1.53e-01†
cf13 2.13e-01±3.62e-02 2.05e-01±2.91e-02 3.01e-01±3.24e-02† 4.37e-01±6.04e-02† 2.04e-01±4.54e-02
cf14 2.29e-01±3.33e-02 2.31e-01±3.37e-02 2.55e-01±3.35e-02† 2.67e-01±3.28e-02† 2.52e-01±4.42e-02†
cf15 2.99e+00±4.29e-01 3.17e+00±3.15e-01† 1.17e+01±8.60e-01† 1.30e+01±1.19e+00† 4.03e+00±1.62e+00†
cf16 9.31e+00±3.18e-01 9.37e+00±3.30e-01 1.15e+01±3.05e-01† 1.10e+01±2.78e-01† 9.43e+00±8.27e-01

cf17 1.40e+03±4.59e+02 1.15e+03±3.76e+02‡ 2.35e+03±8.84e+02† 1.60e+04±2.30e+04† 5.59e+04±7.53e+04†
cf18 9.51e+01±4.05e+01 1.08e+02±2.25e+02† 4.75e+01±6.10e+00‡ 1.41e+03±2.24e+03† 1.11e+03±1.21e+03†
cf19 4.83e+00±8.65e-01 4.52e+00±7.63e-01‡ 4.63e+00±5.35e-01 7.65e+00±8.64e-01† 1.42e+01±1.78e+01†
cf20 1.00e+03±1.94e+03 2.34e+03±2.27e+03† 2.71e+01±3.42e+00‡ 1.96e+02±4.34e+02‡ 7.60e+01±3.68e+01‡
cf21 1.77e+03±9.41e+03 8.41e+03±3.89e+04† 7.24e+02±1.38e+02‡ 4.80e+03±7.37e+03† 3.05e+03±3.22e+03†
cf22 1.57e+02±7.01e+01 1.43e+02±6.11e+01 1.41e+02±6.13e+01‡ 1.57e+02±9.25e+01 2.40e+02±1.13e+02†
cf23 3.15e+02±0.00e+00 3.15e+02±0.00e+00 3.15e+02±0.00e+00 3.15e+02±0.00e+00 3.17e+02±1.41e+00†
cf24 2.27e+02±4.45e+00 2.25e+02±1.91e+00‡ 2.23e+02±9.09e-01‡ 2.25e+02±5.93e-01‡ 2.33e+02±5.52e+00†
cf25 2.08e+02±2.55e+00 2.04e+02±1.81e+00‡ 2.03e+02±2.35e-01‡ 2.09e+02±1.17e+00† 2.11e+02±1.19e+00†
cf26 1.02e+02±1.39e+01 1.02e+02±1.39e+01 1.00e+02±0.00e+00 1.00e+02±2.69e-01 1.29e+02±4.56e+01†
cf27 3.50e+02±4.65e+01 3.38e+02±4.66e+01‡ 3.73e+02±4.50e+01 4.21e+02±3.71e+01† 4.34e+02±4.51e+01†
cf28 7.99e+02±3.67e+01 7.90e+02±3.94e+01 9.58e+02±2.69e+01† 9.84e+02±3.32e+01† 9.03e+02±4.18e+01†
cf29 7.29e+02±2.03e+01 7.46e+02±1.27e+01† 8.55e+02±2.05e+02† 1.23e+03±1.70e+02† 2.34e+03±9.65e+02†
cf30 1.64e+03±3.66e+02 1.59e+03±5.25e+02 1.01e+03±1.39e+02‡ 2.30e+03±3.55e+02† 7.30e+03±3.98e+03†

b/n/w 9/16/5 16/7/7 21/7/2 26/2/2

†CJADE performs better than the algorithm at a 0.05 level of significance by the Wilcoxon rank-sum test.
‡CJADE performs worse than the algorithm at a 0.05 level of significance by the Wilcoxon rank-sum test.

CJADE outperforms CoDE and MDE pBX on
five and eight functions, respectively.

Fig. 1 shows the convergence graphs for cf1, cf9,
cf10 and cf12 in detail. Obviously, CJADE maintains
faster convergence speed and higher solution precision

simultaneously, which shows that CJADE is better than
the four competitors.



6 Z. Li, J. Guo and S. Yang

0 . 0 5 . 0 x 1 0 4 1 . 0 x 1 0 5 1 . 5 x 1 0 5 2 . 0 x 1 0 5 2 . 5 x 1 0 5 3 . 0 x 1 0 5
1 0 1

1 0 3

1 0 5

1 0 7

1 0 9

 

 

So
lut

ion
 Er

ror

F E s

 C J A D E
 C o D E
 E P S D E
 J A D E
 M D E _ p B X

0 . 0 5 . 0 x 1 0 4 1 . 0 x 1 0 5 1 . 5 x 1 0 5 2 . 0 x 1 0 5 2 . 5 x 1 0 5 3 . 0 x 1 0 5
1 0 1

1 0 2

1 0 3

 C J A D E
 C o D E
 E P S D E
 J A D E
 M D E _ p B X

 

 

So
lut

ion
 Er

ror

F E s

a) cf1 b) cf9

0 . 0 5 . 0 x 1 0 4 1 . 0 x 1 0 5 1 . 5 x 1 0 5 2 . 0 x 1 0 5 2 . 5 x 1 0 5 3 . 0 x 1 0 5
1 0 - 9

1 0 - 7

1 0 - 5

1 0 - 3

1 0 - 1

1 0 1

1 0 3

1 0 5

 C J A D E
 C o D E
 E P S D E
 J A D E
 M D E _ p B X

 

 

So
lut

ion
 Er

ror

F E s
0 . 0 5 . 0 x 1 0 4 1 . 0 x 1 0 5 1 . 5 x 1 0 5 2 . 0 x 1 0 5 2 . 5 x 1 0 5 3 . 0 x 1 0 5

1 0 - 1

1 0 0

1 0 1

 C J A D E
 C o D E
 E P S D E
 J A D E
 M D E _ p B X

 

 

So
lut

ion
 Er

ror
F E s

c) cf10 d) cf12

Figure 1 The convergence curves of CJADE, CoDE, EPSDE, JADE and MDE pBX on cf1, cf9, cf10 and cf12.
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Figure 2 The convergence curves and of CJADE and JADE and their mean values of Cr and F on cf3.

5.4 The Advantage of Improved Adaptation of
Parameters

As mentioned in Section 4, JADE is a special case of
CJADE with K = 1. The procedure of CJADE is the
same as JADE except for the adaptation of parameters.
In this section, we will study the improved adaptation of
parameters and show the advantage of CJADE compared
with JADE. According to the results of Table 2, we take
cf3 as example. The evolutionary curves of solution error
and parameters of CJADE and JADE are plotted in
Fig. 2. When the objective function is separable, a value
for Cr from the range (0.0, 0.2) is best because then
each trial vector frequently competes with a target vector
from which it differs by a single parameter (Ronkkonen
et al., 2005). In contrast, a large value of Cr is very
suitable for non-separable problems, since in this case all
parameters may have to be adjusted simultaneously for

the search to remain efficient. cf3 is an unimodal and
non-separable functions (Liang et al., 2013). As shown
in Fig. 2, CJADE has a larger mean value of Cr of all
individuals than JADE, which is why CJADE performs
better than JADE on cf3.

6 CONCLUSION

DE is an efficient population-based optimization
algorithm. However, its performance highly depends
on its control parameters. In this paper, a variant of
JADE algorithm based on the clustering of successful
parameters, denoted CJADE, is proposed. It considers
each F and Cr as a point of the two-dimensional vector
space and utilizes the K-means to cluster the successful
parameters and to update the control parameters
automatically.
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The experimental studies are carried on 30
benchmark functions used for the 2014 IEEE CEC
Competition on Single Objective Real-parameter
Numerical Optimization, which includes simple
unimodal and multimodal function, hybrid and
composition functions. Compared with four DE variants,
namely, JADE, jDE, MGBDE and RADE, CJADE
shows good performance on the majority of the test
functions.

Further research work includes the analysis of control
parameters during the evolution process, as well as
experiments with some other methods of cluster analysis,
such as distribution-based and density-based clustering.
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