5 research outputs found

    Stochastic Data Clustering

    Full text link
    In 1961 Herbert Simon and Albert Ando published the theory behind the long-term behavior of a dynamical system that can be described by a nearly uncoupled matrix. Over the past fifty years this theory has been used in a variety of contexts, including queueing theory, brain organization, and ecology. In all these applications, the structure of the system is known and the point of interest is the various stages the system passes through on its way to some long-term equilibrium. This paper looks at this problem from the other direction. That is, we develop a technique for using the evolution of the system to tell us about its initial structure, and we use this technique to develop a new algorithm for data clustering.Comment: 23 page

    Preconditioning For Matrix Computation

    Full text link
    Preconditioning is a classical subject of numerical solution of linear systems of equations. The goal is to turn a linear system into another one which is easier to solve. The two central subjects of numerical matrix computations are LIN-SOLVE, that is, the solution of linear systems of equations and EIGEN-SOLVE, that is, the approximation of the eigenvalues and eigenvectors of a matrix. We focus on the former subject of LIN-SOLVE and show an application to EIGEN-SOLVE. We achieve our goal by applying randomized additive and multiplicative preconditioning. We facilitate the numerical solution by decreasing the condition of the coefficient matrix of the linear system, which enables reliable numerical solution of LIN-SOLVE. After the introduction in the Chapter 1 we recall the definitions and auxiliary results in Chapter 2. Then in Chapter 3 we precondition linear systems of equations solved at every iteration of the Inverse Power Method applied to EIGEN-SOLVE. These systems are ill conditioned, that is, have large condition numbers, and we decrease them by applying randomized additive preconditioning. This is our first subject. Our second subject is randomized multiplicative preconditioning for LIN-SOLVE. In this way we support application of GENP, that is, Gaussian elimination with no pivoting, and block Gaussian elimination. We prove that the proposed preconditioning methods are efficient when we apply Gaussian random matrices as preconditioners. We confirm these results with our extensive numerical tests. The tests also show that the same methods work as efficiently on the average when we use random structured, in particular circulant, preconditioners instead, but we show both formally and experimentally that these preconditioners fail in the case of LIN-SOLVE for the unitary matrix of discreet Fourier transform, for which Gaussian preconditioners work efficiently

    Studies in Rheology: Molecular Simulation and Theory

    Get PDF
    With an enormous advance in the capability of computers during the last fewdecades, the computer simulation has become an important tool for scientific researches in many areas such as physics, chemistry, biology, and so on. In particular, moleculardynamics (MD) simulations have been proven to be of a great help in understanding the rheology of complex fluids from the fundamental microscopic viewpoint. There are two important standard flows in rheology: shear flow and elongational flow. While there exist suitable nonequilibrium MD (NEMD) algorithms of shear flows, such as the Lees-Edwards purely boundary-driven algorithm and the so-called SLLOD algorithm as a field-driven algorithm, a proper NEMD algorithm for elongational flow has been lacking. The main difficulty of simulating elongational flow lies in the limited simulation time available due to the contraction of one or two dimensions dictated by itskinematics. This problem, however, has been partially resolved by Kraynik and Reinelt’s ingenious discovery of the temporal and spatial periodicity of lattice vectors in planar elongational flow (PEF). Although there have been a few NEMD simulations of PEF using their idea, another serious defect has recently been reported when using the SLLOD algorithm in PEF: for adiabatic systems, the total linear momentum of the system in the contracting direction grows exponentially with time, which eventually leads to an aphysical phase transition.This problem has been completely resolved by using the so-called ‘proper-SLLOD’ or ‘p-SLLOD’ algorithm, whose development has been one of the mainaccomplishments of this study. The fundamental correctness of the p-SLLOD algorithm has been demonstrated quite thoroughly in this work through detailed theoretical analyses together with direct simulation results. Both theoretical and simulation works achieved in this research are expected to play a significant role in advancing the knowledge of rheology, as well as that of NEMD simulation itself for other types of flow in general. Another important achievement in this work is the demonstration of the possibility of predicting a liquid structure in nonequilibrium states by employing a concept of ‘hypothetical’ nonequilibrium potentials. The methodology developed in this work has been shown to have good potential for further developments in this field

    MRRR-based Eigensolvers for Multi-core Processors and Supercomputers

    Get PDF
    The real symmetric tridiagonal eigenproblem is of outstanding importance in numerical computations; it arises frequently as part of eigensolvers for standard and generalized dense Hermitian eigenproblems that are based on a reduction to tridiagonal form. For its solution, the algorithm of Multiple Relatively Robust Representations (MRRR or MR3 in short) - introduced in the late 1990s - is among the fastest methods. To compute k eigenpairs of a real n-by-n tridiagonal T, MRRR only requires O(kn) arithmetic operations; in contrast, all the other practical methods require O(k^2 n) or O(n^3) operations in the worst case. This thesis centers around the performance and accuracy of MRRR.Comment: PhD thesi
    corecore