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Abstract 

In the first-principles calculation of electronic structures, one of the most time-

consuming tasks is that of computing the eigensystem of a large symmetric nonlinear 

eigenvalue problem.  The standard approach is to use an iterative scheme involving the 

solution to a large symmetric linear eigenvalue problem in each iteration. In the early and 

intermediate iterations, significant gains in efficiency may result from solving the 

eigensystem to reduced accuracy. As the iteration nears convergence, the eigensystem 

can be computed to the required accuracy. 

Traditional real symmetric eigensolvers compute the eigensystem in three steps: 1) 

reduce a dense matrix to a symmetric tridiagonal form using orthogonal transformations; 

2) compute eigenpairs of the tridiagonal matrix; 3) back-transform eigenvectors of the 

tridiagonal matrix to those of the original matrix. Stable and efficient eigen-

decomposition algorithms for symmetric tridiagonal matrix are under constant 

investigation, while the performance of orthogonal reduction step remains a bottleneck. 

The main contribution of this dissertation is an efficient parallel approximate 

eigensolver that computes eigenpairs of a real symmetric matrix to reduced accuracy. 

This eigensolver consists of three major parts: 1) a parallel block tridiagonal divide-and-

conquer algorithm that computes the approximate eigenpairs of a block tridiagonal matrix 

to prescribed accuracy; 2) a parallel block tridiagonalization algorithm that constructs a 

block tridiagonal matrix from a sparse matrix or “effectively” sparse matrix – matrix with 

many small elements that can be regarded as zeros without affecting the prescribed 

accuracy of the eigenvalues; 3) a parallel orthogonal block tridiagonal reduction 

algorithm that reduces a dense real symmetric matrix to block tridiagonal form using 

similarity transformations with a high ratio of level 3 BLAS operations. The parallel 

approximate eigensolver chooses a proper combination of the three algorithms depending 

on the structure of the input matrix and computes all the eigenpairs of the input matrix to 

prescribed accuracy. 

Numerical results show that the parallel block tridiagonal divide-and-conquer 

algorithm is very efficient when at least a few off-diagonal blocks have a relatively low 
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rank. With a very low computational cost, the parallel block tridiagonalization algorithm 

constructs a block tridiagonal matrix from a sparse or “effectively” sparse input matrix. 

The parallel orthogonal block tridiagonal reduction algorithm achieves high performance 

due to high ratio of level 3 BLAS operations. Using a small block size for the parallel 

orthogonal block tridiagonal reduction algorithm is a critical factor for competitive 

performance when combined with the parallel block tridiagonal divide-and-conquer 

algorithm.  

    Our parallel approximate eigensolver has the limitation that the block tridiagonal 

matrices, either as the input matrices or after pre-processing steps, should have off-

diagonal blocks with low rank, say 20 or less, or a very high ratio of deflation to achieve 

satisfactory performance. In addition, large variation in deflation rate may lead to 

workload imbalance, although such cases appear to be rare. Future work may include a 

complete data parallel implementation of the block tridiagonal divide-and-conquer 

algorithm and a parallel adaptive eigensolver that detects matrix structure automatically, 

adjusts the accuracy requirement when necessary and chooses the proper algorithms to 

solve the eigenproblem. 
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1 Introduction and background 

To construct an efficient and flexible eigensolver for real symmetric matrices is a 

challenging task because users with different backgrounds in the scientific community 

have distinctive requirements.  

    Practical applications generate real symmetric matrices of different kinds. For 

example, dense versus sparse and structured versus non-structured. Requirements for the 

matrix eigen-decomposition are also different. Some applications require only the 

eigenvalues, and some require the full set of eigenvalues and eigenvectors, while still 

others require only a few selected eigenpairs. In addition to the requirements from the 

applications, current hardware capabilities may also limit how many eigenpairs are 

computed and what eigen-decomposition algorithms are used. 

In the first-principles calculation of electronic structures, the Schrödinger equation 

 =H EΦ Φ  (1.1) 

is solved approximately. Here H is a Hermitian operator called the Hamiltonian, Φ is the 

wave function of electrons, and E is the electronic energy. This equation is intrinsically 

an eigenvalue problem because both Φ and E are unknown. The Schrödinger equation 

contains all the necessary information of physical systems of particles. These systems 

may have many electrons and nuclei whose interactions are often coupled. The study of 

such a complex system is called many-body problem. Except for some very simple 

systems like hydrogen atom, there is no way to get an exact solution for them.  

    One of the widely used approximation methods for solving Equation 1.1 is called the 

Hartree-Fock method. In this method, the many-electron system is approximated by an 

effective one-electron system, where all other electrons are considered as effective 

background. The many-body problem is thus reduced to a single-body problem [71]. The 

resultant Hartree-Fock equation is a non-linear integro-differential equation containing 

the desired unknown energy levels and wave functions. This equation is further converted 

into a non-linear symmetric eigenvalue problem and solved by an iterative procedure 
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called the self-consistent field (SCF) method (see Section 1.2 for details). In each 

iteration of the SCF procedure, a linear real symmetric eigenvalue problem is solved. In 

early and intermediate iterations, it may be more efficient to compute the eigenpairs to 

reduced accuracy [91]. As the SCF iterations near convergence, eigenpairs are computed 

to the required accuracy.  

As the size of the system to be modeled and the requirements for the resolution of 

answers increase, the magnitude of the computational problem increases significantly. 

Solutions can soon only be obtained through the use of parallel and distributed 

computation, which in turn requires either parallelization of sequential algorithms or 

design of new parallel algorithms. 

The goal of this dissertation is to develop an efficient parallel approximate eigensolver 

for real symmetric matrices that chooses appropriate algorithms according to different 

matrix structures and user-specified parameters such as accuracy tolerance. 

1.1 Problem statement 

For a real symmetric matrix n nA ×∈ and an accuracy toleranceτ , we design and 

implement an efficient parallel approximate eigensolver that computes the approximate 

eigenpairs of A  to the prescribed accuracy tolerance τ  bounded by 0.1machε τ≤ < . That 

is, we compute X  and Λ  such that 

               TA X X≈ Λ  

where X contains the approximate eigenvectors, the diagonal matrix Λ  contains the 

approximate eigenvalues, X  and Λ  satisfy  

( )22

TA X X O Aτ− Λ = , 

and X  is numerically orthogonal, i.e.,  

( ) ( )
2

max , 1 .T
i machXX I e O n i nε− = ≤ ≤   

When high accuracy is required, an existing reliable eigensolver like those found in 

ScaLAPACK [13] will be used; when lower accuracy suffices, then other algorithms 
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based upon the block tridiagonal eigensolver [43] may be more efficient. Thus, a major 

task for our parallel approximate eigensolver is to construct a symmetric block 

tridiagonal matrix                               

                               

1 1

1 2 2

2 3

1

1

T

T

T
q

q q

B C
C B C

M C B
C

C B
−

−

 
 
 
 =
 
 
 
 

, 

which is an approximation to A , and to compute approximate eigenpairs of M efficiently. 

The construction of M  is implemented either by orthogonal transformations or by 

alternative methods, depending on properties of A  and the required accuracy.  

1.2 Application and motivation 

In quantum chemistry, material science and physics, electronic properties determine the 

structure-property relationship of a specific material and are fully contained in the 

electronic wave functions. The wave function of an electron in a molecule is called the 

molecular orbital. These wave functions are fundamentally difficult to obtain. Different 

approximation methods have been developed to compute electronic wave functions by 

solving the Schrödinger equation (Equation 1.1) approximately, e.g., the Hartree-Fock 

method [91, 17], density functional method [62, 78], and perturbation method [70]. Each 

of those methods is appropriate for a specific application area. An important one of those 

methods is the Hartree-Fock self-consistent method, which is used for electronic structure 

calculations in quantum chemistry, condensed matter physics, optics, etc. Since the 

Hartree-Fock equation is a non-linear differential equation, a molecular orbital is 

expanded in terms of a linear combination of a set of basis functions, so that the Hartree-

Fock equation can be represented in matrix form. The resultant equation is called the 

Roothaan equation [91], 

( )F C C SC= E ,    (1.2) 
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where ( )F C , C , S  and E  are the Fock matrix, the eigenvector matrix, the overlap 

matrix between basis functions, and the diagonal matrix of eigenvalues, respectively.  

The eigenvector matrix contains the coefficients for the wave functions, and the 

eigenvalues are electronic energies. The matrix S  is positive definite. 

    To compute the coefficients for the wave functions that best describe molecular 

orbitals, one needs to solve the Roothaan equation, typically by the self-consistent field 

(SCF) method as shown in Figure 1.1. In the SCF procedure, Equation 1.2 is first reduced 

to a standard non-linear real symmetric eigenvalue problem  

                                          F C C′ ′ ′= E ,      (1.3) 

where 1 ( ) TF U F C U− −′ = , TC U C′ =  and U  comes from a factorization of the overlap 

matrix TS UU= . Then Equation 1.3 can be solved iteratively until convergence (or self-

consistency) is achieved. In each iteration, after C′  is computed, a new F ′  is computed 

as a function of C′ ; thus, a new Equation 1.3 is solved.  

One criterion that can be used for convergence is the total electronic energy of each 

iteration, i.e., the difference between the total electronic energies of two successive 

iterations should be bounded by a prescribed tolerance. For a system with N  electrons,  

  

                  1

SCF Procedure
1)
2)
3)

3.1) :
3.2)
3.3)
3.4)
3.5) , ,

T

T

T

T

Initial guess of wave functions C
Factorize overlap matrix S UU
do

Normalize Fock matrix F U FU
Compute C U C
Solve F C C
Compute new C U C
If not converge construct new F got

− −

−

=

′ =

′ =
′ ′ ′=

′=

E

3.1.o

  

                     Figure 1.1  Self-consistent field (SCF) procedure. 
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this total electronic energy equals 
2

,
1

2
N

i i
i=
∑E  if N  is even, and ( ) ( )

( )1 2

, 1 2, 1 2
1

2
N

i i N N
i

−

+ +
=

+∑ E E  if 

N  is odd. Theoretically, in order to guarantee an exact solution of wave functions, the 

number of basis functions must be infinite. Practically, only a finite number of basis 

functions can be used. The size of the matrix generated is determined by the number of 

bases. For N  electrons in a molecule, at least N  basis functions are needed to represent 

the molecule. As the number of molecules and electrons to be modeled increases, the 

number of bases becomes larger, and so does the corresponding matrix size. Thus, a 

� � 荊� 鍨먒� �脈 �� 愁� ℀n the SCF method is to solve large symmetric eigenvalue 

problems efficiently in each iteration.       

We will use the SCF method in electronic structure calculations as our model problem.  

The sizes of our test matrices from quantum physics and chemistry range from moderate 

to large. Also, random matrices and matrices with specific eigenvalue distributions will 

be generated for testing specific properties of the eigensolver and very large problems.  

1.3 Brief review of related work 

Real symmetric eigenvalue problems have been studied intensively and extensively [26, 

49, 77, 96]. Different algorithms have been developed for solving effectively and 

efficiently problems with different properties and requirements, such as dense matrices, 

sparse matrices, full spectrum required, or partial eigensystem required.  

As the processors manufactured today become more powerful, the gap between CPU 

speed and memory access time has become much greater. To minimize this effect, 

algorithms have been reconstructed to take advantage of the deep memory hierarchy of 

modern computers and distributed data storage in parallel computers. For example, 

numerical software packages like LAPACK [1] and ScaLAPACK [13] implement linear 

algebra software using blocked algorithms to increase the number of floating-point 

operations per data access by maximizing the use of level 3 BLAS operations. References 

are made to such algorithms below as current algorithms are briefly described. 

Traditional real symmetric eigensolvers for dense matrices decompose a real  
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symmetric matrix in three steps: 

1) Reduce a dense matrix into a symmetric tridiagonal form using orthogonal   

        transformations.   

        LAPACK currently implements the reduction in one step [35]. First, a sequence of      

       k  Householder transformations is computed and accumulated, which involves    

        matrix-vector multiplications, that is, level 2 BLAS operations [34]. Then the rest of   

    the matrix A  is updated using a symmetric rank-2k update, which is a level 3  

       BLAS operation [33]. The level 2 BLAS operations count for about 50% of the total  

       floating-point operations in the reduction to tridiagonal form.  

        Successive Bandwidth Reduction (SBR) [8, 12, 11] implements the reduction in    

        two steps. First, a dense matrix is reduced to a banded form using mostly level 3  

        BLAS operations, and then the banded matrix is reduced to tridiagonal form using  

        mostly level 2 BLAS operations. This approach has a more favorable data access  

        pattern and a higher ratio of level 3 BLAS operations. However, the total amount of  

        floating-point operations of SBR is higher than that of the LAPACK reduction  

        algorithm. In addition, when the eigenvectors are required, the back transformation  

        from SBR results in more storage space and higher computational complexity. 

2) Compute eigenpairs of the tridiagonal matrix.  

    Let n nT ×∈  be a real symmetric tridiagonal matrix; some of the frequently used    

        algorithms for computing its eigensystem are described below: 

    2.1)  Symmetric QR iteration with shift  [40] as shown in Figure 1.2 is a  

               stable method and still commonly used to compute all eigenpairs of  T . The  

               computational complexity of the symmetric QR algorithm for computing all  

               eigenvalues and eigenvectors is ( )3O n . 

                The shift in the QR iteration is used to speed up the convergence [97]. The  

                algorithm is typically implemented in an implicit form using a double shift,  

                avoiding the potential numerical error and complex arithmetic in the above 
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0

1

1, 2,

k
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T T
for k

choose shift
compute QR factorization

Q R T I
T R Q I

end

µ

µ
µ

−

=
=

= −
= +

…

                                                                          

                                               Figure 1.2  QR iteration. 

 

                formulation [84].  

                The QR algorithm is sequential in nature. Parallel implementations  

               of the QR algorithm have been developed in an attempt to exploit more  

           parallelism [3, 61, 63, 93, 69], for example, by adjusting the sequential  

               algorithm [93] or by  pipelining the computation [63].   

    2.2) The Divide-and-conquer algorithm [16, 24, 48, 87, 92] is typically more than  

               twice as fast as the symmetric QR [92] and also computes all eigenvalues and  

               eigenvectors of a symmetric tridiagonal matrix. The computational complexity  

               of the divide-and-conquer algorithm is also ( )3O n  in the worst case. 

                   The matrix order of the problem is reduced by re-writing T  as 

                                             1

2

TT O
T uu

O T
δ

 
= + 

 
, 

                where 1 1 1T n n∈ ×  and 2 2 2T n n∈ ×  are tridiagonal matrices, 1 2n n n+ = ,  

               
1 11,n ntδ += and 

1 2

0, 0,1,1,0, ,0
n n

u
 
 =
 
 

. We then compute the eigen- 

                decomposition of the smaller subproblems 1T  and 2T  to obtain 1 1 1 1
TT Q Q= Λ  and   

                2 2 2 2
TT Q Q= Λ . Now, we have  
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                                         1 1 1

2 2 2

T
T

T

Q Q O
T uu

O Q Q
δ

 Λ
= + Λ 

 

                                         ( )1 1

2 2

T
T

T

Q O Q O
D yy

O Q O Q
δ

  
= +   

   
,  

                where 1

2

D
Λ 

=  Λ 
 and 1

2

T

T

Q O
y u

O Q
 

=  
 

. To decompose TD yyδ+  into   

               TV VΛ , the eigenvalues Λ  of TD yyδ+ can be computed by solving the secular              

                equation ( )
2

1
1 0

n
j

j j

y
f

d
λ δ

λ=

= + =
−∑  efficiently and stably [66, 72].    

                    For a computed eigenvalue îλ , its corresponding eigenvector îv  can be   

                computed by  

                                               
( )
( )

1

1

2

ˆ
ˆ

ˆ
i

i

i

D I y
v

D y

λ

λ

−

−

−
=

−
.     (1.4) 

                However, with close eigenvalues, eigenvectors computed with this formula will   

                lose their orthogonality [89, 24]. Fortunately, there is a numerically stable  

                method to compute the orthogonal eigenvectors without using extended  

                precision [52, 51]. First, the computed eigenvalues îλ  are taken as the exact  

                eigenvalues of another matrix TD yyδ+ . Each component of y  can be  

                computed by     

                                      ( )
1

ˆ
ˆ

n
j i

i i i
j j i
j i

d
y d

d d
λ

λ
=
≠

−
= −

−∏ .     (1.5) 

                Then vector y  in Equation 1.4 is replaced by y  in Equation 1.5, and the      
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                eigenvectors of  TD yyδ+ are computed by 

                                      

( )
( )

( )

1

1

2

1

1

2

2
1

ˆ
ˆ

ˆ

, ,ˆ ˆ
.

ˆ

i
i

i

T

n

i n i

n
j

j
j i

D I y
v

D y

yy
d d

y

d

λ

λ

λ λ

λ

−

−

=

−
=

−

 
 

− − =

−
∑

  

                The eigenvector matrix of T  can then be computed by 1

2

Q
Q V

Q
 

=  
 

, with    

                the eigenvalues on the appropriate diagonals of Λ .  

                    In this recursive algorithm as shown in Figure 1.3, the matrix T  is divided   

                into submatrices recursively until the submatrices are small enough to be    

                solved quickly using other stable methods. 

                    The divide-and-conquer algorithm is considered inherently parallel. However,  

                its parallel implementation is a challenging task [36, 44, 58, 92]. One needs to  

                handle deflation (see Section 2.1.3) properly to minimize floating-point  

                operation count and communication cost and maintain workload balance,  

                all at the same time [92].  

    2.3) Bisection and Inverse iteration [49] is able to compute selected  eigenpairs of   

               T . The worst-case computational complexity is ( )3O n  when all eigenpairs are   

                computed. 

               Define the polynomial )det()( ITp rr µµ −=  [49], where nr ,,2,1=  and   

                (1: ,1: )r r rT T= . Set 0 ( ) 1p µ = , 1 1,1( )p tµ µ= − . For nr ,,3,2= , )(µrp  can be  

                expressed recursively as 2
, 1 , 1 2( ) ( ) ( ) ( )r r r r r r rp t p t pµ µ µ µ− − −= − − .  
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Λ

 

                               Figure 1.3  Divide-and-conquer (D&C) algorithm. 

 

                    The sequence { }0 1( ), ( ), , ( )np p pµ µ µ  forms a Sturm sequence of  

                polynomials; the root of )(µnp  can be found in )( 2nO  time complexity  

                using the bisection method [47]. 

                    After an eigenvalue λ  has been computed by the bisection method, the           

                corresponding eigenvector can be computed by inverse iteration [80, 57, 59] as  

                shown in Figure 1.4. 

                    Reorthogonalization is required to compute orthogonal eigenvectors when  

                the eigenvalues form a tight cluster, i.e., the gap between any two eigenvalues  

                in the cluster is small [77]. That may lead to ( )3O n  computational complexity  

                in the worst case. 
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                               Figure 1.4  Inverse iteration. 

 
 
                    In parallel implementation, sometimes a multisection algorithm is used to  

               compute the eigenvalues [6, 69]. When eigenvalues are well separated, then the 

               eigenvectors can be computed independently without communication. For  

               clustered eigenvalues, reorthogonalization may be necessary and involves  

               significant communication if those eigenvectors are not on the same processor. 

        2.4) The Multiple Relatively Robust Representations (MRRR) algorithm  

               [29, 30, 32] typically computes all the eigenvectors in ( )2O n  time without  

               explicit reorthogonalization.  

                   First a relatively robust representation of T  is computed in the form of  

                TT I LDLµ+ =  where T Iµ+  is positive definite. Based on the fact that  

                eigenvalues are less sensitive to perturbations in off-diagonal entries of a  

                bidiagonal matrix [76, 39], the eigenvalues of T can be computed to high  

                relative accuracy using this representation. For clustered eigenvalues, a new  

                shift that is close to the clustered eigenvalues is used to compute a new  

                relatively robust representation [31, 75]. A twisted factorization [29, 31] is  

                computed to find which equation of the near singular system ( )ˆ ˆ 0T I vλ− =  is  

                to be neglected so that an accurate eigenvector can be calculated. Finally,  

                differential variants of the quotient-difference algorithm [39, 85, 86] is used to  

                compute both the accurate eigenvalues and numerically stable twisted  

                factorizations. Figure 1.5 shows the important steps in the MRRR algorithm. 
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:

*

T
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T
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Compute RRR T I L D L
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end

else
compute new RRR for clustered eigenvalues
goto
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                Figure 1.5  Multiple Relatively Robust Representations (MRRR) algorithm. 

 

                    MRRR algorithm usually does not require reorthogonalization to compute  

                orthogonal eigenvectors corresponding to a group of clustered eigenvalues. In  

                addition, each eigenvector can be computed independently, which enables a  

                coarse-grained parallelization [7].   

    3) Back transform eigenvectors of the tridiagonal matrix to those of the original matrix   

        through matrix multiplications. 

            Orthogonal transformation matrices can either be accumulated during the process  

        of reduction, or constructed after the reduction has been completed. Given a group  

        of Householder vectors 1 2, , , n
kv v v ∈… , the corresponding orthogonal matrix of  

        Householder transformations 1 2 kH H H H=  can be represented as TH I WY= −   

        where , n kY W ×∈  [10], or as TH I YRY= − where n kY ×∈  and k kR ×∈  is upper   

        triangular [88]. LAPACK and ScaLAPACK use TH I YRY= − representation for  

        back transformation, while SBR uses  TH I WY= −  representation. 
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All of the above algorithms successfully compute eigenpairs of real symmetric 

matrices to full accuracy. They have both sequential and parallel implementations. In 

efficient implementations, blocked algorithms are used whenever possible [1, 2, 13, 20]. 

Some other algorithms with inherent parallelism, such as the Homotopy method [22, 65, 

67, 68, 73, 74] and the invariant subspace methods [54, 55, 5], have also attracted broad 

interest.  

In our research, we pay attention not only to the blocked implementation of algorithms, 

but also to the blocked structure of the input matrix itself to reduce further the overhead 

of data access. Different algorithms are chosen based upon matrix structure and accuracy 

requirement provided by the user. The kernel of our approach is to parallelize the 

symmetric block tridiagonal divide-and-conquer (BD&C) eigensolver [42, 43], which 

computes approximate eigenpairs of a real symmetric block tridiagonal matrix directly, 

that is, not requiring any further reduction to a condensed form. Consequently, we handle 

input matrices according to the following classification: 

1) Block tridiagonal matrices. A parallel BD&C eigensolver is implemented for the  

        decomposition of such matrices. This parallel eigensolver computes the full  

        spectrum of a real symmetric matrix up to a prescribed accuracy. 

    2) Dense matrices. For parallel eigen-decomposition of a dense matrix, ScaLAPACK    

        subroutines can be used to compute eigenpairs to full accuracy efficiently. If lower  

        accuracy is required, an alternative approach is likely to be more efficient. Earlier  

        investigations [12, 11] have shown that reducing a full matrix to a banded matrix  

        can be implemented using level 3 BLAS operations. By contrast, if we directly  

        reduce a full matrix to a tridiagonal one [35], only half of the operations can exploit  

        the high performance of level 3 BLAS operations. We extend this concept in that we  

        first reduce a full matrix to a block tridiagonal form using orthogonal  

        transformations, and then decompose the block tridiagonal matrix using the parallel  

        BD&C eigensolver.   

3) Sparse matrices. Reordering algorithms have been developed to reduce the  

        bandwidth of an unstructured sparse matrix. Based on the permuted matrix, we may  
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        determine a block tridiagonal structure on which we can apply the parallel BD&C  

        eigensolver [4]. Note that the sparse matrix structure here can also be a dense matrix  

        that is “effectively” sparse, meaning that although most of the matrix elements are  

        nonzeros, many of them can be considered zero within the user-specified accuracy  

        requirements of the eigenvalues. The concept of “effectively” sparse matrix is  

        applicable to matrices with larger elements close to the diagonal and smaller      

        elements away from the diagonal, which reflects a locality principle that frequently  

        occurs in physical applications. 

    The parallel approximate eigensolver first determines what algorithm will be used to 

transform the matrix into block tridiagonal form depending on whether the input matrix 

has some structure or not. Then, the block tridiagonal matrix is decomposed using the 

parallel BD&C eigensolver.  

1.4 General notation 

Symbols that will be used consistently throughout this dissertation in all sections are 

listed on pages xv – xvi. Symbols used only in one specific section will be defined in 

their context when they are used.  

Throughout this dissertation, matrices are denoted by uppercase letters. For example, A  

denotes a real symmetric matrix and TA denotes the transpose of matrix A . The ( ),i j -th 

element of matrix A  will be represented by ija . A submatrix of A  containing columns 

1j  to 2j  and rows 1i  to 2i  will be denoted using the Matlab notation ( )1 2 1 2: , :i i j jA . The j -th 

column of  A  will be denoted by ja . ijA  will represent the ( ),i j -th submatrix of A . The 

identity matrix will be denoted by I . The ( ),i j -th element of I  is given by ijδ , with 

0ijδ = , i j∀ ≠  and 1iiδ = . 
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Vectors are denoted by lower case letters such as v . The i -th element of v  will be 

denoted by iv .  
1

0, ,0,1,0, ,0
T

k
k n k

e
− −

 
=   

 
… … will represent the vector with its k -th element 

having the value 1.  

Lower case letters p , r and c  will be used to denote the number of processors and the 

corresponding processor rows and columns in a processor grid. Letters m , n  will be 

reserved for matrix sizes, and q  will be used to denote the number of diagonal blocks of 

a block tridiagonal matrix.  

Lower case Greek letters denote scalars. Eigenvalues of a real symmetric matrix of 

order n  will be denoted by 1λ , 2λ , , etc., with 1 2 nλ λ λ≤ ≤ ≤ . Similarly, singular 

values of a matrix will be denoted by 1σ , 2σ , , nσ , but sorted in descending order. 

The diagonal eigenvalue matrix will be denoted by Λ , while the singular value matrix by 

Σ .  

A tilde over a symbol denotes the modified value of that quantity, while a circumflex 

over a symbol denotes a computed value. For example, TA A vu= +  implies that A  is a 

rank-one update of A , and îλ  represents a computed approximate eigenvalue in contrast 

to an exact eigenvalue iλ . α    represents scalar α  rounded up to the nearest integer, 

and α    represents scalar α  rounded down to the nearest integer. 

denotes the set of real numbers, and m n×  denotes the set of m n× real matrices. 

Unless explicitly specified otherwise, all matrices are of size n n×  and all vectors are of 

size n .  

Finally, since the terms “floating-point operations” and “floating-point operations per 

second” are used frequently to quantify computational complexity and performance of an 

implementation, respectively, we use flops to represent  “floating-point operations”, and 

FLOPS  to represent “floating-point operations per second”.   
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1.5 Outline of dissertation 

This dissertation is organized as follows: 

1) In Section 2, essential sequential algorithms for an approximate real symmetric  

    eigensolver are reviewed. The block tridiagonal divide-and-conquer algorithm  

    computes the full spectrum of a block tridiagonal matrix to prescribed accuracy. The  

    orthogonal block tridiagonal reduction algorithm reduces a real symmetric dense  

    matrix to block tridiagonal form using orthogonal transformations. The block  

    tridiagonalization algorithm re-constructs an “effectively” sparse matrix into block  

    tridiagonal form.  

2) In Section 3, issues in design and implementation of parallel block tridiagonal divide- 

    and-conquer eigensolver are discussed in detail. Analyses of complexities in  

    computation and communication are given for understanding of performance and  

    scalability. 

3) In Section 4, parallel pre-processing algorithms of dense matrices and their  

    implementations are presented. The purpose of those pre-processing steps is to  

    construct a block tridiagonal matrix that is similar to the original dense matrix. 

4) In Section 5, numerical results for the parallel approximate eigensolver and its major  

    components are presented. A flow chart of major steps in the approximate eigensolver  

    shows the criteria for choosing different algorithms depending on user specified  

    requirements. Test matrices include those from applications in quantum chemistry  

    and physics, random matrices, and matrices with specific eigenvalue distributions. 

5) Finally, in Sections 6 and 7, we summarize results in this dissertation and discuss how  

    some of our work can be further developed and improved. 
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2 Sequential algorithms for an approximate real symmetric 

eigensolver 

As mentioned above, a parallel version of the block tridiagonal divide-and-conquer 

(BD&C) eigensolver with its ability to compute approximate eigensystems will be a key 

algorithm of our approximate eigensolver. We may also need pre-processing algorithms 

to obtain the necessary block tridiagonal structure if the input matrix does not initially 

possess such a structure. The sequential versions of these algorithms are reviewed below. 

2.1 Block tridiagonal divide-and-conquer (BD&C) algorithm 

Given a block tridiagonal matrix n nM R ×∈  and an accuracy tolerance 0.1machε τ≤ <  

where machε  is the machine precision, the BD&C algorithm computes eigenpairs of M  to 

the prescribed accuracy τ :  

                                

1 1

1 2 2

2 3

1

1

T

T

T
q

q q

B C
C B C

M C B
C

C B
−

−

 
 
 
 =
 
 
 
 

  ≈ VΛVT,  

where q  is the number of diagonal blocks, V is an approximation to the eigenvectors of 

M and Λ is a diagonal matrix containing approximations to the eigenvalues of M , so 

that ( )22

TM V V O Mτ− Λ =  and V  is numerically orthogonal. 

There are three major steps in the BD&C algorithm [43]: subdivision, solution of 

subproblems and synthesis of solutions. 

2.1.1 Subdivision 
The off-diagonal blocks iC  of sizes 1i ib b+ ×  are approximated by lower rank matrices 

using their singular value decompositions: 

                                          
1

i
i i i T T

i j j j i i i
j

C u v U V
ρ

σ
=

≈ = Σ∑ , 



 18

where iρ  is the chosen approximate rank of Ci based on the accuracy requirement, 

1i ib
iU ρ+ ×∈   is the orthogonal matrix containing the first iρ  left singular vectors, 

i ib
iV ρ×∈   contains the first iρ   right singular vectors, iΣ  is the diagonal matrix that 

contains the largest iρ  singular values of iC , and 1,2, , 1i q= − .  

Using the above factorizations, the block tridiagonal matrix M can now be represented 

as an updated block diagonal matrix as follows: 

                                              
1

1

q
T

i i
i

M M WW
−

=

= + ∑ ,     (2.1) 

where { }1 2, , , qM diag B B B= ,  

 
1 1 1 1 1

1 1 1

1 1 1
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− − −

= − Σ
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 for 2 2i q≤ ≤ − ,  and  1/ 21
1 1

1/ 2
1 1

0
0

q
q q

q q

W
V
U

−
− −

− −

 
 
 =
 Σ
 Σ 

.            

2.1.2 Solve subproblems 
Each diagonal block iB~  is factorized: 

                                            ,T
i i i iB Z D Z=    for  1,2, ,i q= ,    (2.2) 

from which we obtain 

                                          TM ZDZ= ,      (2.3) 

where  

 1 2{ , , , }qZ diag Z Z Z= is a block diagonal orthogonal matrix, and     

1 2{ , , , }qD diag D D D= is a diagonal matrix.        

Note that traditional algorithms may be applied to compute the eigen-decomposition of 

the diagonal blocks.  Typically, the number of diagonal blocks q  in a block tridiagonal 

matrix is much greater than 2 and the block sizes ib are small compared to the matrix 
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size n . Thus, the eigen-decomposition of each subproblem iB  in Equation 2.2 involves 

only a diagonal block, which yields better data access time pattern than traditional 

decomposition methods on the much larger full matrix. 

2.1.3 Synthesis  
From Equations 2.1 and 2.3 we have: 

                                          
1

1

( )
q

T T
i i

i

M Z D YY Z
−

=

= + ∑ , (2.4) 

where T
i iY Z W=  . 

Denoting 
1

1

q
T

i i
i

S D YY
−

=

= + ∑  and 
1

1

q

i
i

ρ ρ
−

=

= ∑  in the synthesis step, S is represented as a 

sequence of ρ  rank-one modifications of D. The iρ  rank-one modifications 

( ) ( )1,2, , and 1,2, , 1
Ti i

j j iD y y j i qρ+ = = −  corresponding to an off-diagonal block 

iC  are called one merging operation, where { }i
jy  are the vectors that determine iY . Thus, 

the algorithm performs a total of 1q −  such merging operations. For each rank-one 

modification of the i-th merging operation, the modified matrix is first decomposed: 

( ) ( )T Ti i i i i
j j j j jD y y V V+ = Λ , and the eigenvector matrix from this decomposition is then 

multiplied onto the accumulated eigenvector matrix starting with the block diagonal 

eigenvector matrix Z . The accumulation of an intermediate eigenvector matrix for each 

rank-one modification involves matrix-matrix multiplications. Figure 2.1 illustrates a 

possible merging sequence of a matrix with four blocks. The shaded areas are eigenvector 

matrix blocks. 

Deflation happens when there is either a zero (or small) component in i
jy or two equal 

(or close) elements in D  [24, 36].  If the k -th component in i
jy  is zero, then the k -th  

diagonal kd  of D  is an eigenvalue of  ( )Ti i
j jD y y+ and the corresponding eigenvector is 

the identity vector ke . If there are two equal elements on the diagonal of D , Givens  
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                  Figure 2.1  Merging operations to accumulate eigenvectors. 
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rotation is used to zero out one of the corresponding element in i
jy , and corresponding 

eigenpairs can be computed as the former case. When deflation occurs, no computation is  

required to compute and accumulate the corresponding eigenvector. Further, a  

permutation matrix P  is used to move the deflated components of i
jy  to the bottom of 

i
jy :  

                           
1

1
( )

q
T T T T T T T T

i i
i

M ZG P P PPG D YY G P P PPGZ
−

=

= + ∑ , 

so that columns in T TZ ZG P=  are re-grouped according to their structure [50, 92]. The 

structure of T T TZ ZG P P=  from the first rank-one modification of a merging operation is 

shown in Figure 2.2, and that from the rank-one modifications after the first one is shown 

in Figure 2.3. 

The deflation criteria can be relaxed if the accuracy tolerance is greater than full 

accuracy. Under this condition, the synthesis step also involves approximations. As 

shown in Figure 2.4 [43], the percentage of deflation increases drastically as the blocks in 

the accumulated Z  matrix become larger.  

   Moreover, the approximate rank of the off-diagonal blocks in the first step of BD&C 

typically becomes smaller as the accuracy requirement becomes lower, which also 

reduces the computational complexity. Those two factors lead to high efficiency of the 

BD&C algorithm as accuracy decreases as demonstrated on a random block tridiagonal 

matrix in Figure 2.5 [43]. 

    A merging operation is a balanced one if the sizes 1b  and 2b of the two blocks to be 

merged are approximately the same, i.e., 1 2b b≈ . If 1 2b b  or 1 2b b , then the merging 

operation is an unbalanced one. It has been shown that the time complexity for the most 

unbalanced merging operation is less than that for the most balanced one but with a 

higher rank – even an increase in rank of only one [43]. Therefore, a block tridiagonal 

structure is preferred that allows for low rank modifications in the final merging 

operation, regardless of the relative sizes of the blocks being merged. In our parallel 

approximate eigensolver, advantage is taken of this fact whenever possible.      
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           Figure 2.2  Structure of  Z  from the first rank-one modification  
                             in a merging operation. 

 

 

 

 

 

 

 

           Figure 2.3  Structure of Z  from rank-one modifications after  
                             the first one in a merging operation. 
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        Figure 2.4  Lower and upper bound for deflation in the merging  
                          operations with different types of eigenvalue distribution.  
                          Matrix size 3000n =  with constant block size 10b =   
                          and 410τ −=  [43]. 

 
 

 

        Figure 2.5 Execution time with different deflation tolerances and ranks,  
                         matrix size 3000n =  with constant block size 10b =  [43]. 
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2.1.4 Computational complexity of BD&C 

Assume that matrix n nM ×∈  is a real symmetric block tridiagonal matrix with q  

diagonal blocks, n  is divisible by q  and each block has the same size b n q= . To 

simplify the time complexity analysis, we further assume that each off-diagonal block has 

the same rank ρ .  

For the BD&C algorithm, if deflation is not counted, the dominant part of the 

computational time is the matrix multiplications to accumulate eigenvectors during the 

merging operations; the complexity of all other computations, i.e. solving secular 

equations, computing eigenvectors, is 2( )O n  or less. Therefore, the leading term in the 

computational complexity of BD&C (i.e., matrix multiplications) is  

                                 
log 1

3
&

0

1 12
2 4

iq

BD C
i

flops nρ
−  

=

   = −   
   

∑   

                                           3
2

8 1 11
3 2

n
q

ρ
  = − −  

   
 

                                           ( )3 3 28 4
3 3

n n O b nρ ρ≈ − +     (2.5) 

2.2 Transformation of “effectively” sparse matrix –  block 

tridiagonalization (BT) algorithm 

Most matrices generated in real applications do not have a block tridiagonal structure; 

however, many may be sufficiently approximated by one. Given a full symmetric matrix 
n nA R ×∈  and an accuracy tolerance 0.1machε τ≤ < , A  is called “effectively” sparse if 

many of the nonzeros of A  may be set to zero without perturbing the eigenvalues of A  

more than Aτ . The 6-step heuristic Block Tridiagonalization (BT) algorithm [4] has 

been developed to transform a full matrix that is “effectively” sparse into a sparse matrix 

and then find a block tridiagonal structure for the sparse matrix as shown in Figure 2.6.   
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     Figure 2.6  Transform a full symmetric matrix into a block tridiagonal matrix [4]. 

 
    The BT algorithm partitions τ  into two parts, 21 τττ += , allowing a portion of the 

acceptable error to be used for different steps in the algorithm. The algorithm is described 

below. 

2.2.1 The 6-step block tridiagonalization algorithm 
    Step 1. Global threshold  A with Aτ  

    We start with a threshold τ τ′ = , larger than permitted by the accuracy requirement, 

and obtain matrix A′  by eliminating all elements in A less than Aτ . For many 

matrices resulting from modeling physical phenomena with strong locality properties, 

most of the elements will be eliminated.  The resultant matrix A′  will contain only the 

largest elements of A  and would hopefully be sparse. We start with a randomly permuted 

matrix shown in Figure 2.7 as an example. Figure 2.8 shows A′  as the resultant matrix 

from a global threshold of A . The vertical color bar to the right of the matrix indicates 

the magnitudes of the matrix elements by color; that is, matrix elements whose  
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                             Figure 2.7  A randomly permuted matrix A . 

 
 

                      

                            Figure 2.8  A′  from global threshold of A , 610τ −= . 
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magnitudes are of order 1 or larger are essentially black, while elements with smaller 

magnitudes go from black to red, then to yellow and finally to white. 

    Step 2. Reorder A′  

In this step, A′  is reordered to reduce its bandwidth using the Gibbs-Poole-Stockmeyer 

(GPS) algorithm [46, 64, 23]. Thus, the elements of A′  are moved closer to the diagonal. 

Figure 2.9 shows that the bandwidth of A′  has been greatly reduced after the 

permutation. The permutation matrix P accomplishing this task is obtained and will be 

used in Step 3.         

    Step 3. Permute A  with permutation matrix P  from Step 2 

The permutation matrix P computed in Step 2 is applied to A, resulting in matrix 

APPA T=′′ .  The larger elements of A are expected to be closer to the diagonal in A′′  as 

shown in Figure 2.10. 

Step 4. Target threshold A′′  with 1 Aτ  

In this step, we try to eliminate those elements far away from the diagonal in matrix 

A ′′  whose influence on the error of any eigenvalue is negligible compared to A1τ . This 

step produces matrix A′′′  such that  

                       A A E′′ ′′′= + ,    with 11
E Aτ< . 

It can be shown [26, 49] that the absolute difference between the eigenvalues iλ  of 

A′′ and the eigenvalues iλ′ of A′′′ is bounded by 

                                             
2 1i i E Eλ λ′− ≤ ≤ . 

Since the eigenvalue errors are bounded by the 1-norm of the error matrix E, the 

algorithm traverses the matrix elements along the off-diagonals from the end toward the 

center as illustrated in Figure 2.11, zeroing elements before each column-wise sum of 

absolute values of the dropped elements exceeds A1τ . Figure 2.12 shows A′′′  as the 

result of target threshold of A′′ .      
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                             Figure 2.9  Permuted A′  using the GPS algorithm. 

 

                      

                                        Figure 2.10  Permuted APPA T=′′ . 
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                Figure 2.11  Traverse elements along matrix off-diagonals [4]. 

 

                       

                              Figure 2.12  A′′  after target threshold, 6
1 10τ −= . 
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Step 5. Covering A′′′  

     The sizes of the diagonal blocks, which also fix the sizes of the off-diagonal blocks, 

are determined such that the resulting block tridiagonal matrix contains all the matrix 

elements that are effectively nonzero (i.e., nonzeros in A ′′′ ). These are the matrix elements                         

whose effect on the accuracy of the eigenpair approximation may be non-negligible. 

Figure 2.13 shows block sizes obtained from A′′′  along x-axis. 

    Step 6. Target block reduction (TBR) 

    As an option, the last step of the BT algorithm attempts to produce a few small blocks 

for a lower computational complexity in the merging operations of the BD&C algorithm. 

In step 4, none of the matrix elements dropped are greater than the given error bound 

1 Aτ . It may be possible to eliminate some of the matrix elements whose absolute values 

are larger than the given error bound without causing the accumulative error in the 

eigenvalues to exceed this error. Wilkinson [96] has given a sensitivity analysis that     

estimates the eigenvalues of a perturbed matrix M Eε+  in terms of the eigenvalues and 

eigenvectors of the original matrix M: 

                           ( ) )()()( 2εελελ OExxMEM T ++=+ ,                                      (2.6) 

where x denotes the eigenvector corresponding to the eigenvalue )(Mλ  of M . 

 From Equation 2.6, the eigenvalue error as a result of zeroing matrix elements ijm and 

jim can be estimated by 

                                      =∆λ )(2 2
ijjiij mOxxm + . (2.7) 

Several elements may be eliminated as long as the maximum of the sum of the 

eigenvalue errors is less than the given error bound. In our case, this error bound is 2 Aτ .     

Note that step 6 is only possible if an approximation for the eigenvectors is available. For 

an iterative method solving a non-linear eigenvalue problem (like the SCF method), we 

may use the eigenvectors from the previous iteration as an approximation. There may be 

other similar applications with eigenvector approximations permitting this last step in the 

algorithm. 
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                            Figure 2.13  Blocks that cover all nonzeros of A ′′′ . 

 
Using TBR, we may reduce the size of a few diagonal blocks and hope that the 

corresponding off-diagonal blocks have a lower rank.  As an example, for a matrix 
8 8xM R∈ as shown in Figure 2.14, eliminating elements 25m , 35m , and their symmetric 

counterpart 52m  and 53m  would lead to a totally different block tridiagonal structure as 

illustrated in Figure 2.15.  

2.2.2 Computational complexity of BT 

Most of the operations involved in the BT algorithm are comparisons, additions and 

permutations. The computational complexity and the number of data accessed are both 

( )2O n . Let 1nnz  and 2nnz  be the number of nonzero elements of matrices A′  and A′′′ , 

respectively (typically 1 2nnz nnz n< ). In Table 2.1, the maximal time complexity for 

each step of the algorithm is listed. In Step 6, k denotes the number of matrix elements 

that are checked for elimination (typically k << n). Since 1nnz and 2nnz  are both no 

greater than 2n , total complexity of steps 1 – 5 of BT is ( )2O n  regardless of their values.  



 32

                               

× × × 
 × × × × × 
 × × × × ×
 × × × × × 
 × × × × × × ×
 

× × × × × 
 × × × ×
 

× × × ×  

             

                Figure 2.14  Block tridiagonal structure that covers all nonzeros.                        
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                      Figure 2.15  Block tridiagonal structure after eliminating  
                                          entries (2,5), (3,5),  (5,2) and (5,3). 
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                    Table 2.1  Worst-case time complexity of BT [4]. 

Steps Comparison and 

data movement 

Addition and 

multiplication 

1. Global threshold 2n   

2. GPS reorder 3
23

2
n  [45] 

 

 

3. Symmetric permutation 23n   

4. Target threshold 2
2n nnz−  2

2n nnz−  

5. Covering n   

6. Reduce  block size 2n  2kn  

 

 

However, the bound on k  is 2n , so the complexity of step 6 could be ( )3O n . The 

computational complexity of the BT algorithm is ( )2O n  when ( )k O n≤ .  

2.3 Orthogonal block tridiagonal reduction of dense matrix (OBR) 

If a full symmetric matrix cannot be transformed into a block tridiagonal matrix for use 

by the BD&C algorithm with little computational effort as described above, one may 

choose to use a sequential eigensolver from a robust and efficient numerical library (e.g. 

DSYEVD [87] from LAPACK) to decompose it. However, for large matrices, the data 

locality in the reduction-to-tridiagonal step may not be as good as those of matrices of 

moderate size. Studies have shown that by reducing the dense matrix successively to a 

banded matrix and finally tridiagonal matrix [12, 41], one has a better data access pattern 

and larger portion of level 3 BLAS operations. We further extend this idea to produce a 

sequential algorithm for the reduction to block tridiagonal form. 

    Given a dense real symmetric matrix n nA ×∈ , we desire to apply a sequence of 

orthogonal similarity transformations to reduce A  to a block tridiagonal matrix M . 
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There are different ways to construct the orthogonal matrices, for instance, the QR 

factorization and the singular value decomposition. This section will consider only the 

QR factorization algorithm.  

2.3.1 Reduction using QR factorization 

The orthogonal transformations annihilate elements below the block subdiagonal panel 

by panel as shown in Figure 2.16. We will denote each matrix panel by i im n
iG ×∈ , each 

diagonal block of M  by iB  and off-diagonal block by iC . As a general rule, each matrix 

panel has same panel width bp , and all diagonal blocks have the same size 

1 2 1qb b b b−= = = =  where q  is the number of diagonal blocks and ( )1 / 1q n b= − +   , 

except that the last block has the size ( )1qb n q b= − − . 

We start with 0A A= , QR factorization of the first panel 1 1 1G Q R=  is computed, and 

we obtain the first diagonal block 1B  and off-diagonal block 1C which is the upper 

triangular part of 1R  as shown in Figure 2.17. Submatrix 1A  is updated using 1 1 1
TQ AQ . 

Next the second panel 2G  is factorized into 2 2Q R . Then we obtain blocks 2B  and 2C , 

and update submatrix 2A  in  the same way as shown in Figure 2.18. 

 

 

 

 

 

 

         

 

           Figure 2.16  Orthogonal factorization performed in column blocks. 
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                                  Figure 2.17  Reduction of the first panel.   

 

 

 

 

 

 

 

                              Figure 2.18  Reduction of the second panel. 
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In a general case, bp  is the width and i bm n i p= − ×  is the length of the i-th panel iG , 

b  is the block size of the reduced block tridiagonal matrix. In this Section and Section 

2.3.2, we only illustrate the case when bp b= . The cases of bp b≠  are discussed in 

Section 2.3.3.  

Let ( ) ( )i i i im n m n
iA + × +∈  as illustrated by Figure 2.19 be the lower right principal 

submatrix of A at the i-th stage of orthogonal reduction. For each matrix panel 

i im n
iG ×∈ in Figures 2.16 and 2.19, its QR factorization i i iG Q R=  where i im m

iQ ×∈ and 

i im n
iR ×∈  is used to reduce A to a block tridiagonal matrix. Partition 

0

i

i

R
R

 
 =  
  

 where 

( )( )1: ,1:i i
i i n n

R R=  is upper triangular. A will be reduced to a block tridiagonal matrix with 

triangular off-diagonal blocks. Partitioning iA  as   

 

 

 

   

 

 

 

 

 

 

         Figure 2.19  Matrix A  at the i-th stage of orthogonal reduction. 
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                                          11 12

21 22

i i

i i
i

i i i
i

n m

nA A
A

mA A
 

=  
 

, 

and then applying iQ  to it, we have 

                                 11

22

i T
i

iT i
i i i

I O I O A R
A

O Q O Q R A
    

=     
     

.     (2.8) 

The diagonal block 11
iA  and off-diagonal block iR  can be obtained directly, and 

1 22 22
i T i

i i iA A Q A Q+ = = . We continue this procedure until the whole matrix A  is reduced to 

a block tridiagonal matrix M . All the subdiagonal blocks of M  except the last one are 

upper triangular. The panel width bp  needs to be chosen carefully. It should be small 

enough to keep cache miss rate low and yet large enough to benefit from data-reuse in 

level 3 BLAS operations.  

2.3.2 Computational complexity of OBR 

To reduce a real symmetric matrix A  to a block tridiagonal matrix M  with fixed panel 

width bp  and block sizes bb p=  as shown in Figure 2.19, computational complexity of 

QR factorization i i iG Q R=  of each matrix column block i im n
iG ×∈  where i bn p=  and 

i bm n i p= − ×  is 2 322
3i i in m n−  [49]. Here the Householder vectors are saved for the 

update of 22
iA  and the computational complexity to construct iQ  is also 2 322

3i i in m n−  [49]. 

Finally, the time complexity for rank-2b updating of 22A  is approximately 24 i im n  [49]. 

Assume that the size n  of A  is divisible by bp  and /b bq n p=  is the number of panels in 

A . The total number of floating-point operations for reduction from A to M  thus 

becomes 
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       ( ) ( )
1

23 3 3

1

44 4
3

bq

OBR b b b b b
i

flops q i p p q i p
−

=

 = − − + −  
∑       

                     ( ) ( ) ( )3 2 1 2 142 1 ( 1)
3 3

b b b
b b b b

q q q
p q q q

− − 
= − − − + 

 
 

                     3 34 8 4
3 3 3b b bp q q = − + 

 
 

                     ( )3 2 34 8
3 3 b bn p n O p≈ − + , (2.9) 

and the number of floating-point operations in rank-2b update that are level 3 BLAS 

equals  

                 ( )
1

23 3 3 2 2

1

4 24 2
3 3

bq
BLAS
OBR b b b b

i
flops q i p n p n p n

−

=

 = − = − + ∑ . (2.10) 

Although the leading term of computational complexity of both ORB and LAPACK 

tridiagonal reduction is 34
3

n  [35], the performance of OBR should be better due to higher 

ratio of level 3 BLAS operations. This is confirmed by the performance test results 

shown in Figure 2.20. In this test, we use subroutine DSYRDB from the SBR package [8]  

to reduce a real symmetric matrix to a block tridiagonal matrix with two different block 

sizes, 32 and 64, and use subroutine DSYTRD from LAPACK [1, 2] to reduce the same 

matrix to tridiagonal form. The panel width in DSYRDB equals the block size. The 

processor we use is one of the thirty-two 1.3 GHz Power4 processors on a node of the 

IBM p690 system at Oak Ridge National Laboratory [98]. The system has 27 nodes, and 

most of the nodes have 32 GB of memory. Level-1 instruction cache is 64 KB per 

processor, and the data cache is 32 KB per processor. The level-2 cache is 1.5 MB shared 

between the two processors. The level 3 cache is 32 MB and is off chip. The system goes 

by the nickname Cheetah at ORNL. 

In Figure 2.20, the ratios of execution times and floating-point instructions (FLPINS)  

measured by PAPI [14, 15] show that the difference between execution time is much 

greater than that between floating-point operation count, and larger block size brings 

slightly better performance in general. 
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          Figure 2.20 Ratio of execution time and FLPINS of DSYRDB to DSYTRD. 

 

    We may use QR factorizations to reduce matrix A  to a block tridiagonal matrix M, and 

then use BD&C to compute the eigenpairs of M. Adding Equations 2.5 and 2.9 yields the 

total computational complexity of eigen-decomposition of a dense matrix using OBR 

followed by BD&C without deflation: 

                                      3 28 ( )
3FULLflops n O b nρ≈ + .                     (2.11) 

In contrast, the time complexity for first reducing matrix A to a tridiagonal matrix T and 

then computing the eigenpairs of T using the divide-and-conquer method with no 

deflation adds up to ( )3 28
3

n O n+ , which is lower than the combination of OBR and 

BD&C unless 1ρ = . However, taking into account improved performance of DSYRDB 

over DSYTRD, the consequent higher ratio of deflation (see Figures 2.4 and 2.5) for 

lowered accuracy requirements, and a better data access pattern, the performance of the 

former algorithm may not necessarily be worse than the latter one.   
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2.3.3 Relationship between panel width and block size 

In the block tridiagonal reduction algorithm in Section 2.3.1, there are two closely related 

parameters: the panel width bp  for the blocked QR factorization and the block size b  for 

the block tridiagonal matrix. There are three possible combinations for 
b

p  and b : 

bp b> ,  bp b<  and bp b= .  

We first consider the most straightforward case bp b=  shown in Figure 2.21. The 

reduction algorithm involves QR factorizations of column blocks i im n
iG ×∈ , 

accumulation of Householder transformations in blocked form T
i i iQ I YW= −  where iY  

contains columns of Householder vectors and iW  contains columns of scaled 

Householder vectors, construction of the update matrix  

                                  1
2

T
i i i i i i iZ AW YW AW= − ,      (2.12) 

and update of the submatrix of iA  (yellow shade) with rank-2pb updates 

                                  1
T T

i i i i i iA A Y Z Z Y+ = − − .     (2.13)  

Next we consider the case of bp b< . As shown in Figure 2.22, after the QR 

factorization of panel iG , a one-side update of bb p− columns (gray shade part) must be  

computed, then the block Householder transformations T
i i iQ I YW= −  can be applied to 

submatrix of iA  from both sides as in the case of bp b= . 

In the last case bp b>  as shown in Figure 2.23, the update of bp b−  columns in gray 

shade by the Householder transformations from the right involves accessing all entries of 

submatrix iA ; while in the cases of bp b<  and bp b= , reduction of each iG  only 

requires accessing data in iG . Therefore, reduction of iG  with bp b>  cannot be 

computed directly by QR factorization without accessing the matrix entries outside iG . 
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                    Figure 2.21  Orthogonal reduction in the case of bp b= . 

 

 

 

 

   

 

 
         

 

 

                   Figure 2.22  Orthogonal reduction in the case of bp b< . 

 

 

 

 

 
          

 

 
 
 
 

                   Figure 2.23  Orthogonal reduction in the case of bp b> . 
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Consequently, matrix iZ  for the rank-2pb  update used in Equation 2.13 cannot be 

computed using matrix multiplications as shown in Equation 2.12. However, iZ  can be 

constructed column by column using the formula  

                       ( )1 1
1
2

Ti i i i i i i
j j j j j j jz A w y w A w− −= − ,  1 bj p≤ ≤    (2.14) 

during each Householder transformation. This approach is similar to the LAPACK 

symmetric tridiagonal reduction subroutine DSYTRD. 

    Theorem 2.1  For 4n b≥  where n  is the matrix size and b  is the block size in the 

orthogonal block tridiagonal reduction algorithm that uses QR factorizations, a ratio of 

level 3 BLAS operations greater than 50% can be obtained only if the algorithmic panel 

width bp  is no greater than the block size b .  

Proof.  Based on the above observation of three cases of bp  and b , we can estimate how 

many level 3 BLAS operations are exploited in each case. Here we still assume that the 

panel width bp  is divisible by the matrix size n  and that /b bq n p=  is the total number 

of matrix column blocks. 

Case 1) bp b= .  Based on Equations 2.9 and 2.10, the ratio of level 3 BLAS operation  

                  ( )
3 2 2

3 2

4 22
3 33 4 8

3 3
b

b b

p b

b

n p n p n
ratio BLAS

n p n
=

− +
=

−
 

                                            
3 2

3

4 2
3

4
3

bn p n

n

−
>  

                                            31
2

bp
n

= −  

                                            31
2
b
n

= − .      (2.15) 
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Case 2) bp b< . The floating-point operation count for each one-side update of 

bb p− columns as shown in gray shade in Figure 2.22 is ( )( )( )4 1b b bp n p i b p+ − −  and in 

total takes 

                 ( ) ( )( )
1

1
4 1

bq

one side b b b b
i

flops p p q i b p
−

−
=

= + − −∑   

                                   ( ) 21 12 2
2 2b b

b

b p n n p
p

    = − + − +    
   

 

floating-point operations.  

When accumulated Householder transformations are applied to the bb p−  columns 

from the left, bb p−  must be large enough so that this one-sided update can exploit the 

high performance of level 3 BLAS operations. Otherwise, we do not expect the high 

performance of level 3 BLAS operations can be fully exploited. Consequently, the ratio 

of level 3 BLAS operation satisfies the following inequality: 

( )
( )

3 2 2

3 2 2

4 22
3 33

4 8 1 12 2
3 3 2 2

b

b b

p b

b b b
b

n p n p n
ratio BLAS

n p n b p n n p
p

<

− +
≥

    − + − + − +    
   

 

                             
( )

3 2

3 2

4 2
3

4 5
3 2

b

b

n p n

n b p n

−
>

+ −
 

                             
( )

51 8 5
3

b

b

b p

n b p

−
= −

+ −
 

                             151
8

b
n

≥ − .       (2.16) 
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Case 3) bp b> . The dominant computational cost of each vector i
jz  using Equation 

2.13 is a matrix-vector multiplication and takes ( )22 1bn p i j− − +  floating-point 

operations, 1 bi q≤ <  and 1 bj p≤ ≤ . In total, the construction of vectors i
jz  takes  

( )
1

2
_

1 1
2 1

b bq p

construct z b
i j

flops n p i j
−

= =

= − − +∑∑  

                     2

1

= 2
b

b

n p

k p

k
−

= +
∑  

                     ( ) ( ) ( ) ( )3 2 3 22 2 2= 1 1 1 1
3 3 3 3

n pn p n p p p− + − − + + − − + + +  

                      ( ) ( )3 2 2 32 12 1 2 2
3 3b b bn p n p p n O p = − − + − + + 

 
. 

Since the leading term of  the computational complexity of orthogonal reduction is 34
3

n ,  

approximately 50% of the floating-point operations are level 2 BLAS operations to 

compute i
jz  when bp b> , similar to that of the LAPACK tridiagonal reduction 

subroutine DSYTRD [35, 37].  

The ratio of level 3 BLAS operations in cases bp b<  and bp b=  exceeds 50% when 

4n b≥ , while the ratio of level 3 BLAS operations in case bp b>  is always about 50% 

and does not change with matrix size.  

Corollary 2.2  If bp b≤  where bp  is the algorithmic panel width  and b  is the block 

size in the orthogonal block tridiagonal reduction algorithm, the ratio of level 3 BLAS 

operations increases with matrix size n .  

Proof.  From Equations 2.15: 3
31
2BLAS
bratio
n

≥ − and Equation 2.16: 3
151
8BLAS

bratio
n

≥ − , 

ratio of level 3 BLAS operation increases with n .  
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Since the ratio of level 3 BLAS operations is higher in cases 1) and 2) than in case 3) 

for most reasonable cases ( 4n b≥ ), block tridiagonal reduction using QR factorization 

should be implemented with bp b≤ . Figure 2.24 shows that the ratio of level 3 BLAS 

operations exceeds 90% quickly as the matrix size increases. 

2.3.4 Back transformation 
After the eigenvalues and eigenvectors of TM V V= Λ  have been computed, V will be 

back transformed to the eigenvector matrix of A  in a backward order: 

                  ( )( ) ( )( )1 1 2 2 1 1
T T T T

k k k kX I W Y I W Y I W Y I W Y V− −= − − − −  

where X  is the eigenvector matrix of  A  and T
i iI WY−  , 1 i k≤ ≤  is the product of bp  

Householder transformations.  

Since only iY  is stored, redundant computation is required to re-construct iW  before 

bp  Householder transformations can be applied to V  by matrix multiplications. The 

 

                

                 Figure 2.24  Ratio of level 3 BLAS operations in OBR with bp b= . 
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overhead of re-constructing iW  is 2 322
3i i in m n−  [49] and the computational complexity 

for applying T
i iI WY−  to V  is approximately ( )4 1i in m n+ . Here im , in , bp  are the same 

as defined in Section 2.3.2 and b bq n p= . Total floating-point operations for the back 

transformation is therefore 

             ( )
1

2 3

1

22 4 1
3

bq

back i i i i i
i

flops n m n n m n
−

=

= − + +∑  

                           ( ) ( )( )
1

2 3

1

22 4 1
3

bq

b b b b b
i

p n ip p p n ip n
−

=

= − − + + −∑  

                          ( )
1

3 3

1

22 4 1
3

bq

b b b b
i

p i p p p ni
−

=

= − + +∑  

                          ( )3 2 212
2 2

b
b b

qn n p O np ≈ − − + + 
 

. 
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3 Parallel block tridiagonal divide-and-conquer (PBD&C) 

implementation 

The BD&C algorithm has the potential of parallelism in that it is divide-and-conquer and 

recursive in nature. However, the size of each subproblem and the amount of work for 

solving each of those subproblems at the same level of the recursion is usually different, 

which leads to workload imbalance. Earlier effort on the parallelization of BD&C 

achieved modest speedup with 4 – 16 processors [25]. In that implementation, the high 

performance of the parallel matrix multiplication subroutine in PBLAS [19] cannot be 

fully exploited due to its storage scheme of matrix sub-blocks. A fine-grained PBD&C is 

designed here to achieve workload balance and data balance at the same time. Some 

major issues in such an implementation are: 1) overhead of data communication; 2) order 

of merging sequence; 3) handling of deflation. We discuss them in detail in the context of 

PBD&C implementation and give estimation of complexities to help us understand the 

behavior of PBD&C. 

Recall that γ  denotes the time for one floating-point operation, α  denotes the latency 

for one communication, β  denotes the time to transfer one double precision number, and 

bn  denotes the block size of the 2D block cyclic parallel matrix distribution. We define 

LCM as the least common multiple and GCD as the greatest common divisor. For two 

integers a  and b , ( ) ( ), ,LCM a b GCD a b ab= . The union of two processor grids is 

called a supergrid. In the computational complexity analyses in this section, we assume 

0% deflation unless otherwise specified.  

3.1 Data parallelism versus task parallelism 

There are different ways to distribute a matrix on a processor grid. Data parallelism 

distributes data evenly to all the processors and invokes all relevant processors to work 

on the same task as the algorithm proceeds. Task parallelism assigns each processor to a 

different task in the algorithm working simultaneously whenever possible. For example, 

assume we have a block tridiagonal matrix n nM ×∈  with 4 blocks of equal size 4b n= , 
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as shown in Figure 3.1 and a 4-processor grid G in the shape of 0 1

2 3

p p
p p

 
 
 

. Each matrix 

sub-block is highlighted by distinctive color. 

We first distribute M using the 2D block cyclic data distribution and assume 2bn b= . 

The distribution of M as shown in Figure 3.2 is an example of data-parallelism.  (Note 

that due to symmetry, only the lower triangular part is shown as distributed.) 

For task parallelism, one could distribute the matrix blocks to the processors as 

illustrated in Figure 3.3. 

One of the advantages of data parallelism is the data distribution and workload balance. 

However, it has the potential of increased communication resulting in degraded 

performance. In addition, in problem subdivision, subproblem solution, and at the 

beginning of the BD&C recursive merges, with data parallel implementation, not all the 

processors may be working on a single matrix block due to small block size relative to 

grid size, which causes workload imbalance and a waste of resources. On the other hand, 

with task parallelism, subsets of processors work on different subproblems independently 

with reduced communication overhead. However, it may lose data balance and limit the  

 

                                      

        Figure 3.1 A symmetric block tridiagonal matrix with 4 blocks of equal size. 

 

  1B  

  2B  

  3B  

  4B  

  1C  

  2C  

  3C  
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                      Figure 3.2 Matrix M  distributed for data parallelism. 

 
 

                                    

                   Figure 3.3 Matrix M distributed for task parallelism. 
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size of subproblems to be solved. Moreover, with task parallelism, the overhead of data 

redistribution before a merging operation in the BD&C algorithm may be large, 

compared to the computational effort.   

To achieve both workload balance and data balance, PBD&C implementation uses a 

mixed (data/task) parallelism [18]. To be specific, each subproblem iB  will be assigned a 

group of processors iG  based upon its anticipated computational complexity, and each 

group of processors works on a subproblem simultaneously, as shown in Figures 3.4 – 

3.6.  

Implementation of PBD&C using mixed parallelism involves periodic redistribution of 

matrix sub-blocks from one processor grid to another (see Sections 3.2.2 and 3.4.1 for 

details). In what follows, we examine the general data redistribution pattern and 

communication complexity. 

    Assume we are given two 1D processor grids: [ ]1 0 1 2 3p p p p=G  and 

[ ]2 4 5 6 7 8 9p p p p p p=G . Grid 1G  has 4 processors and 2G  has 6 processors. A matrix 

m nB ×∈  is distributed in 1D block cyclic pattern with 12 blocks. Figure 3.7 shows the 

distribution of B  on 1G  and Figure 3.8 shows the distribution of B  on 2G . If we 

redistribute B  from 1G  to 2G , then each processor in 1G  sends out three blocks to 

processors in 2G , and each processor in 2G  receives two blocks from processors in 1G . 

For example, 0p  sends one block to each of 4p , 8p  and 6p , while 4p  receives one block 

from each of 0p  and 2p . In general, For each processor in 1G , the number of blocks it 

sends equals ( )1 2

1

,LCM c c
c

 where 1c  and 2c  are the number of processors in grids 1G  and 

2G , respectively. The size of data sent by each processor in 1G  equals 1mn c . Similarly, 

for each processor in 2G , the number of blocks it receives equals ( )1 2

2

,LCM c c
c

. The size 

of data received by each processor in 2G  equals 2mn c . If a processor needs to send more  



 51

1 1

1 2

1

1

T

T
q

q q

B C
C B

C
C B

−

−

 
 
 
 
 
  

 

                      Figure 3.4 Block tridiagonal matrix with q diagonal blocks. 

 
 

 

 

 

 

 

 

 

 

 

                  Figure 3.5  Each diagonal block iB  is assigned processor subgrid iG . 

 
 
 

                                          
 

            Figure 3.6  Data distribution of  block 1B   on a 2 2×  processor subgrid 1G .            
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                         Figure 3.7 Matrix B  distributed on 1D grid 1G . 

 
 

       

                         Figure 3.8 Matrix B  distributed on 1D grid 2G . 

 

 

than one block to another processor, those blocks should be packed and sent as one data 

package.  

    Analogously, with 2D processor grids, if we redistribute a matrix that is originally 

distributed in 2D block cyclic pattern on grid 1G  with 1r  processor rows and 1c  processor 

columns onto grid 2G  with 2r  processor rows and 2c  processor columns, each processor  

in 1G  sends ( ) ( )1 2 1 2

1 1

, ,LCM r r LCM c c
r c

⋅  data packages to processors in 2G , and each 

processor in 2G  receives ( ) ( )1 2 1 2

2 2

, ,LCM r r LCM c c
r c

⋅  data packages from processors in 1G . 

If grids 1G  and 2G  are disjoint, then each processor in 1G  may be able to send out 

packages simultaneously without conflict. Otherwise, ordering of send/receive may be 

required to avoid deadlock because two processors may send to and receive from each 

other at the same time. 

3.2 Parallel subdivision 

Suppose we have a block tridiagonal matrix n nM ×∈ with q  number of blocks as shown 

in Figure 3.4 and p  number of processors. Denote size of the i-th diagonal block iB  by 

ib  where 
1

q

i
i

b n
=

=∑  and the number of processors assigned to iB  by ip  with 
1

q

i
i

p p
=

=∑  
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where p is the total number of processors available. The i-th off-diagonal block iC  has 

size 1i ib b+ ×  and approximate rank iρ . Processors ip  form a subgrid i i ir c= ×G  where ir  

and ic  are the number of rows and columns of the processor subgrid iG , respectively. 

3.2.1 Assign processors to submatrices 

The number of processors ip  in the i-th subgrid iG  is determined by 

                                          
3

3

1

i
i q

i
i

bp p
b

=

=

∑
      (3.1) 

based on the fact that the computational complexity for solving each subproblem is 

( )3
iO b . Also, as shown in Figures 3.4 and 3.5, we use the ip  processors assigned to iB   

for 1 1i q≤ ≤ −  to compute the approximate rank of the off-diagonal blocks iC  using the 

singular value decomposition T
i i i iC U V= Σ . Processors qp  assigned to subgrid  qG  will be 

idle during the SVD computation, but the time for computing the SVD is negligible in 

comparison to the total time of the PBD&C algorithm, so that it would not lead to 

noticeable effect on the workload balance. 

3.2.2 Distribute a matrix sub-block from one subgrid to another subgrid 

To modify the diagonal block: 1 1 1 1 1
T T

i i i i i i i iB B U U V V+ + + + += − Σ − Σ , left singular vector 

matrix iU  on processor subgrid iG  must be redistributed to processor subgrid 1i+G  as 

illustrated in Figure 3.9. 

    The time for sending iU  to a new processor grid 1i+G  is given by  

                                      
( ) ( )1 1 1, ,i i i isend i i

i
i i

LCM r r LCM c c bt
p p

ρα β+ + += + .  

Note that each processor subgrid except the first one and the last one sends out its copy of 

iU  and receives a copy of 1iU −  from its neighbor. The time for processor subgrid iG  to 
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               Figure 3.9  Distribute a matrix block from one grid to another.  

 
 
receive a copy of 1iU −  from subgrid 1i −G  is given by 

                             ( ) ( )1 1 1, ,i i i irecv i i
i

i i

LCM r r LCM c c bt
p p

ρα β− − −= + . 

    Modern interconnection technology can support overlap of point-to-point 

communication, which to some extent enables simultaneous sends and receives on a  

processor grid. In the worst case, when send and receive on one processor subgrid cannot 

be overlapped, the total time for redistribution of singular vectors equals 

              1redistr send recv
i i it t t= +                            

                        ( ) ( ) ( ) ( )1 1 1 1, , , ,i i i i i i i i

i i

LCM r r LCM c c LCM r r LCM c c
p p

α + + − − 
= + 

 
   

                           1 1i i i i

i i

b b
p p

ρ ρβ + − 
+ + 

 
.      (3.2) 

All the processor subgrids perform their own data communication with their neighbors 

simultaneously. Therefore, the total time for singular vector matrix redistribution is 
1

2, 1
max redistr

ii q
t

= −
 in the worst case. This type of redistribution is required only once in PBD&C. 

 
1

1 1 1
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C

∑
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3.3 Parallel solution of subproblems  

Each subgrid can perform the eigen-decomposition of each subproblem independently. 

There is no communication between any two subgrids; any communication required 

occurs only within a subgrid. During the solution of subproblems step, all processors are 

busy solving the subproblem iB  assigned to their subgrid.  

3.4 Parallel synthesis of solutions 

Parallel synthesis is the most time consuming step of the PBD&C implementation, as 

is the synthesis step of the sequential BD&C algorithm. Major issues are: (1) before each 

merging step, submatrices on two subgrids need to be redistributed to its supergrid; (2) 

during the accumulation of eigenvectors, deflation needs to be handled in a way to 

minimize communication; and (3) a merging sequence needs to be determined that 

minimizes both the computational complexity and processor idle time. The dominant 

term in the complexity of PBD&C is determined by the complexity of the last several 

steps of the synthesis, as in the sequential BD&C. 

The synthesis step of PBD&C may be represented as a binary merging tree of merging 

operations illustrated in Figure 3.10. The bottom of the merging tree is labeled as merge 

level 0, and the leaves are the eigensolutions of the modified subproblems 1 2, , , qB B B ,  

each of size ib  distributed on subgrid iG  with ip  processors for 1 i q≤ ≤ . Each pair of 

eigensolutions is merged simultaneously. Before each merging operation, two subgrids  

 

 
 
 
 
 
 
 
 
 
 
 

                                  Figure 3.10  Merging tree and level of merging. 
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that hold the two eigensolutions to be merged need to be combined to form a supergrid, 

and eigensolutions need to be redistributed as well. The union of two disjoint subgrids iG  

and 1i+G  is a supergrid 1i i r c+= ∪ = ×G G G . This supergrid will hold the eigensolutions of 

the merged subproblems. After the adjacent merges at the bottom of the merging tree  

finish, the next level of merge starts until the root of the tree is reached. The height of a 

node is the longest path from that node to each leaf, and the height of a merging tree is 

the longest path from the root to the furthest leaf. The root of the merging tree, which is 

the final merging operation, is labeled as level h . For example, 4h =  for Figure 3.10. 

The merging levels before the final merging are labeled as 1h − , 2h − , , 1.  

3.4.1 Redistribution of data from two subgrids to a supergrid 

Before we start a merging operation, that is, a sequence of matrix multiplications, the two 

subgrids that hold the two submatrices of eigenvectors must be grouped together to form 

a supergrid. The corresponding submatrices must be redistributed to the supergrid 

correspondingly. This type of data redistribution is invoked on each level of the merging 

tree as the merging operations go up the tree. Figures 3.11 and 3.12 illustrate the 

redistribution of two submatrices, one from a 2 2×  grid and the second from a 2 4×  grid, 

to a 3 4×  grid. 

    In practice, boundaries of submatrices seldom match the natural boundaries of 2D 

block cyclic distribution. The starting point of a submatrix iB  in the supergrid is not 

always a multiple of bn . In such a case, an offset between the two different types of 

boundaries must be computed for the correct indexing of submatrices in the supergrid.  

Assume processors redistribute their data in a canonical order without pipelining. That 

is, with k  processors numbered from 0 to 1k − , processor 0 sends out its data to 

processors 1,2, , 1k −… , then processor 1 sends out its data to processors 0,2, , 1k −… , 

and so on, and finally processor 1k −  sends out its data to processors 0,1, , 2k −… . Since 

the time for data redistribution for each processor is                
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                     Figure 3.11 The first submatrix held by a 2 2×  grid, the second  
                                         submatrix held by a 2 4×  grid.       

 

     

                                        

             Figure 3.12  Two submatrices redistributed to a 3 4×  supergrid. 
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2 2
1 1 1

1 1

( , ) ( , ) ( , ) ( , )i i i i i i

i i i i

LCM r r LCM c c LCM r r LCM c c b b
p p p p

α β+ + +

+ +

   
+ + +  

   
,  

redistribution of two matrix blocks from two disjoint subgrids to the union of those two 

subgrids in such an order takes the total time 

2 2
2 1 1 1

1 1
1 1

( , ) ( , ) ( , ) ( , )redistr i i i i i i
i i i i i

i i i i

LCM r r LCM c c LCM r r LCM c c b bt p p p p
p p p p

α β+ + +
+ +

+ +

   
= + + +  

   
                        

      ( )2 21
1

1 1( , ) ( , ) ( , ) ( , )
i i

i i
i i i i

p pp b b
GCD r r GCD c c GCD r r GCD c c

α β+
+

+ +

 
= + + + 

 
.     (3.3) 

As one may observe, the communication cost depends on the computer and network 

specification as well as the shapes of subgrids and supergrids. When the number of rows 

and columns of a supergrid and its corresponding subgrids are mutually prime, there are 
2p  communications to accomplish the data transfer, and the accumulative start up time 

for communications is high. However, this is typically not the case. In the best case, the 

frequency of communications can be reduced to 2 p  if two subgrids have the same 

number of processors. 

3.4.2 Merging sequence 

Each merging operation of two subproblems includes steps such as solving the secular 

equation, deflation and accumulation of the eigenvector matrix. Among those steps, the 

accumulation of eigenvector matrices is by far the most time consuming part. We 

approximate the computational and communication costs of a merging operation by the 

matrix multiplications involved. 

In the sequential implementation of BD&C, merging starts from off-diagonal blocks 

with the highest rank, leaving the off-diagonal block with the lowest rank for the final 

merging operation to reduce the computational complexity of BD&C. This merging 

sequence is sequential in nature and not completely appropriate for a parallel 

implementation. For example, consider a block tridiagonal matrix M with p  processors 
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and 4 diagonal blocks of equal sizes, i.e., 4q = , 1 2 3 4 4
pp p p p= = = =  

and 1 2 3 4 4
nb b b b= = = =  as shown in Figure 3.13. Further assume 1 2 3 4ρ ρ ρ ρ< = = , i.e., 

the first off-diagonal block has the lowest rank. 

    If we choose the off-diagonal block with the lowest rank for the final merging 

operation, the processors in 1G  and 2G  stay idle while processors in 3G  and 4G  handle the 

merge for blocks 3B  and 4B ; then 1G  stays idle while processors in 2G , 3G  and 4G  handle 

the merge for blocks 2B , 3B  and 4B . If one assumes 0% deflation and neglects the 

overhead of communication, the total computational time per processor can be 

approximated by  

                    ( ) ( ) ( )3 4 2 3 4 1 2 3 4_ , , , , , ,low rank merge B B merge B B B merge B B B Bt t t t= + +  

                                ( ) ( )3 3 3

2 2 1

2 3 4
2

2 3 4
n n n
p p p

γ ρ ρ ρ
 

= + + 
  

 

                                
3 3

2 1
132
16

n n
p p

γ ρ ρ
 

= + 
 

.     (3.4) 

 

 

 

 

 
 
 
 
 
 
 
 
 

           Figure 3.13  A block tridiagonal matrix with 4 blocks of same block size. 
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  Suppose we now neglect the ranks and choose the off-diagonal block 2C  for the final 

merging operation and obtaining the most balanced merging sequence, then 1B  and 2B  

are merged simultaneously to the merging of 3B  and 4B . In this situation, the total 

computational time per processor of all the merging operations can be approximated by  

                                            ( ) ( )3 4 1 2 3 4, , , ,balance merge B B merge B B B Bt t t= +      

                                                      ( )3 3

2 2

2
2

2
n n
p p

γ ρ ρ
 

= + 
  

 

                                                      
3

2
52
4
n
p

γ ρ
 

=  
 

.     (3.5) 

Comparing Equations 3.4 and 3.5, one concludes _low rank balancet t<  only when 

1 2
7

16
ρ ρ< . This indicates that unless the lowest rank of off-diagonal blocks is less than 

half the rank of the off-diagonal block in the middle of M , choosing a balanced final 

merging operation keeps all processors busy and achieves a better workload balance, 

which subsequently leads to less idle time and consequently less total execution time. 

Based on the above observation, we determine the position of the off-diagonal block 

for the final merging operation according to both computational complexity and 

workload balance. 

The merging tree shown in Figure 3.10 has the same number of subproblems on the 

left and right sides of the final merging operation. In general, this is not the case. In a 

block tridiagonal matrix M , the off-diagonal block for the most balanced final merging 

operation is the one closest to the middle of M . At the bottom of the merging tree, 

subproblems usually have different sizes. As the merging moves up the tree, subproblems 

on each level continue to have different sizes. In general, the number of matrix sub-

blocks on the left side of the final merging operation is different from that on the right 

side, even if the final merging operation is a balanced one. However, in a balanced final 

merging operation, it is guaranteed that the amount of workload per processor on both 

sides of the final merging operation is approximately the same because processors are 

assigned to subproblems based on problem size.  
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Figure 3.14 shows a merging tree with different number of subproblems on the left and 

right sides of the final merging operation. In order to evaluate the computational cost of 

different merging sequences, one needs to consider not only the rank of the off-diagonal 

block for the final merging operation, but also the sizes of the subproblems as well as the 

number of idle processors and their idle time.  

    Suppose we have a merging tree as shown in Figure 3.14 for a block tridiagonal matrix 
n nM ×∈  with q  blocks and p  processors. Without loss of generality, we assume p q≥  

so that each subproblem at the bottom of the merging tree is assigned at least one 

processor. Otherwise, we may always re-block M  to satisfy this assumption. 

    Let f  be the position of the off-diagonal block for the final merging operation and fρ  

be the approximate rank of the corresponding off-diagonal block fC . The matrix sub-

blocks indexed from 1 to f  construct a left subtree, while the matrix sub-blocks indexed 

from 1f +  to q  construct a right subtree. If the height of the left and right subtrees are 

lefth  and righth , respectively, then the height of the whole merging tree is 

( )max , 1left righth h h= + . For example, 2lefth = , 3righth =  and 4h =  in Figure 3.14. 

 

 

 

 

 

 

 

 

 

 
 
 
 

              Figure 3.14  Merging tree with different number of subproblems  
                                  on the left and right of the final merging operation. 
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We assume that a lower subtree finishes merging before a higher subtree does. The 

merging process starts from level 0, and loses balance at level ( )min , 1left righth h h′′ = + . At 

this stage the processors in the lower subtree stay idle while the processors in the higher 

subtree keep working. After the higher subtree finishes its merging operations at level 

( )max ,left righth h h′ = , all the processors work together again for the final merging 

operation. Therefore, the time for all the merging operations is the time to merge the 

higher subtree plus the time for the final merging operation.  

Note that the computational time for the merge of each two adjacent blocks at the 

lowest level is approximately 
32
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∑  , where ρ  is the rank of the off-diagonal 

block that connects the two diagonal blocks to be merged. As the merges proceed up the 

tree, each block itself may be the result of a previous merge of smaller blocks. The 

approximate computational time to merge the higher subtree is the sum of the 

approximate merging time for each level of that subtree: 
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where ( )max , 1f left righth h h h′ = = −  is the height of the higher subtree,  
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.    

The computational time for the final merging operation is approximately 

                                         
3
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t

p
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Equations 3.6 and 3.11 can be used to compare the computational time of a balanced 

merge and an unbalanced one with lower rank. Assume the off-diagonal block for a 

balanced final merging operation is located at position m  and the rank of mC  is mρ . 

Correspondingly, assume the off-diagonal block of the final merging operation with the 

lowest rank is at position l  and the rank of lC  is lρ . 

Theorem 3.1  An unbalanced final merging operation with the lowest rank has less 

computational time per processor than a balanced final merging operation with higher 

rank only when 
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where lh  is the height of the merge tree with the lowest rank for the final merging 

operation, mh  is the height of the merge tree with balanced final merging operation, and 

1
lK , 2

lK , 3
lK , 4

lK , 1
mK , 2

mK , 3
mK  and 4

mK  can be computed by Equations 3.7 – 3.10.  

Proof.  Computational time per processor for an unbalanced merge tree with the lowest 

rank for the final merging operation is 
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where ( )_ _max , 1low rank low rank
l left right lh h h h′ = = −  is the height of the higher subtree of the 

unbalanced final merging operation, 
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    Computational time per processor for a merge tree with balanced final merging 

operation is 
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where ( )max , 1balance balance
m left right mh h h h′ = = −  is the height of the higher subtree of the 

balanced final merging operation, 
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   Decision of which off-diagonal block to use for the final merging is based on the 

difference between Equations 3.13 and 3.14. If the difference between the ranks of the 

off-diagonal block in the middle and the one with the lowest rank satisfies the following 

condition: 

_ 0balance low rankt t− > ,    (3.15) 

then the off-diagonal block with the lowest rank will be used for the final merging 

operation. Otherwise, the off-diagonal block in the middle will be preferred. Replacing 

balancet  and  _low rankt  in Inequality 3.15 with Equations 3.13 and 3.14 yields Inequality 3.12 

and completes the proof.  

    As examples, suppose we are given a symmetric block tridiagonal matrix M  of order 

2000 with 100 diagonal blocks of equal size 20. Each diagonal block is assigned 1 

processor; thus, the total number of processors available is 100. If all the off-diagonal 

blocks have the same rank, then the final merging operation should be located at off-

diagonal block 50 in the middle of M . If only one off-diagonal block has rank of 0, then 

it should be chosen for the final merging operation no matter where it is located. If all 

off-diagonal blocks including the one in the middle have full rank 20 and only one off-

diagonal block has rank 10, then based on Theorem 3.1, the algorithm should choose the 

off-diagonal block with rank 10 for the final merging operation if its index is within the 

range 70 – 130 for minimal execution time. 

3.4.3 Deflation 

The efficiency of BD&C greatly depends on deflation. With lowered accuracy 

requirement, the occurrence of deflation is very high and the amount of work in the 

eigenvector accumulation is significantly reduced.  

Consider the eigenvector accumulation stage (see Section 2.1.3 ). Let Z  be a block 

diagonal eigenvector matrix of subproblems, and V be the eigenvector matrix of TD yy+ . 

Because V  is modified to type deflateV P P GV= , Z  must be modified to T
deflate typeZ ZG P P= , 

where G  is an orthogonal matrix that accumulates all Givens rotations to deflate 

eigenvalues in TD yy+ , deflateP  is the permutation matrix that moves all deflated 
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eigenvectors of V  to the bottom, and typeP  is the permutation matrix that groups columns 

of deflateZ ZP=  into four types. Those four types are: 1) matrix columns with zeros in 

lower part; 2) matrix columns that are dense; 3) matrix columns with zeros in upper part; 

and 4) matrix columns that are related to deflated eigenvectors. In BD&C and PBD&C, 

only Z  for the first rank-one modification in a merging operation has such a matrix 

structure (see Figure 2.2). Z  for the rest of the rank-one modifications has only two types 

of columns: non-deflated and deflated (see Figure 2.3). The purpose of permuting by typeP  

is to reduce the amount of computation in the matrix multiplication Q ZV= . 

In a sequential implementation, the cost of matrix permutation is trivial compared to 

the computational cost. In a parallel implementation, the cost of communication between 

processors can not be neglected for frequent swaps of matrix columns. Suppose the 

deflated eigenvectors of Z  in the second rank-one modification of a merging operation 

are distributed as shown in Figures 3.15 and 3.16. The 2 2×  processor grid in this 

example has the shape 0 1

2 3

p p
p p

 
 
 

 with 4p = ,  2r =  and 2c = . The column blocks with 

vertical lines represent the matrix columns that are grouped into the deflated type. 

If deflated eigenvectors in Z  are permutated to the right end of the matrix to construct 

Z  as in the sequential algorithm and as shown in Figures 3.17 and 3.18, communication 

costs are incurred by swapping matrix columns residing on different processor columns. 

With high deflation rate, frequent column swaps will occur, and the performance will be 

degraded.  

    A strategy used in the ScaLAPACK subroutine PDSYEVD for tridiagonal eigenvalue 

problems is to permute columns of Z  that reside local on each processor column into 

four groups shown in Figures 2.2 and 2.3, instead of a global permutation [92]. In that 

implementation, the deflation counted is the minimum of the deflation on each processor  
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            Figure 3.15  Matrix Z  before grouping –  matrix point of view. 

                                                                                   

                                    
            Figure 3.16  Matrix Z  before grouping – processor point of view. 
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Figure 3.17  Group columns based on their structures – matrix point of view.       

                                                                

                                                                                         
 
Figure 3.18  Group columns based on their structures – processor point of view. 
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column as illustrated by the column blocks with vertical lines in Figures 3.19 and 3.20. 

Since processor column 0

2

p
p

 
 
 

 has two column blocks of deflated eigenvectors and 

processor column 1

3

p
p

 
 
 

 has only one column block of deflated eigenvectors, only one 

column block of deflated eigenvector on 0

2

p
p

 
 
 

 will be counted, and the column marked 

with diagonal bars is not counted as deflated eigenvectors. Therefore, the number of 

deflated eigenvectors incorporated into the algorithm usually does not equal to the 

number of all deflated eigenvectors, because each processor column typically has a 

different deflation count. In an example of a most pathetic case, imagine that half of the 

eigenvectors are deflated, and they are all on processor column 0

2

p
p

 
 
 

. No eigenvectors on 

processor column 1

3

p
p

 
 
 

 are deflated. Then the global deflation is zero, not 50%. However, 

since matrices are distributed in 2D block cyclic pattern, such a case would be extremely 

rare.  

In ScaLAPACK subroutine PDSYEVD, good speedup is obtained although the matrix 

multiplications performed are not of minimal size [92]. In our test cases of PBD&C as 

given in Section 5, using the same strategy for matrix re-grouping, an average of 5% less 

deflation count is observed, which does not significantly degrade the performance of 

PBD&C. 

3.4.4 Complexity of merging 

The time complexity of merging operations depends on the matrix structure, i.e., the 

size of each subproblem to be solved, the approximate ranks of the off-diagonal blocks, 

the degree of deflation, and the time parameters for floating-point operation and data 

communication. Those parameters depend both on machine specifications and network  
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           Figure 3.19 Move deflated eigenvectors within processor column  –   
                              matrix point of view.                            
                               

                                    
            Figure 3.20  Move deflated eigenvectors within processor column –  
                                processor point of view. 
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connection that could vary drastically from system to system. In the analysis of 

computational and communication complexity of merging, we assume no deflation 

because this parameter varies with matrices to be computed and cannot be predicted 

before computation starts. 

    If the sizes of two subproblems to be merged are 1b  and 2b  with 1 2b b b+ = , submatrix 

1 has been assigned 1 1 1p r c= ×  processors, and submatrix 2 has been assigned 2 2 2p r c= ×  

processors with 1 2p p p r c+ = = × , r c p= = , and the rank of a merging operation is 

ρ , then the dominant cost of computation and communication per processor without 

deflation is that of matrix redistribution and parallel matrix multiplications.  

Using a ring topology for matrix multiplication, the total cost for one matrix 

multiplication can be approximated by [94] 

              ( )
32 2 2 3multiplication

b bt b p
p p

γ α β
 

= + + − +  
 

.  

Using Equation 3.3, the cost of redistributing matrix blocks is    

( )2 21 2
1 2

1 1 2 2( , ) ( , ) ( , ) ( , )redistribution
p pt p b b

GCD r r GCD c c GCD r r GCD c c
α β

 
= + + + 

 
. 

Total cost for a merging operation includes one matrix redistribution and ρ  matrix 

multiplications: 

_one merge redistribution multiplicationt t tρ= +   

( )

( )

2 21 2
1 2

1 1 2 2

3

( , ) ( , ) ( , ) ( , )

2 2 2 3 .

p pp b b
GCD r r GCD c c GCD r r GCD c c

b bb p
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= + + + + 

 
  

+ + − +      

  (3.11) 

To simplify the complexity analysis, suppose we have a block tridiagonal matrix M  

with q  diagonal blocks of equal sizes b , each off-diagonal block has same approximate 

rank ρ , and q  is power of 2. The depth of the merging tree is therefore 2logd q= . 

Assign s  processors to each diagonal block with s r c= ×  being a square subgrid. The 
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total number of processors in use is p sq= . Under the above assumptions, the total cost 

for all the merging operations is given by 

_ _
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Since the time for  problem subdivision and subproblem solution is trivial compared to 

the time of subproblem synthesis and merging operations dominate computational and 

communication complexity of the synthesis step, the total cost of PBD&C can be 

approximated by the leading terms of the merging cost in Equation 3.12, i.e.,  

               ( )
3 2

2
&

8 3.14 4 8
3PBD C
n nt p n n n

p p
ρ ργ ρ α ρ β

 
≈ + + + + +  

 
.              (3.13) 

Among those leading terms, 24 p nα β+  is the cost for redistributions of all 

submatrices, and
38

3
n

p
ρ γ  is the computational cost, which equals that of the sequential 

BD&C divided by the number of processors p . Other leading terms in the 

communication cost are those incurred by data transfer in matrix multiplications. 

With a high percentage of deflation, which usually occurs with a lower accuracy 

requirement for the computed eigenpairs, the cost of computation can be greatly reduced. 

Equation 3.13 also shows one limitation of the PBD&C: If the ranks of the off-diagonals 

are high, especially the rank for the last merging operation, the time complexity of 
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PBD&C increases as a multiple of n3. Therefore, block tridiagonal matrices with low 

ranks for off-diagonal blocks are preferred whenever possible. 
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4 Toward block tridiagonal matrix 

Most matrices generated from real application do not have block tridiagonal structure 

except for the trivial case of 2q = . Some of them may have usable structure, and some 

may not. In either case, pre-processing techniques are necessary to transform matrices 

into block tridiagonal form. The type of pre-processing techniques used depends on the 

characteristics of the original matrix, which we will divide into two groups.  

    The first type includes matrices that are “effectively” sparse, meaning that most of 

their entries can be neglected without affecting their eigenvalues to the prescribed 

accuracy. For those matrices, threshold methods and symmetric permutation will be 

applied to the original matrix in an effort to obtain a suitable block tridiagonal matrix.  

    The second type includes matrices without properties useful for compressing into 

blocked form with little computational effort. For these matrices, orthogonal 

transformations will be applied to reduce the original matrix to a block tridiagonal matrix. 

4.1 Parallel block tridiagonalization (PBT) of “effectively” sparse 

matrix 

    If an input dense matrix A  is “effectively” sparse, the parallel block tridiagonalization 

(PBT) algorithm will be used to construct a block tridiagonal matrix to approximate A . 

The differences in eigenvalues of the resultant block tridiagonal matrix and the original 

matrix are bounded by Aτ , where τ  is the prescribed tolerance. In this section, we first 

discuss the disadvantage of using a 2D block cyclic matrix distribution in PBT, followed 

by the 6-step PBT implementation using a 1D column block matrix distribution.  

4.1.1 1D column block matrix distribution for PBT 

The block tridiagonalization (BT) algorithm [4] is heuristic and inherently sequential. 

The floating-point operations in the algorithm are mainly comparisons and additions, and 

typically its operation count is ( )2nO  [4].  Since the original matrix A  is symmetric, an 

operation on any entry ija  inevitably involves its symmetric counterpart jia . If the matrix 
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is not distributed properly, the performance of PBT could degrade severely as the matrix 

size n  and the number of processors p  increases.  

The 2D block cyclic matrix distribution, which is frequently used in scalable parallel 

dense matrix algorithms, is not the most suitable data distribution pattern for the task of 

block tridiagonalization by the BT algorithm. As an example, in the target threshold step 

of the BT algorithm (see Section 2.2.1, step 4), the sum of the absolute values of the 

elements to be eliminated in each column of matrix A′′  is monitored. Matrix elements are 

traversed diagonally in the order shown in Figure 2.11. If the parallel implementation 

directly follows this strategy, for each pair of symmetric entries checked, there will be 

two types of communications: 1) two send/receive between the two processors that hold 

ija  and jia  so that they can determine whether the symmetric matrix entries can be 

dropped simultaneously; 2) one broadcast so that all other processors containing elements 

in those two columns can update the column sums of the error matrix E . For a processor 

grid with p r c= ×  processors where r  is the number of rows and c  is the number of 

columns in the processor grid, communication overhead invoked by type 1) is of ( )2O n , 

and that invoked by type 2) is of ( )2 logO n r . To reduce the communication overhead, 

one possible alternative is to implement the sequential algorithm in blocked pattern as 

shown in Figure 4.1 where matrix A  is distributed on a 2 2×  processor grid.  

The sum of the dropped elements can be checked block by block along the off-diagonals. 

But even so, the communication cost still sums to ( )( )
2

2 1 log
b

n r
n

α β+ + , which is a 

function of ( )2 1 logn r+  since bn  is a constant.  

   As in the BT algorithm, the matrix must be traversed column-wise numerous times in 

the PBT algorithm. Based on this fact, intuitively, a 1D column block distribution with 

n p  matrix columns assigned to each processor, as shown in Figure 4.2, for the matrix is 

most desirable, and will be used for the PBT algorithm.  

    If the original input matrix A  is distributed in a 2D block cyclic pattern, then it must 

be redistributed from 2D to 1D for the PBT algorithm. If we assume that the system  
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                               Figure 4.1 Traverse off-diagonals block by block. 
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                               Figure 4.2 Matrix A  distributed in column blocks. 
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buffer is large enough so that each message can be sent and received without being 

partitioned into several smaller packages and point-to-point communication (i.e., send 

and receive) cannot be overlapped, then the total communication cost in the worst case 

for matrix redistribution from 2D block cyclic pattern to 1D column block pattern is 

                                           βα 22
12 npt DD +=→ . 

After the matrix has been redistributed, each processor holds pn /  columns, and the 

parallel block tridiagonalization is then applied. 

4.1.2 The 6-step PBT algorithm 

As in the sequential BT algorithm, there are also 6 steps in the PBT implementation, 

and the accuracy tolerance τ  is partitioned as 1 2τ τ τ= +  for target threshold and optional 

target block reduction, respectively. 

    Step 1. Parallel global threshold  with Aτ . 

    This step is an embarrassingly parallel process. Every processor drops all elements  

Aaij τ< , and stores indices of all elements Aaij τ≥  in compressed sparse row 

(CSR) format. The resultant matrix A′  is expected to be very sparse and all its nonzero 

entries can be stored on one processor. Therefore, after thresholding, each processor 

sends its vectors of indices of nonzeros to a master processor. The master processor 

stores indices of all the nonzeros of A′ .  The collection of indices of nonzeros takes 

( )12 p n nnzα β+ +  communication time where 1nnz  is the number of nonzeros in A′ . No 

floating-point operations are involved in this step. 

    Step 2. Matrix reorder. 

The most thoroughly studied and parallelized sparse matrix ordering algorithms are 

nested dissection and minimum degree algorithms, which are used to minimize the fill-

ins during LU factorization of matrices in sparse linear systems [53]. Scalable and 
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efficient parallel implementations of those algorithms such as ParMetis [60] are available. 

However, the purpose of matrix ordering in the PBT is to minimize the bandwidth of a 

sparse matrix, and the nested dissection and minimum degree methods do not directly 

attack this objective. 

Since the matrix after global threshold is expected to be very sparse and can be stored 

on the local memory of one processor and the reordering consumes a small fraction of 

computational time of the PBT, we do not parallelize the reordering step. Instead, only 

the master processor that contains the indices of all nonzeros of A′  performs matrix 

reordering. The Gibbs-Poole-Stockmeyer (GPS) algorithm [23, 46, 64], , which directly 

attacks the bandwidth minimization problem, is used in the BT algorithm and will be 

used in the PBT algorithm, while all other processors stay idle. After the permutations are 

determined, the master processor broadcasts the permutation matrix P  to all other 

processors. 

    Step 3. Parallel symmetric permutation of A . 

The permutation matrix P  from step 2 is used to permute the matrix A  to produce the 

matrix APPA T=′′ . Parallel symmetric matrix permutation can be an expensive step. As 

shown by the blue arrow in Figure 4.3, if two matrix columns are on different processors, 

the swap of those two columns invokes communication. In such a case, the 

communication cost of each swap is 2 2nα β+ . In 1D column block distribution, 

permutation of matrix rows does not involve any communication. If two rows of a matrix 

are to be swapped, local data on each processor are exchanged as shown by the red arrow 

in Figure 4.3. Thus, the worst-case communication cost is bounded by 2n nα β+ .  
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      Figure 4.3 Swaps of rows and columns in parallel matrix permutation. 

 

Because of the potentially heavy communication, matrix permutation is executed only 

when it can significantly reduce the bandwidth of A′ . For the PBT algorithm, we permute 

A  when the bandwidth can be reduced by at least 20%.  

    Step 4. Parallel target threshold with 1 Aτ . 

    In the sequential BT algorithm, all elements far away from the diagonal of matrix A′′  

are eliminated if their influence on the error of any eigenvalue is less than 1 Aτ . The 

resultant matrix is A A E′′′ ′′= + , with 11
E Aτ≤ . Here one traverses the off-diagonals 

of A′′  while checking the 1-norm of the error matrix E . For each element ija′′  in the 

lower triangular part of matrix A′′  that is checked for elimination, its symmetric counter 

part jia′′  in the upper triangular of A′′  must also be checked. Elements ija′′  and jia′′  can be 
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dropped only when the sum of the absolute values of the dropped elements in both the i-

th and the j-th column of A′′  is less than 1 Aτ .  

In a parallel matrix distribution, chances are that entries ija′′  and jia′′  are often on two 

different processors requiring communications between those two processors, in order to 

inform each other whether ija′′  and jia′′  can be dropped simultaneously or not. On the 

average, this leads to ( )2O n  communications. 

The communication overhead can be reduced drastically if elements on each processor 

can be checked independently without communication. For this purpose, the target 

threshold algorithm is modified. The error bound 1τ  is further split into two equal parts of 

1
1
2

τ , and the error matrix E  is also split into two parts: 1 2E E E= + , where 1E  is an 

upper triangular matrix and 2E  is a lower triangular matrix.  

The lower triangular part of A′′  is first checked column by column. An element in the 

lower triangular part of A′′  can be eliminated if the sum of the absolute values of the 

dropped elements in that column is less than 1
1
2

Aτ . This guarantees that the error 

matrix 1E  satisfies 1 11

1
2

E Aτ≤ . After that, the sum of the absolute values of all 

dropped elements in each column of A′′  is broadcasted so that each processor contains a 

copy of the accumulated error for each matrix column. Then the upper triangular part of 

A′′  is checked in a similar way. This guarantees that the error matrix 2E  which contains 

all the dropped elements in the upper triangular part of A′′  satisfies 1 2 11
E E Aτ+ ≤ . 

For each eliminated element ija′′ , its symmetric counter part jia′′  is not necessarily 

eligible for elimination, and vise versa. In general, from the above procedure, 1E  does not 

equal 2
TE  . Therefore, the sum of those two matrices, 1 2E E+ , is not symmetric. Since 

matrices E   and A′′′  must be symmetric, we need to symmetrize 1 2E E+ . For the  
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i-th column and row of A′′′ ,  1 i n≤ ≤ , the row index of the last nonzero of column i and 

the column index of the last nonzero of row i is compared. The larger index is chosen as 

the index of the last nonzero for the i-th row and column as shown in Figures 4.4 and 4.5.  

The total number of communication in this modified parallel target threshold algorithm is 

only  ( )4 4 logn pα β+ . 

    By using the above approach in our parallel target threshold algorithm, we may not be 

able to drop as many elements as we mathematically could and as in the sequential BT 

algorithm. However, the difference in the bandwidths produced by BT and PBT is 

typically small (less than 10%) as our test results of application matrices show. 

    Step 5. Covering A′′′ . 

    After the parallel target threshold step, all processors obtain the row indices of the last 

nonzero entries in each column of matrix  A′′′ . Each processor redundantly determines 

the sizes of the diagonal blocks as in the sequential BT algorithm, so that the resulting 

block tridiagonal matrix contains all the matrix elements that are effectively nonzero (i.e., 

nonzeros in A ′′′ ). 
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    Figure 4.4 A′′′  after separate lower                     Figure 4.5  Symmetrize A′′′  by 
                       and upper triangular                                            adding back nonzeros. 
                       eliminations. 
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    Step 6. Parallel target block reduction using 2 Aτ . 

The sequential BT algorithm provides the option of Target Block Reduction (TBR) to 

produce a few small blocks in matrix A′′′  for a lower computational complexity in the 

merging operations of the BD&C algorithm. In a merging operation of BD&C, a lower 

rank of the off-diagonal block leads to a lower computational complexity. Since the ranks 

of off-diagonal blocks are not available during block tridiagonalization, we use the 

smaller dimension of an off-diagonal block as an approximation to its rank. TBR uses 

sensitivity analysis to check elements in each column/row of an off-diagonal block from 

outside toward inside for elimination. For the sensitivity analysis, approximations to the 

eigenvectors are required (see Section 2.2.1 step 6). If approximate eigenvectors are not 

available, we may set 1τ τ=  and 2 0τ =  so that this optional step is not applied.  

For the parallel implementation of sensitivity analysis, we assume that the approximate 

eigenvector matrix is distributed in 2D block cyclic pattern on a processor grid with r  

processor rows and c  processor columns as would typically be the case. When rows of 

the approximate eigenvector matrix are required, they are sent from several processors to 

one processor. That is, for each entry ija′′′  to be checked, the i-th and j-th row of the 

eigenvector matrix need to be sent to the processor that possesses ija′′′  (see Equation 2.7), 

which costs 2 2c nα β+  communication time. When several matrix entries in the same 

column are checked for elimination, the strategy used in parallel TBR is to send all the 

relevant rows in the eigenvector matrix to the processor that is applying the sensitivity 

analysis. For example, as shown in Figures 4.6 and 4.7, if we want to check elements 25b , 

52b , 35b  and 53b of a matrix B for elimination, rows 2, 3, and 5 of the eigenvector matrix 

Z (red shade in Figure 4.7) are sent to 2P , since 25b  and 35b  are both on processor 2P . 

The updated block size will then be broadcast to all other processors. 

To find diagonal blocks eligible for sensitivity analysis, parallel TBR starts with the 

smallest diagonal block. If there are several diagonal blocks with the same size, then the 

diagonal block closest to the middle of A′′′  will be selected. The reduction of the size of  
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 Figure 4.6 Check matrix entries                            Figure 4.7 Rows in the eigenvector 
              (2,5),  (3,5), (5,2) and (5,3).                                   matrix Z  for sensitivity                        
                                                                                              analysis. 

 
 
 

one diagonal block leads to the expansion of its neighboring diagonal block(s). To avoid 

oscillation in block sizes, after a diagonal block has been compressed, it should not be  

expanded any more. Next, the second smallest diagonal block is selected in a similar 

manner for sensitivity analysis, and so on.  

    In the sequential BT algorithm, all eligible diagonal blocks are checked for block size 

reduction. However, this may be too costly for PBT since communication overhead for 

collecting and distributing rows of the eigenvector matrix can be prohibitive. In out tests, 

the TBR step usually takes about one-half of the execution time of PBT. Since our goal is 

to find small blocks in an attempt to reduce the complexity of the last few merging 

operations of PBD&C, we restrict the number of diagonal blocks to be checked to 3. 

When the number of matrix elements to be checked in a column of an off-diagonal 

block is large, the processor that receives the eigenvector information may not have 

enough work space to store the required rows of eigenvectors. Thus, after step 5, when 

the preliminary block sizes have been determined, we first check whether the work space 
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of each processor has enough space to accommodate eigenvectors for the sensitivity 

analysis. If there is not enough space, then the target block reduction is skipped and a 

second round of target threshold is applied with tolerance 2 Aτ . 

4.1.3 Complexity of PBT 

In the sequential BT, the computational complexity and the number of data accessed are 

both ( )2O n  [4]. In PBT, computational complexity per processor is ( )2O n p ; thus, the 

extra communication cost becomes the dominant part of the execution time since the time 

to transfer one floating-point number is typically much longer than to execute a floating-

point operation. 

   Table 4.1 shows total computational and communication complexities for each step of 

PBT as well as the complexity of matrix redistribution between 2D and 1D at the 

beginning and end of PBT. In Table 4.1, 1nnz  and 2nnz  are the number of nonzero 

elements of matrices A′  and A′′′ , respectively (typically 1 2nnz nnz n< ). In Step 6, k 

denotes the number of matrix elements that are checked for elimination (typically k << n), 

and c  is the number of processor columns in the 2D distribution of the eigenvector 

matrix. 

As a pre-processing step for the PBD&C algorithm, the computational cost of PBT is 

typically minor compared to the computational cost of PBD&C. However, the scalability 

of the PBT algorithm may not be comparable to those algorithms with high 

computational complexity because of its relatively large communication overhead. We 

parallelize the block tridiagonalization algorithm with large application matrices in mind. 

Those matrices must be stored on distributed memory, and parallelization of the BT 

algorithm becomes essential for computing their eigensystems.   
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                 Table 4.1  Computational and communication complexities of PBT. 

Steps Comparison and 

local data movement

Communication 

cost 

Addition and 

multiplication 

0. Matrix redistribution 

    2D ⇔ 1D 

 2 22 2p nα β+   

1. Global threshold 2n p  ( )12 p n nnzα β+ +   

2. GPS reorder 3 23 2n  [45]   ( ) logn pα β+   

3. Symmetric     

    permutation 

2n p  2n nα β+   

4. Target threshold ( )2
2n nnz p−  ( )4 4 logn pα β+  ( )2

2n nnz p−  

5. Covering n    

6. Target block  

    reduction 

 

2n  

 

( )2 2k c nα β+  

 

2kn  

 

4.2 Parallel orthogonal block tridiagonal reduction (POBR) of dense 

matrix 

The parallel orthogonal block tridiagonal reduction step reduces a dense matrix A  to 

block tridiagonal form using a sequence of QR factorizations on column blocks of A , as 

shown in Figures 4.8 and 4.9. The resultant block tridiagonal matrix is similar to a 

banded matrix except that the last off-diagonal block is not a triangular.  

    There are parallel implementations [9, 99] of the orthogonal bandwidth reduction 

algorithm. The first attempt [9] of parallelization sets the restriction that the algorithmic 

panel width bp , bandwidth of the reduced banded matrix bw  and the block size of the 

2D block cyclic matrix distribution bn  are all the same, and the matrix size n  is a 

multiple of bp . A later implementation [99] using PLAPACK has the flexibility of using 

any values for bp , b  and bn , but the performance is not as satisfactory as the first  
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                 Figure 4.8 QR factorizations of column-blocks of a matrix.  

                                            

 
 

 

 

 

 

 

 

 

 

 

                  Figure 4.9  Block tridiagonal matrix after orthogonal reduction. 
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implementation [99]. In Section 4.2.1 we discuss how the algorithmic panel width bp , 

the size of tridiagonal blocks b  and the size of parallel matrix distribution block bn  are 

chosen for our algorithm. 

4.2.1 Selection of block size b and panel width pb 

A critical issue in the orthogonal reduction from a dense matrix to a block tridiagonal 

one is how to choose the algorithmic panel width bp of each QR factorization.  

First, we consider the relationship between b  and bp . Block size b  directly affects the 

computational complexity of the PBD&C merging operation. When  b  is large, the rank 

of the off-diagonal blocks tends to be large as well, which increases the time complexity 

of the PBD&C merging operation. Therefore we wish to obtain a block tridiagonal matrix 

with small b . However, as explained in Section 2.3.3, b  should not be smaller than bp , 

so we set bb p= . If we choose a small panel width bp , the resultant block size b  is also 

small, but we may not be able to obtain full performance of level 3 BLAS operations. If 

bp  is large, we may obtain slightly better performance during the reduction as shown in 

Figure 2.20; but then b  will be large and the rank of the off-diagonal blocks will likely 

be large as well. The reduction of execution time in POBR is not likely to compensate the 

increased execution time from PBD&C. 

Second, we consider the relationship between bn  and bp . Since matrices are 

distributed using ScaLAPACK 2D block cyclic pattern, to reduce data transfer between 

processor columns and the complexity of local index calculation, bp  should equal bn , as 

the ScaLAPACK reduction subroutine PDSYTRD does. This guarantees that QR 

factorization of each matrix column block is performed on only one processor column, 

and does not involve row-wise communication in the processor grid. 

From the above two restrictions bb p=  and b bp n= , we fix the sizes of panel width 

and diagonal blocks of the reduced block tridiagonal matrix to be the block size of the 

parallel 2D block cyclic matrix distribution, i.e.,  b bp b n= = .  
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4.2.2 Complexity of parallel orthogonal reduction 

To be consistent with notation used in Section 2.3, matrix column block 

( )( )1: , 1 1:b b bi in n i n inG A + − +=  is the i-th panel to be factorized, and ( ) ( )( )1 1: , 1 1:b bi i n n i n nA A − + − +=  is the 

lower right principal submatrix of A  at the i-th stage of orthogonal reduction as shown in 

Figures 2.16 and 2.19. For convenience of reference, we replicate Figure 2.19 here as 

Figure 4.10. We partition iA  into 2 2×  submatrix blocks:  

                                      11 12

21 22

b b

i i
b

i i i
b

n n in

nA A
A

n inA A

−

 
=   − 

,    (4.1) 

where 21
i

iA G=  is the submatrix to be factorized into i i iG Q R= ,  and 22
iA  is the submatrix 

to be updated from both sides by iQ . 

    In POBR, there are four steps to compute a sequence of bn  Householder 

transformations and reduce column block ( )( )1: , 1 1:b b bi in n i n inG A + − +=  where 1 i q≤ ≤  and 

1
b

nq
n

 
= − 

 
.  These four steps are: 

 

 

 

 

 

 
 

 

  

             Figure 4.10  Matrix A  at the i-th stage of orthogonal reduction. 
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    1)  Compute QR factorization of each column block iG . The computed Householder   

          vectors overwrite corresponding columns of iG .  

2)  Construct blocked Householder transformation in the form of 1b

T
i i nI YW H H− = ,  

          where ( ), b bn in n
i iY W R − ×∈ , iY  holds columns of Householder vectors ,1i

j by j n≤ ≤ , and  

         iW  holds vectors ( )2
Ti i i

j j jy y y . 

3)  Compute submatrix ( )b bn in n
iZ R − ×∈  using 22 22

1
2

i T i
i i i i iZ A W YW A W= −  where  

          ( )22 1: , 1:b b

i
n i n n i nA A + +=  . 

    4)  Apply symmetric rank-2k update 22 22
i i T T

i i i iA A YZ Z Y= − − . A symmetric rank-2k  

         update requires only half of the computation as that of a non-symmetric update, but  

         the communication cost cannot be reduced. 

    The computational and communication complexity of each step is listed in Table 4.2.  

For a total of 1
b

nk
n

 
= − 

 
 blocks and bm n in= − for 1 i k≤ ≤ , the total floating-point 

operation count for all processors is  

2 2 2 3

1
4 8 4 2 2

k

reduction b b b b b
i

flops m n mn mn n n
=

= + + + −∑  

                   ( )( )2 2 2 3

1
4( ) 8 4 2 2

k

b b b b b b b
i

n in n n in n n n n
=

= − + − + + −∑  

                   3 2 2 2 2 2 2 2 34 22 4 4 2 2 2 2 2 2
3 3b b b b b b b b bn n n nn n n nn n nn nn n nn n= − + + − + − + − − +  

                   ( )3 2 2 2 34 162 1 2 2
3 3b b b bn n n nn n n= + + − − +  

                   ( )3 24
3 bn O n n= + .       (4.2) 

   With a total of p  processors, the floating-point operations executed by each processor 

is approximately 
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                                        Table 4.2  Computational and communication complexities of POBR for  
                                                          reduction of one matrix column block  bm n

iG ×∈  where bm n n i= − . 

Step Computational complexity Communication complexity 

1) Compute QR 

factorization of iG  
( )( )

1

4 1 1
bn

b
j

m j n j
=

− + − +∑  ( )( )( ) ( )
1

log 2
bn

b b
j

r n j r n jα β α β
=

+ − + + + −  ∑  

2) Construct blocked QR 

factorization TI YW−  1
4( 1)( 1)

bn

j
j m j

=

− − +∑  
1
(log )( )( 1) [ ( 1) ]

bn

j
r j r jα β α β

=

+ − + + −∑  

3) Compute 

22 22
1
2

T
i i i i iZ A W YW A W= −

 

2 22 4 2b b bm n mn mn+ +  ( ) ( ) ( ) ( )( )2 22 log log logb
b b

mnr r n r n
c

α β α β α β + + + + + 
 

 

4) Compute 

22 22
T T

i i i iA A Y Z Z Y= − −  

( )2 1 bm m n+  2log 2log .b bmn mnr c
c r

α β α β   + + +   
   

 

 

 

          Total 

2 2

2 3

4 8 4

2 2
b b b

b b

m n mn mn

n n

+ + +

−
 

( )( )( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

2

2

1 log 2 1

2 log log

log 2 log 2 log .

b b b b

b
b

b b
b

n n r r n n r

mnr r n
c

mn mnr n r c
c r

α β α β

α β α β

α β α β α β

+ + + + − +

 + + + + 
 

   + + + + +   
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34

3
per proc
reduction

nflops
p

γ≈ .      (4.3) 

    The total communication cost for each processor is 

( )( )( ) ( ) ( )
1

1 log 2 1 4 log
k

comm b
reduction b b b b

i

mnt n n r r n n r r
c

α β α β α β
=

 = + + + + − + + + 
 

∑  

                    ( ) ( ) ( )( ) ( )2 2log log 2 log b
b b

mnr n r n c
r

α β α β α β + + + + + 
 

 

           ( ) ( )1 2 log log
b

n r O r O c
n

α
 

≈ − + + +    
 

                

              ( ) ( )2 2log log logr cn O n r O nr
c r

β   + + +    
    (4.4) 

In POBR, the number of floating-point operations in steps 3) and 4) adds up to 

( )3 24 1
3 2bn n n O n − − + 

 
. The ratio of BLAS 3 operations is then approximately  

4
3

31
2

b

b

n
n n

−
+

. With fixed block size bn  for parallel data distribution, we can have more 

than 90% level 3 BLAS operations if 21 bn n> . Figure 4.11 shows the ratio of level 3 

BLAS operations in POBR with different matrix sizes and block sizes. Eigenvalue 

problems generated from application problems in scientific computing are usually very 

large so that bn n . Therefore, we are guaranteed to have high ratio of BLAS 3 

operations in POBR and would expect POBR to have good performance for such 

matrices. 

Assume the processor grid is a square grid with r c p= = , then the estimated 

approximate speedup of block tridiagonal reduction can be expressed by            
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           Figure 4.11  Ratio of level 3 BLAS operation in POBR, block size of  
                                parallel matrix distribution 32,64bn = . 

      

      ( ) ( )
3

23

4
3,

3 log24
3 b

n
Speedup n p

n pn pn
p n p

γ

γ α β

=

+ +

 

                                  
( )

2

9 log31
2 4b

p
p pp p

n n n

βα
γ γ

=

+ +

    (4.5) 

With Equation 4.5, a theoretical speedup of POBR can be calculated if machine 

parameters α , β  and γ  are known. On Cheetah, we have 7 sα µ=  and 5.7nsβ =  from 

message passing latency and bandwidth benchmarking results [38] and 0.315nsγ =  from 

performance test of vendor optimized matrix multiplication subroutine DGEMM [38]. 

The theoretical speedup curves are shown in Figure 4.12 with 32bn = . 
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                              Figure 4.12  Theoretical speedup model of POBR. 
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5 Numerical results 

In this section, we present results of accuracy and performance tests. Our tests were run 

on the IBM p690 system nicknamed Cheetah in Oak Ridge National Laboratory. System 

specifications and important benchmarking results are listed in Table 5.1. The 

performance of the parallel block tridiagonal divide-and-conquer subroutine PDSBTDC 

is compared to the ScaLAPACK divide-and-conquer subroutine PDSYEVD [92]; the 

performance of parallel orthogonal block tridiagonal reduction subroutine PDSBTRD is 

compared to the ScaLAPACK symmetric tridiagonalization subroutine PDSYTRD [21]. 

Parallel block tridiagonalization subroutine PDSBTRI is tested separately. Finally the 

performance of the parallel approximate eigensolver which uses PDSBTDC, PDSBTRI 

and PDSBTRD as core components is tested using application matrices with different 

structures.  

    The Fortran compiler on Cheetah is IBM's xlf version 8.1. Codes were compiled in 

the default 32-bit compile mode and linked to the 32-bit PESSL library [56] which 

includes the vendor optimized version of BLAS . The compiler options used are:  
      -O4 -qarch=auto -qcache=auto –qtune=auto  

      -bmaxdata:0x70000000. 

    For the computed eigensolutions of a real symmetric matrix ˆ ˆ ˆ TA X X= Λ  where X̂  is 

the computed approximate eigenvector matrix and Λ̂  is the diagonal matrix that contains 

the computed approximate eigenvalues, we use the scaled residual error  

                                               2

1, ,
2

ˆˆ ˆ
max

i i i

i n

Ax x

A

λ
=

−
=R  

and the scaled departure from orthogonality 

                                               
( )

1, , 2
ˆ ˆmax T

ii n
X X I e

n
=

−
=O   

to evaluate the accuracy of results. 

For all the numerical tests, the number of processors used is a power of 2. We start 

from the smallest number of processors that provides sufficient memory to solve the  
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                Table 5.1  Cheetah system specifications and benchmarks [38]. 

Number of nodes 27 

Memory per node 32 GB for most of the nodes 

Processors per node 32 

CPU frequency 1.3 GHz 

Data 32 KB  

L1 cache Instruction 64 KB 

L2 cache 1.5 MB shared between 2 processors 

L3 cache 32 MB off chip 

Interconnect switch Federation 

Message passing latency 7 µs 

Message passing bandwidth 1400 MBs 

DGEMM  

GFLOPS per processor 

 

3.174 GFLOPS 

 

 

problems in parallel and verify computational results, and increment the number of 

processors up to 512.  

5.1 Test matrices 

There are three types of matrices in our tests: 1) LAPACK/ScaLAPACK test matrices 

with different eigenvalue distributions [27], 2) matrices generated from application 

problems in quantum chemistry and condensed matter physics, and 3) random matrices. 

Some of those matrices are banded or block tridiagonal, some are dense but “effectively” 

sparse, and some are dense without any specific structure. Matrix sizes range from 3,014 

to 20,000. In this section, we present representative performance and accuracy results. 

The complete set of numerical test results is given in the Appendix.   
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5.1.1 LAPACK/ScaLAPACK test matrices 

A banded matrix is a special form of block tridiagonal matrix in that all off-diagonal 

blocks are triangular. We use banded matrices with different eigenvalues distributions 

generated by LAPACK subroutine DLATMS to test PDSBTDC. Since the computational 

complexity of PDSBTDC increases on the order of 3n  with the rank of the off-diagonal 

block for the final merging operation (see Section 2.1.4), we limit the bandwidth of test 

matrices to 20, so that the ranks of the off-diagonal blocks are never greater than 20. 

There are six types of matrices in this category with different eigenvalue distributions. 

For each type, test matrices are generated for five different sizes: 4,000, 8,000, 12,000, 

16,000 and 20,000. 

P-clu0. Eigenvalues clustered at machε± , only one eigenvalue is 1± . 

P-clu1. Eigenvalues clustered at 1± , only one eigenvalue is machε± . 

P-geom. Eigenvalues distributed in a geometric sequence ranging from 1 to machε  

with random signs attached to eigenvalues, ( ) 1 1i n
i machλ ε − −= ± . 

P-arith. Eigenvalues distributed in an arithmetic sequence ranging from 1 to machε  

with random signs attached to eigenvalues, ( )( ) ( )1 1 1 1i mach i nλ ε= ± − − − −   . 

P-log. Logarithm of eigenvalues uniformly distributed in the range from 1 to machε  

with random signs attached to eigenvalues. 

P-rand. Random eigenvalues uniformly distributed in ( )1,1− . 

5.1.2 Application matrices 

In this section we give a brief description of test matrices generated from the calculation 

of the electronic structure for different types of molecules. For each type of molecule, 

different test matrices are generated, typically by incorporating different number of 

molecules in the model. However, their Fock matrices and eigenvalue distributions look 

very similar, except that matrix sizes are different. In most of our tests, we only test the 

largest matrix from a molecule family unless otherwise specified. 
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A-alk. Alkane. Matrices are generated from simulating alkane molecules using the 

CNDO method [81, 82, 83]. The general molecular formula of an alkane is CnH 2n+2. 

Figures 5.1 and 5.2 show the magnitudes of elements of a Fock matrix generated from  

C502H 1006 and its eigenvalue distribution. The size of the matrix is 3,014.  

A-ala. Polyalanine. Matrices are generated from simulating polypeptide molecules 

made from alanine using the MNDO method [28]. Figures 5.3 and 5.4 show the 

magnitudes of elements of the Fock matrix from a linear polyalanine chain of length 

200 used in our test and its eigenvalue distribution. All matrices in this category are 

banded matrices. The matrix used in our tests is of size 5,027, and its bandwidth is 79.  

      A-Si. Silicon crystal. Matrices are generated from simulating silicon crystals using    

      the PBE [79] functional in density functional theory with differing number of unit  

      cells containing 8 atoms each. Figure 5.5 shows the magnitudes of elements in the  

      matrix used in our tests with 5 unit cells in the x direction, and 4 in both the y and z  

      directions. Figure 5.6 gives its eigenvalue distribution. The size of this matrix is 8,320. 

A-tPA. Trans-Polyacetylene (PA). Trans-PA consists of a chain of CH units. It has 

the general molecular formula trans-(CH)n. The SSH Hamiltonian [90], which is a 

tight-binding approximation and includes only the nearest neighboring atoms, is 

combined with the Hartree-Fock approximation to produce test matrices in this family. 

Figures 5.7 and 5.8 show the magnitudes of matrix elements of trans-(CH)8000 and its 

eigenvalue distribution. Matrices used in our tests are generated from trans-(CH)8000 

and trans-(CH)16000, and the sizes of the corresponding matrices are 8,000 and 16,000, 

respectively. 

5.1.3 Random matrices 

There are two types of random matrices in our tests. Each random matrix element is 

generated by the C built-in random number generator. For each type, five different 

matrices are again generated with sizes: 4,000, 8,000, 12,000, 16,000 and 20,000. 

      R-bt.  Random symmetric block tridiagonal matrices of block size 20. These matrices 

are used to test the parallel block tridiagonal divide-and-conquer subroutine PDSBTDC. 
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                     Figure 5.1  10log  of absolute value of matrix elements for  
                                       alkane C502H 1006  molecule, 3,014n = . 

 

                    
                        Figure 5.2  Eigenvalue distribution of matrix in Fig. 5.1. 
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                 Figure 5.3  10log  of absolute value of matrix elements for  
                                   linear polyalanine chain of length 200, 5,027n = . 

 

                      
                      Figure 5.4  Eigenvalue distribution of matrix in Fig. 5.3. 
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               Figure 5.5  10log  of absolute value of matrix elements for  
                                 silicon crystal molecule, 8,320n = . 

 

                           
                    Figure 5.6  Eigenvalue distribution of matrix in Fig. 5.5. 
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            Figure 5.7  10log  of absolute value of matrix elements for  
                              trans-PA molecule, 8,000n = . 

 

                         
              Figure 5.8  Eigenvalue distribution of matrix in Fig. 5.7. 
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      R-den.  Random symmetric full matrices for the test of the parallel orthogonal block 

tridiagonal reduction subroutine PDSBTRD. 

5.2 Test results for PBD&C subroutine PDSBTDC 

In the tests of PDSBTDC, we use block tridiagonal matrices P-clu0, P-clu1, P-geom,  

P-arith, P-log, P-rand and R-bt. Five matrices of each type are tested with different 

orders: 4,000, 8,000, 12,000, 16,000 and 20,000; the block size on each is 20. We also 

use application matrix A-ala, which has a matrix size of 5,027 and the block sizes of 104 

for the first and the last blocks and 79 for other diagonal blocks. The execution times of 

PDSBTDC are scaled by the execution times of the ScaLAPACK divide-and-conquer 

subroutine PDSYEVD. 

First we set the accuracy tolerance to 610−  for PDSBTDC. Figure 5.9 shows the 

relative execution time of PDSBTDC to ScaLAPACK subroutine PDSYEVD in log scale 

using P-geom matrices — eigenvalues with geometric distribution. Figure 5.10 shows the 

maximum residual R  and orthogonality errors O  over all five P-geom matrices.  

Under the stated accuracy tolerance, all the block tridiagonal matrices in P-geom have 

rank of 0 for the off-diagonal block of the final merging operation, which decouples the 

problem into two smaller ones. In addition, matrices with clustered eigenvalues tend to 

have very high ratio of deflation (see Figure 2.4). Those two factors lead to the high 

efficiency of PDSBTDC. Matrices P-clu0, P-clu1 and P-log all have clustered 

eigenvalues and display performance similar to that shown in Figure 5.9.      

    Figure 5.11 shows the performance of PDSBTDC on P-arith matrixes. As the 

eigenvalues are evenly distributed, deflation rate decreases. Another factor that 

contributes to the slower performance of PDSBTDC is that the ranks of the off-diagonal 

blocks in the P-arith matrices are much higher than those in other matrix types 

mentioned in preceding paragraph. Performance of the random block tridiagonal matrices 

R-bt is similar to that of P-arith. Performance of matrices with random eigenvalues P-

rand is slower than that of P-geom (Figure 5.9), but much better than that of P-arith 

(Figure 5.11). Maximum residual R  and orthogonality errors O  for matrices P-arith are 
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                 Figure 5.9  Execution time of PDSBTDC relative to PDSYEVD  
                                    in log scale using P-geom matrices.  

 

                       
                             Figure 5.10 Maximum residual and orthogonality error for  
                                                PDSBTDC on P-geom matrices. 
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                 Figure 5.11  Execution time of PDSBTDC relative to PDSYEVD  
                                     using P-arith matrices. 

 
 
displayed in Figure 5.12.  

To test performance and accuracy of PDSBTDC with different accuracy requirements, 

we use the application matrix A-ala and set the accuracy tolerance to different values: 
410− , 610− , 810− , 1010−  and 1210− . Figure 5.13 shows that as the tolerance decreases, 

execution time increases due to less deflation and higher ranks for off-diagonal blocks. 

For example, with a tolerance of 610− , the ranks of the off-diagonal blocks range from 20 

to 21, and a very high deflation rate (about 90%) in the last 3 merging operations 

significantly reduces the total amount of computation. 

Since most of the matrices in our test are too large to be computed using one processor, 

it is not feasible to measure the speedup of PDSBTDC using the traditional definition, i.e., 

s

p

Tspeedup
T

=  where sT  is the time to run the fastest sequential code and pT  is the time to 

run the parallel code with p  processors. In Figure 5.14, we use a smaller matrix to   
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                              Figure 5.12 Maximum residual and orthogonality error of  

                                                 PDSBTDC on P-arith matrices. 

 

                             

            Figure 5.13  Execution time of PDSBTDC relative to PDSYEVD  

                                using application matrix A-ala with different accuracy tolerance. 
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              Figure 5.14 Speedup of PDSBTDC using matrix A-ala with tolerances 
                                 4 6 8 10 1210 ,10 ,10 ,10 ,10τ − − − − −= , matrix size 5,027n = . 

 
 
evaluate speedup with different accuracy requirements since computational complexity 

increases as accuracy tolerance becomes smaller. Speedup factors should be significantly 

better on larger, more appropriately sized matrices. 

5.3 Test results for POBR subroutine PDSBTRD 

Random matrices are used to test performance of the parallel orthogonal block tridiagonal 

reduction subroutine PDSBTRD. Figure 5.15 shows the execution times of PDSBTRD 

scaled by that of the ScaLAPACK subroutine PDSYTRD. Performances of both 

subroutines scale up with the number of processors in use. It should be noted that the 

floating-point operation count for the two subroutines are not the same since PDSBTRD 

only reduces a matrix to block tridiagonal form while PDSYTRD reduces a matrix to 

tridiagonal form. The improved performance as a result of using level 3 BLAS operations 

can be seen from the relative execution time of PDSBTRD to PDSYTRD. In particular,  
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              Figure 5.15 Relative execution time of PDSBTRD to PDSYTRD  
                                  using random matrices R-den. 

 
 
PDSBTRD performs better when the problem size per processor 2n p  becomes larger, 

which matches Corollary 2.2. 

5.4 Test results for PBT subroutine PDSBTRI 

In our application matrices, the alkane and trans-PA matrices have strong locality 

property, that is, the larger elements are close to the diagonal and the magnitudes of 

matrix elements decrease as they move away from the diagonal. In an iterative method 

like the SCF, a non-linear eigenvalue problem is solved by solving a linear eigensystem 

iteratively until convergence. For the alkane matrix A-alk of size 3014, we completed all 

the iterations using a sequential SCF subroutine and stored the Fock matrices and 

eigenvector matrices from each iteration. Thus, in the test of PDSBTRI using matrix A-

alk, we are able to test the optional target block reduction (PBT) step using the 

eigenvector matrix from the previous iteration as approximate eigenvectors. The trans-PA 

matrices A-tPA of sizes 8,000 and 16,000 are used for the test of PDSBTRI without PBT.  
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    Figure 5.16 shows the execution times of PDSBTRI with tolerance 610τ −= . The 

parallel block tridiagonalization algorithm contains steps that are sequential in nature as 

well as steps that parallelize well. For example, the matrix reorder (step 2) is completely 

sequential; while the global thresholding (step 1) and the modified target thresholding 

(step 4) are embarrassing (or pleasantly) parallel, in that each processor checks elements 

to be eliminated independently. As the number of processors increases, the execution 

times for steps 2 and 4 decrease. However, the overhead of redistributing the matrix from 

2D block cyclic distribution to 1D column block distribution increases with the number 

of processors. Therefore, the execution time of PDSBTRI on Cheetah remains almost 

constant as the number of processors increases. Overall, the time for block 

tridiagonalization is still very small compared to the time for solving eigenproblem.  

We compare the eigenvalues of the block tridiagonalized matrix M  and the original 

matrix A  computed to full accuracy. Table 5.2 shows that the errors in eigenvalues are  

      

              

              Figure 5.16  Execution time of PDSBTRI using matrices  
                                  A-alk and A-tPA with 610τ −= . 
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               Table 5.2  Scaled eigenvalue error ( ) ( )A M Aλ λ− . 

Matrix Size With TBR Tolerance ( ) ( )A M Aλ λ−  

No 610−  73.55 10−×  A-alk 3,014 

Yes 610−  73.57 10−×  

8,000 No 610−  88.04 10−×  A-tPA 

16,000 No 610−  87.19 10−×  

 

 

bounded by Aτ  (see Appendix for performances and eigenvalue errors with tolerances 

410−  and 810− ).  

5.5 Test of parallel approximate eigensolver 

As we described at the beginning of Section 1, our goal is to develop a parallel 

eigensolver that computes approximate eigenpairs of a real symmetric matrix. This 

eigensolver chooses eigen-decomposition algorithms based on matrix structure and the 

accuracy requirement. The central parts of this approximate eigensolver are subroutines 

PDSBTDC, PDSBTRD and PDSBTRI. In Section 5.5.1 we describe the structure of our 

approximate eigensolver. Test results of the approximate eigensolver using application 

matrices are shown in Section 5.5.2.  

5.5.1 Structure of parallel approximate eigensolver 

Given a real symmetric matrix n nA ×∈  and accuracy requirement 0.1machε τ≤ < , the 

approximate eigensolver determines what algorithm to use to compute all eigenpairs of 

A  as the flow chart in Figure 5.17 shows: 

1)  If the accuracy requirement is high, then ScaLAPACK subroutine PDSYEVD is  

     used to compute eigenpairs of A  to full accuracy. 
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                       Figure 5.17  Structure of parallel approximate eigensolver. 
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2)  If the accuracy requirement is low and A  is sparse or “effectively” sparse,  

     PDSBTRI is used to transform A  into block tridiagonal matrix M . After that,  

     PDSBTDC is used to compute approximate eigenpairs of M . 

3)  If the accuracy requirement is low and A  does not have any structure, i.e., A  is not  

     block tridiagonal or cannot be transformed into block tridiagonal matrix using  

     PDSBTRI, then A  is reduced to block tridiagonal matrix M  using orthogonal  

     block tridiagonal reduction subroutine PDSBTRD. Then PDSBTDC is used to  

     decompose M . Finally, the eigenvector matrix of M  is back transformed to the  

     eigenvector matrix of A . 

5.5.2 Numerical tests of parallel approximate eigensolver 

All the decision-making steps in the approximate eigensolver are heuristic and do not 

have an exact and unique solution. For example, when is an accuracy tolerance regarded 

as “high accuracy,” and what matrix can be regarded as “effectively” sparse. Our user 

interface provides the option for the user to input information about the matrix structure 

and accuracy requirement. If the user knows the structure of the input matrix in advance, 

he may provide this information. Otherwise, the approximate eigensolver uses a heuristic 

method to determine what algorithms to use.  

In our numerical tests, we used 610τ −=  as a threshold for the accuracy requirement, 

i.e. when 610τ −< , we compute eigenpairs of A  to full accuracy; otherwise we compute 

eigenpairs of A  to the required low accuracy. Application matrices A-alk, A-ala, A-Si 

and A-tPA are used to test the performances of PDSBTDC, PDSBTRI and PDSBTRD 

working together as a whole package. Matrices A-alk and A-tPA are “effectively” sparse 

matrices, thus PDSBTRI is used followed by PDSBTDC. Matrix A-ala is a block 

tridiagonal matrix, therefore PDSBTDC can be directly applied to it. Matrix A-Si does 

not have any usable structure, so it is first reduced to block tridiagonal form with block 

size 32b = , then solved by PDSBTDC followed by back transformation.  
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With a tolerance 610τ −= , Figure 5.18 shows that PDSBTDC is very efficient for 

matrices A-ala and A-tPA, because A-ala has a very high ratio of deflation although the 

ranks of off-diagonal blocks are high, and all the off-diagonal blocks in A-tPA have very 

low ranks. The approximate eigensolver does not perform well on matrix A-alk due to its 

relatively low ratio of deflation. The off-diagonal blocks in matrix A-Si have full rank of 

32 after orthogonal reduction, and the merging operations suffer from a low deflation rate. 

Those two factors lead to slow execution though the accuracy tolerance is relatively large. 

For matrices A-alk and A-Si, we further reduce the accuracy to 410−  but leave the block 

size for A-Si at 32. Figure 5.19 shows that PDSBTRI followed by PDSBTDC performs 

much better on A-alk. The improvement of performance is a result of lower ranks for off-

diagonal blocks and a higher ratio of deflation. With matrix A-Si, the ranks of the off- 

diagonal blocks remain unchanged after orthogonal reduction. Although there is a 

significant improvement in performance due to a higher ratio of deflation, it is still slower 

than PDSYEVD due to its high computational complexity introduced by the high ranks 

of the off-diagonal blocks. With tolerance 410τ −= , we reduce the block sizes b  of A-Si 

to 16, so that the ranks of all off-diagonal blocks are no greater than 16. Compared to 

32b = , there is a small amount of performance loss in PDSBTRD (less than 5%); but the 

ranks of all off-diagonal blocks are reduced by half, which leads to approximately 50% 

reduction in execution time in PDSBTDC. Figure 5.19 shows that the approximate 

eigensolver is very competitive when block size and tolerance are set to 16b =  and 
410τ −= , respectively. However, with block sizes smaller than 16, the effect of level 3 

BLAS operations is significantly reduced and the performance of the parallel 

approximate eigensolver is also degraded. 
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             Figure 5.18 Relative execution times of approximate eigensolver to PDSYEVD  
                                 using matrices A-alk, A-ala, A-Si and A-tPA with 610τ −= . 

                                   

                          
 

        Figure 5.19 Relative execution times of approximate eigensolver to PDSYEVD  
                            using matrices A-alk and A-Si with 410τ −= . For matrix A-Si, block  
                            sizes are 16 and 32. 
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6 Conclusion 

In conclusion, this dissertation addresses several efficient algorithms for a parallel 

approximate eigensolver for real symmetric matrices. Given a real symmetric matrix A  

and an accuracy parameter τ , the approximate eigensolver computes the approximate 

eigensolutions of  A  such that ( )22

TA X X O Aτ− Λ =  and 

( ) ( )
21, ,

max T
i machi n

XX I e O nε
=

− = , where X is the approximate eigenvector matrix and Λ  

is the diagonal matrix that contains the approximate eigenvalues.  

    The three major algorithms in this approximate eigensolver are: 1) parallel block 

tridiagonal divide-and-conquer algorithm (subroutine PDSBTDC); 2) parallel orthogonal 

block tridiagonal reduction algorithm (subroutine PDSBTRD); and 3) parallel block 

tridiagonalization algorithm (subroutine PDSBTRI). Based on the matrix structure and 

accuracy requirement, the approximate eigensolver chooses proper combination of 

algorithms to compute efficiently all eigenvalues and eigenvectors of a real symmetric 

matrix to prescribed accuracy. If high accuracy is required, the eigensolver chooses 

PDSYEVD in ScaLAPACK to compute eigensolutions to full accuracy. On the other 

hand, if low accuracy is sufficient, depending on matrix structure, a proper combination 

of the above three subroutines is selected. 

Complexity analyses and numerical tests show that for a low accuracy such as 610τ −= , 

PDSBTDC is very efficient on block tridiagonal matrices with either relatively low ranks 

for off-diagonal blocks or very high deflation rate during the merging operations, or both.      

Traditional eigensolvers for real symmetric dense matrices compute all eigenvalues 

and eigenvectors in three steps: 1) reduction to tridiagonal form; 2) decomposition of 

tridiagonal matrix; and 3) back transformation. It has been shown that the reduction step 

is the most time consuming step [95] because of its high ratio of level 2 BLAS operations. 

Although algorithms for real symmetric tridiagonal eigenvalue problems have been 

intensively studied and improved, the execution time for orthogonal reduction to 

tridiagonal form dominates the total execution time. The parallel block tridiagonal divide-
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and-conquer algorithm does not require this reduction-to-tridiagonal step. Instead, it 

solves the eigenproblem either directly or after reduction to block tridiagonal form. A 

mixed data/task parallel implementation maintains workload balance and achieves good 

speedup. However, when the rank of the off-diagonal block for the final merging 

operation is large, say exceeds 20, and the deflation rate is low, then PDSBTDC is no 

longer competitive due to its high computational complexity. 

When the input matrix is sparse or “effectively” sparse, we use the block 

tridiagonalization subroutine PDSBTRI to construct a block tridiagonal matrix M  that is 

a sufficiently accurate approximation to the original input matrix A . The execution time 

of PDSBTRI is usually negligible compared to the execution time of the eigen-

decomposition of the resultant block tridiagonal matrix. When the combination of 

PDSBTRI followed by PDSBTDC is used, its performance behaves similarly to that of 

PDSBTDC. 

When the input matrix is dense and has no specific structure, the parallel orthogonal 

block tridiagonal reduction subroutine PDSBTRD followed by subroutine PDSBTDC is 

used. PDSBTRD is very efficient by itself due to its high ratio of Level 3 BLAS 

operations in the algorithm; however, the off-diagonal blocks tend to have full ranks even 

when low accuracy is required. Since the block size of the block tridiagonal matrix equals 

the block size of the parallel 2D matrix distribution, which is typically 32 in PDSBTRD, 

each off-diagonal block usually has a full rank of 32. Reducing the accuracy requirement 

increases the deflation rate, but typically does little to reduce the ranks. One may try to 

reduce the ranks of off-diagonal blocks using smaller block size for parallel matrix 

distribution. For our tests using a block size of 16, the effect of level 3 BLAS operations 

in PDSBTRD is reduced and the frequency of data communication is increased, but the 

performance improvement in PDSBTDC is great enough to compensate the small amount 

of performance loss in PDSBTRD. 

    In general, the parallel approximate eigensolver is efficient and accurate to the 

prescribed tolerance. The time required for computing the approximate eigenpairs 

decreases significantly as the accuracy tolerance becomes larger. 
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7 Future work 

This dissertation addresses many important issues in the implementation of a parallel 

approximate eigensolver for real symmetric matrices, based on the PBD&C algorithm. 

Further improvements are possible. We recognize a few promising frontiers. 

1) Adaptive eigensolver. 

Based on matrix structure and accuracy requirement, the approximate eigensolver 

chooses eigen-decomposition and pre-processing algorithms correspondingly. The 

approximate eigensolver can be further developed into an adaptive eigensolver 

that detects matrix structure automatically and then chooses proper algorithms. 

The determination of matrix structure is a heuristic process and may involve 

redundant computation. Plenty of test matrices from real applications, as well as 

complexity analyses, are necessary to verify and adjust the adaptivity of 

eigensolver. 

   2) Fine-tuning of workload balance for parallel BD&C implementation. 

       In the parallel block tridiagonal divide-and-conquer subroutine PDSBTDC, the  

           position of the last merging operation is determined by both the computational  

           complexity and workload balance. We will further investigate the possibility and  

           benefit of applying this strategy to merging levels preceding the final merging  

           operation. 

                   3) Complete data parallel implementation of BD&C. 

                       The parallel implementation of the BD&C algorithm in this dissertation uses a  

           mixed data/task parallelism. Processors are assigned to matrix sub-blocks  

           according to their sizes. At each level of the parallel merging tree, subproblems are  

           merged simultaneously. When each subproblem on the same level of the merging  

           tree has approximately the same deflation rate, we would expect all processors to  

           finish one level of the merging tree at the same time. However, we lose workload  

           balance when deflation rate varies drastically on the same level of the merging tree.  

           In addition, when the number of processors is very small in comparison to the  
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           number of diagonal blocks, the position of the final merging can no longer be  

           optimally determined by computational complexity and workload balance. For  

           example, suppose we have only two processors, then the off-diagonal block for the  

           final merging operation is the one at the middle of the matrix even if the off- 

           diagonal block in the middle has a high rank.  

                           One possible solution is a complete data parallel implementation. The first  

          attempt to parallelize the BD&C algorithm used data parallelism [25]. Due to   

          the storage scheme of the diagonal blocks and off-diagonal blocks, that   

          implementation was not able to exploit high performance of optimized parallel  

          matrix multiplication. From our experience, the penalty of not being able to use  

          optimized level 3 BLAS subroutine may degrade performance more severely than  

          moderate overhead of extra data communication. A new completely data parallel  

          implementation of BD&C will also involve matrix redistribution so that all the  

          efficient algorithms in the sequential BD&C can be directly applied to the parallel  

          implementation. 
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          Appendix  Complete numerical test results 

              
 

             Figure A. 1 Execution of PDSBTDC using P-clu0 matrices, 610τ −= . 

 
 

                 
 

             Figure A. 2  Execution of PDSYEVD using P-clu0 matrices.
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           Figure A. 3  Execution of PDSBTDC using P-clu1 matrices, 610τ −= . 

 

                  
 

            Figure A. 4  Execution of PDSYEVD using P-clu1 matrices.
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            Figure A. 5  Execution of PDSBTDC using P-geom matrices, 610τ −= . 

 
 

                  
 

            Figure A. 6  Execution of PDSYEVD using P-geom matrices. 
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            Figure A. 7  Execution of PDSBTDC using P-arith matrices, 610τ −= . 

 
 

                  
 

            Figure A. 8  Execution of PDSYEVD using P-arith matrices. 
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           Figure A. 9  Execution of PDSBTDC using P-log matrices, 610τ −= . 

 
 

 
 

            Figure A. 10  Execution of PDSYEVD using P-log matrices. 
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            Figure A. 11  Execution of PDSBTDC using P-rand matrices, 610τ −= . 

 
 

  
 

            Figure A. 12  Execution of PDSYEVD using P-rand matrices. 

 
 



 
 
 

135

 
 

           Figure A. 13  Execution of PDSBTDC using R-bt matrices, 610τ −= . 

 
 

 
 

            Figure A. 14  Execution of PDSYEVD using R-bt matrices. 
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Figure A. 15  Scaled residual 2

1, ,
2

ˆˆ ˆ
max

i i i

i n

Ax x

A

λ
=

−
=R  of PDSBTDC using P-clu0,  

                      P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices, 610τ −= . 

 

                      

  Figure A. 16  Departure from orthogonality 
( )

1, , 2
ˆ ˆmax T

ii n
X X I e

n
=

−
=O  of PDSBTDC  

                        using P-clu0, P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices,  
                        610τ −= . 
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    Figure A. 17  Scaled residual 2

1, ,
2

ˆˆ ˆ
max

i i i

i n

Ax x

A

λ
=

−
=R  of PDSYEVD using P-clu0,  

                           P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices. 

 
 

      

Figure A. 18  Departure from orthogonality 
( )

1, , 2
ˆ ˆmax T

ii n
X X I e

n
=

−
=O  of PDSYEVD  

                      using P-clu0, P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices. 
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 Figure A. 19  Execution time of PDSBTDC and PDSYEVD using matrix A-ala. Matrix  
                       size 5,027n = . Tolerance for PDSBTDC 4 6 8 10 1210 ,10 ,10 ,10 ,10τ − − − − −= . 

 

 
 

 Figure A. 20  Execution time of PDSBTDC and PDSYEVD using P-arith matrix.  
                       Matrix size 12,000n = . Tolerance for PDSBTDC  
                       4 6 8 10 1210 ,10 ,10 ,10 ,10τ − − − − −= . 
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            Figure A. 21  Execution time of PDSBTRI with 410τ −= . 

 
 

      
 

            Figure A. 22  Execution time of PDSBTRI with 810τ −= . 
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             Table A.1  Scaled eigenvalue error ( ) ( )A M Aλ λ−  of PDSBTRI. 

 

Matrix Size With TBR Tolerance ( ) ( )A M Aλ λ−  

No 410−  51.09 10−×  A-alk 3,014 

Yes 410−  65.79 10−×  

8,000 No 410−  51.09 10−×  A-tPA 

16,000 No 410−  51.10 10−×  

3,014 No 610−  73.55 10−×  A-alk 

 Yes 610−  73.57 10−×  

8,000 No 610−  88.04 10−×  A-tPA 

1,6000 No 610−  87.19 10−×  

3,014 No 810−  93.42 10−×  A-alk 

 Yes 810−  93.45 10−×  

8,000 No 810−  105.38 10−×  A-tPA 

16,000 No 810−  105.26 10−×  
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           Figure A. 23  Execution time of PDSBTRD using R-den matrices. 

 

 

           Figure A. 24  Execution time of PDSYTRD using R-den matrices. 
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            Figure A. 25  Execution time of parallel approximate eigensolver (PAE) and   
                                  PDSYEVD. 
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