
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2005

Studies in Rheology: Molecular Simulation and
Theory
Chunggi Baig
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Baig, Chunggi, "Studies in Rheology: Molecular Simulation and Theory. " PhD diss., University of Tennessee, 2005.
https://trace.tennessee.edu/utk_graddiss/1687

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Chunggi Baig entitled "Studies in Rheology:
Molecular Simulation and Theory." I have examined the final electronic copy of this dissertation for form
and content and recommend that it be accepted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy, with a major in Chemical Engineering.

Hank D. Cochran, Major Professor

We have read this dissertation and recommend its acceptance:

Brian J. Edwards, David J. Keffer, Robert J. Hinde

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Yihua Bai entitled “High Performance
Parallel Approximate Eigensolver for Real Symmetric Matrices.” I have examined the
final electronic copy of this dissertation for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy,
with a major in Computer Science.

 Robert C. Ward

 Major Professor

We have read this dissertation

and recommend its acceptance:

 Michael W. Berry

 Jack J. Dongarra

 Robert J. Hinde

 Accepted for the Council:

 Anne Mayhew

 Vice Chancellor and

 Dean of Graduate Studies

(Original signatures are on file with official student records.)

High Performance

Parallel Approximate Eigensolver

for Real Symmetric Matrices

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Yihua Bai

December 2005

 ii

Dedication

This dissertation is dedicated to my wonderful husband Guoping for his love and support.

 iii

Acknowledgement

I would like to thank my advisor, Dr. Robert C. Ward, for his guidance, motivation and

support throughout my PhD study at the University of Tennessee. I thank him for giving

me the opportunity to work in his group. My experience there is really enjoyable.

I also wish to thank Dr. Michael Berry, Dr. Jack Dongarra from Computer Science

Department and Dr. Robert J. Hinde from Chemistry Department for serving on my PhD

committee and giving valuable suggestions on my dissertation.

In addition, I would like to thank Dr. Wilfried Gansterer, now assistant professor at the

University of Vienna, for providing a lot of technical details on the sequential block

tridiagonal divide-and-conquer algorithm and code. Many helpful and instructive

discussions and communications are truly appreciated.

Finally I wish to express my appreciation to Dr. Richard P. Muller of Sandia National

Laboratories and Dr. Guoping Zhang of Indiana State University for providing

application test matrices in this dissertation.

 iv

Abstract

In the first-principles calculation of electronic structures, one of the most time-

consuming tasks is that of computing the eigensystem of a large symmetric nonlinear

eigenvalue problem. The standard approach is to use an iterative scheme involving the

solution to a large symmetric linear eigenvalue problem in each iteration. In the early and

intermediate iterations, significant gains in efficiency may result from solving the

eigensystem to reduced accuracy. As the iteration nears convergence, the eigensystem

can be computed to the required accuracy.

Traditional real symmetric eigensolvers compute the eigensystem in three steps: 1)

reduce a dense matrix to a symmetric tridiagonal form using orthogonal transformations;

2) compute eigenpairs of the tridiagonal matrix; 3) back-transform eigenvectors of the

tridiagonal matrix to those of the original matrix. Stable and efficient eigen-

decomposition algorithms for symmetric tridiagonal matrix are under constant

investigation, while the performance of orthogonal reduction step remains a bottleneck.

The main contribution of this dissertation is an efficient parallel approximate

eigensolver that computes eigenpairs of a real symmetric matrix to reduced accuracy.

This eigensolver consists of three major parts: 1) a parallel block tridiagonal divide-and-

conquer algorithm that computes the approximate eigenpairs of a block tridiagonal matrix

to prescribed accuracy; 2) a parallel block tridiagonalization algorithm that constructs a

block tridiagonal matrix from a sparse matrix or “effectively” sparse matrix – matrix with

many small elements that can be regarded as zeros without affecting the prescribed

accuracy of the eigenvalues; 3) a parallel orthogonal block tridiagonal reduction

algorithm that reduces a dense real symmetric matrix to block tridiagonal form using

similarity transformations with a high ratio of level 3 BLAS operations. The parallel

approximate eigensolver chooses a proper combination of the three algorithms depending

on the structure of the input matrix and computes all the eigenpairs of the input matrix to

prescribed accuracy.

Numerical results show that the parallel block tridiagonal divide-and-conquer

algorithm is very efficient when at least a few off-diagonal blocks have a relatively low

 v

rank. With a very low computational cost, the parallel block tridiagonalization algorithm

constructs a block tridiagonal matrix from a sparse or “effectively” sparse input matrix.

The parallel orthogonal block tridiagonal reduction algorithm achieves high performance

due to high ratio of level 3 BLAS operations. Using a small block size for the parallel

orthogonal block tridiagonal reduction algorithm is a critical factor for competitive

performance when combined with the parallel block tridiagonal divide-and-conquer

algorithm.

 Our parallel approximate eigensolver has the limitation that the block tridiagonal

matrices, either as the input matrices or after pre-processing steps, should have off-

diagonal blocks with low rank, say 20 or less, or a very high ratio of deflation to achieve

satisfactory performance. In addition, large variation in deflation rate may lead to

workload imbalance, although such cases appear to be rare. Future work may include a

complete data parallel implementation of the block tridiagonal divide-and-conquer

algorithm and a parallel adaptive eigensolver that detects matrix structure automatically,

adjusts the accuracy requirement when necessary and chooses the proper algorithms to

solve the eigenproblem.

 vi

Table of Contents

1 Introduction and background.. 1

1.1 Problem statement.. 2
1.2 Application and motivation.. 3
1.3 Brief review of related work .. 5
1.4 General notation... 14
1.5 Outline of dissertation.. 16

2 Sequential algorithms for an approximate real symmetric eigensolver 17

2.1 Block tridiagonal divide-and-conquer (BD&C) algorithm.............................. 17
2.1.1 Subdivision ... 17
2.1.2 Solve subproblems .. 18
2.1.3 Synthesis ... 19
2.1.4 Computational complexity of BD&C ... 24

2.2 Transformation of “effectively” sparse matrix – block tridiagonalization (BT)
algorithm.. 24

2.2.1 The 6-step block tridiagonalization algorithm.................................. 25
2.2.2 Computational complexity of BT ... 31

2.3 Orthogonal block tridiagonal reduction of dense matrix (OBR) 33
2.3.1 Reduction using QR factorization... 34
2.3.2 Computational complexity of OBR .. 37
2.3.3 Relationship between panel width and block size 40
2.3.4 Back transformation.. 45

3 Parallel block tridiagonal divide-and-conquer (PBD&C) implementation....... 47

3.1 Data parallelism versus task parallelism.. 47
3.2 Parallel subdivision .. 52

3.2.1 Assign processors to submatrices ... 53
3.2.2 Distribute a matrix sub-block from one subgrid to another subgrid. 53

3.3 Parallel solution of subproblems.. 55
3.4 Parallel synthesis of solutions .. 55

3.4.1 Redistribution of data from two subgrids to a supergrid 56

 vii

3.4.2 Merging sequence ... 58
3.4.3 Deflation ... 65
3.4.4 Complexity of merging ... 69

4 Toward block tridiagonal matrix .. 74

4.1 Parallel block tridiagonalization (PBT) of “effectively” sparse matrix 74
4.1.1 1D column block matrix distribution for PBT.................................. 74
4.1.2 The 6-step PBT algorithm... 77
4.1.3 Complexity of PBT... 84

4.2 Parallel orthogonal block tridiagonal reduction (POBR) of dense matrix....... 85
4.2.1 Selection of block size b and panel width pb 87
4.2.2 Complexity of parallel orthogonal reduction.................................... 88

5 Numerical results .. 94

5.1 Test matrices .. 95
5.1.1 LAPACK/ScaLAPACK test matrices... 96
5.1.2 Application matrices ... 96
5.1.3 Random matrices .. 97

5.2 Test results for PBD&C subroutine PDSBTDC .. 102
5.3 Test results for POBR subroutine PDSBTRD ... 106
5.4 Test results for PBT subroutine PDSBTRI .. 107
5.5 Test of parallel approximate eigensolver ... 109

5.5.1 Structure of parallel approximate eigensolver 109
5.5.2 Numerical tests of parallel approximate eigensolver...................... 111

6 Conclusion ... 114

7 Future work... 116

Bibliography .. 118

Appendix.. 128

Vita…………………………………………………………………………………......143

 viii

List of Tables

Table 2.1 Worst-case time complexity of BT [4]. ... 33

Table 4.1 Computational and communication complexities of PBT............................... 85

Table 4.2 Computational and communication complexities of POBR for

reduction of one matrix column block bm n
iG ×∈ where bm n n i= − 90

Table 5.1 Cheetah system specifications and benchmarks [38]. 95

Table 5.2 Scaled eigenvalue error () ()A M Aλ λ− ... 109

Table A.1 Scaled eigenvalue error () ()A M Aλ λ− of PDSBTRI.. 140

 ix

List of Figures

Figure 1.1 Self-consistent field (SCF) procedure. ... 4

Figure 1.2 QR iteration. ... 7

Figure 1.3 Divide-and-conquer (D&C) algorithm. .. 10

Figure 1.4 Inverse iteration. ... 11

Figure 1.5 Multiple Relative Robust Representations (MRRR) algorithm. 12

Figure 2.1 Merging operations to accumulate eigenvectors. ... 20

Figure 2.2 Structure of Z from the first rank-one modification

in a merging operation. ... 22

Figure 2.3 Structure of Z from rank-one modifications after

the first one in a merging operation. ... 22

Figure 2.4 Lower and upper bound for deflation in the merging

operations with different types of eigenvalue distribution.

Matrix size 3,000n = with constant block size 10b =

and 410τ −= [43]... 23

Figure 2.5 Execution time with different deflation tolerances and ranks,

matrix size 3,000n = with constant block size 10b = [43]. 23

Figure 2.6 Transform a full symmetric matrix into a block tridiagonal matrix [4]. 25

Figure 2.7 A randomly permuted matrix A 26

Figure 2.8 A′ from global threshold of A , 610τ −= . .. 26

Figure 2.9 Permuted A′ using the GPS algorithm... 28

Figure 2.10 Permuted APPA T=′′ 28

Figure 2.11 Traverse elements along matrix off-diagonals [4].. 29

Figure 2.12 A′′ after target threshold, 6
1 10τ −= 29

Figure 2.13 Blocks that cover all nonzeros of A ′′′ ... 31

Figure 2.14 Block tridiagonal structure that covers all nonzeros. 32

Figure 2.15 Block tridiagonal structure after eliminating

entries (2,5), (3,5), (5,2) and (5,3). .. 32

Figure 2.16 Orthogonal factorization performed in column blocks. 34

 x

Figure 2.17 Reduction of the first panel. ... 35

Figure 2.18 Reduction of the second panel.. 35

Figure 2.19 Matrix A at the i-th stage of orthogonal reduction....................................... 36

Figure 2.20 Ratio of execution time and FLPINS of DSYRDB to DSYTRD.................. 39

Figure 2.21 Orthogonal reduction in the case of bp b= . .. 41

Figure 2.22 Orthogonal reduction in the case of bp b< . .. 41

Figure 2.23 Orthogonal reduction in the case of bp b> . .. 41

Figure 2.24 Ratio of level 3 BLAS operations in OBR with bp b= 45

Figure 3.1 A symmetric block tridiagonal matrix with 4 blocks of equal size. 48

Figure 3.2 Matrix M distributed for data parallelism.. 49

Figure 3.3 Matrix M distributed for task parallelism.. 49

Figure 3.4 Block tridiagonal matrix with q diagonal blocks. ... 51

Figure 3.5 Each diagonal block iB is assigned processor subgrid iG 51

Figure 3.6 Data distribution of block 1B on a 2 2× processor subgrid 1G 51

Figure 3.7 Matrix B distributed on 1D grid 1G .. 52

Figure 3.8 Matrix B distributed on 1D grid 2G . .. 52

Figure 3.9 Distribute a matrix block from one grid to another. 54

Figure 3.10 Merging tree and level of merging. .. 55

Figure 3.11 The first submatrix held by a 2 2× grid, the second

submatrix held by a 2 4× grid. ... 57

Figure 3.12 Two submatrices redistributed to a 3 4× supergrid. 57

Figure 3.13 A block tridiagonal matrix with 4 blocks of same block size. 59

Figure 3.14 Merging tree with different number of subproblems

on the left and right of the final merging operation. ... 61

Figure 3.15 Matrix Z before grouping – matrix point of view...................................... 67

Figure 3.16 Matrix Z before grouping – processor point of view.................................. 67

Figure 3.17 Group columns based on their structures – matrix point of view................. 68

Figure 3.18 Group columns based on their structures – processor point of view............ 68

 xi

Figure 3.19 Move deflated eigenvectors within processor column –

matrix point of view.. 70

Figure 3.20 Move deflated eigenvectors within processor column –

processor point of view... 70

Figure 4.1 Traverse off-diagonals block by block. ... 76

Figure 4.2 Matrix A distributed in column blocks... 76

Figure 4.3 Swaps of rows and columns in parallel matrix permutation. 79

Figure 4.4 A′′′ after separate lower and upper triangular eliminations............................ .81

Figure 4.5 Symmetrize A′′′ by adding back nonzeros. .. 81

Figure 4.6 Check matrix entries (2,5), (3,5), (5,2) and (5,3). ... 83

Figure 4.7 Rows in the eigenvector matrix Z for sensitivity analysis............................... 83

Figure 4.8 QR factorizations of column-blocks of a matrix. .. 86

Figure 4.9 Block tridiagonal matrix after orthogonal reduction. 86

Figure 4.10 Matrix A at the i-th stage of orthogonal reduction...................................... 88

Figure 4.11 Ratio of level 3 BLAS operation in POBR, block size of

parallel matrix distribution 32,64bn = ... 92

Figure 4.12 Theoretical speedup model of POBR. .. 93

Figure 5.1 10log of absolute value of matrix elements for

alkane C502H 1006 molecule, 3,014n = 98

Figure 5.2 Eigenvalue distribution of matrix in Fig. 5.1. .. 98

Figure 5.3 10log of absolute value of matrix elements for

linear polyalanine chain of length 200, 5,027n = . .. 99

Figure 5.4 Eigenvalue distribution of matrix in Fig. 5.3. .. 99

Figure 5.5 10log of absolute value of matrix elements for

silicon crystal molecule, 8,320n = 100

Figure 5.6 Eigenvalue distribution of matrix in Fig. 5.5. .. 100

Figure 5.7 10log of absolute value of matrix elements for

trans-PA molecule, 8,000n = 101

Figure 5.8 Eigenvalue distribution of matrix in Fig. 5.7. .. 101

 xii

Figure 5.9 Execution time of PDSBTDC relative to PDSYEVD

in log scale using P-geom matrices... 103

Figure 5.10 Maximum residual and orthogonality error for

PDSBTDC on P-geom matrices.. 103

Figure 5.11 Execution time of PDSBTDC relative to PDSYEVD

using P-arith matrices. .. 104

Figure 5.12 Maximum residual and orthogonality error of

PDSBTDC on P-arith matrices. .. 105

Figure 5.13 Execution time of PDSBTDC relative to PDSYEVD

using application matrix A-ala with different accuracy tolerance. 105

Figure 5.14 Speedup of PDSBTDC using matrix A-ala with tolerances
4 6 8 10 1210 ,10 ,10 ,10 ,10τ − − − − −= , matrix size 5,027n = 106

Figure 5.15 Relative execution time of PDSBTRD to PDSYTRD

using random matrices R-den. .. 107

Figure 5.16 Execution time of PDSBTRI using matrices

A-alk and A-tPA with 610τ −= ... 108

Figure 5.17 Structure of parallel approximate eigensolver.. 110

Figure 5.18 Relative execution times of approximate eigensolver to PDSYEVD

using matrices A-alk, A-ala, A-Si and A-tPA with 610τ −= 113

Figure 5.19 Relative execution times of approximate eigensolver to PDSYEVD

using matrices A-alk and A-Si with 410τ −= . For matrix A-Si, block

sizes are 16 and 32. ... 113

Figure A. 1 Execution of PDSBTDC using P-clu0 matrices, 610τ −= 129

Figure A. 2 Execution of PDSYEVD using P-clu0 matrices... 129

Figure A. 3 Execution of PDSBTDC using P-clu1 matrices, 610τ −= 130

Figure A. 4 Execution of PDSYEVD using P-clu1 matrices... 130

Figure A. 5 Execution of PDSBTDC using P-geom matrices, 610τ −= 131

Figure A. 6 Execution of PDSYEVD using P-geom matrices....................................... 131

Figure A. 7 Execution of PDSBTDC using P-arith matrices, 610τ −= 132

 xiii

Figure A. 8 Execution of PDSYEVD using P-arith matrices. 132

Figure A. 9 Execution of PDSBTDC using P-log matrices, 610τ −= 133

Figure A. 10 Execution of PDSYEVD using P-log matrices. 133

Figure A. 11 Execution of PDSBTDC using P-rand matrices, 610τ −= 134

Figure A. 12 Execution of PDSYEVD using P-rand matrices. 134

Figure A. 13 Execution of PDSBTDC using R-bt matrices, 610τ −= 135

Figure A. 14 Execution of PDSYEVD using R-bt matrices.. 135

Figure A. 15 Scaled residual 2

1, ,
2

ˆˆ ˆ
max

i i i

i n

Ax x

A

λ
=

−
=R of PDSBTDC using P-clu0,

P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices, 610τ −= 136

Figure A. 16 Departure from orthogonality
()

1, , 2
ˆ ˆmax T

ii n
X X I e

n
=

−
=O of PDSBTDC

using P-clu0, P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices,
610τ −= . .. 136

Figure A. 17 Scaled residual 2

1, ,
2

ˆˆ ˆ
max

i i i

i n

Ax x

A

λ
=

−
=R of PDSYEVD using P-clu0,

P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices. 137

Figure A. 18 Departure from orthogonality
()

1, , 2
ˆ ˆmax T

ii n
X X I e

n
=

−
=O of PDSYEVD

using P-clu0, P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices............... 137

Figure A. 19 Execution time of PDSBTDC and PDSYEVD using matrix A-ala. Matrix

size 5,027n = . Tolerance for PDSBTDC 4 6 8 10 1210 ,10 ,10 ,10 ,10τ − − − − −= 138

Figure A. 20 Execution time of PDSBTDC and PDSYEVD using P-arith matrix.

Matrix size 12,000n = . Tolerance for PDSBTDC
4 6 8 10 1210 ,10 ,10 ,10 ,10τ − − − − −= .. 138

Figure A. 21 Execution time of PDSBTRI with 410τ −= .. 139

Figure A. 22 Execution time of PDSBTRI with 810τ −= .. 139

 xiv

Figure A. 23 Execution time of PDSBTRD using R-den matrices................................ 141

Figure A. 24 Execution time of PDSYTRD using R-den matrices. 141

Figure A. 25 Execution time of parallel approximate eigensolver (PAE) and

PDSYEVD. ... 142

 xv

List of Notation

A Real symmetric matrix of order n

ijA (),i j -th submatrix of A

iB The i-th diagonal block of a block tridiagonal matrix, 1 i q≤ ≤

iC The i-th off-diagonal block of a block tridiagonal matrix, 1 1i q≤ ≤ −

D Real symmetric block diagonal matrix of order n

iD The i-th diagonal block of D , 1 i q≤ ≤

E Error matrix of order n

 iG The i-th subgrid assigned to the i-th diagonal block of a block tridiagonal

matrix, 1 i q≤ ≤

H Householder transformation matrix

I Identity matrix of order n

M Real symmetric block tridiagonal matrix of order n

P Permutation matrix of order n

Q Orthogonal transformation matrix

T Real symmetric tridiagonal matrix of order n

V Eigenvector matrix of M

X Eigenvector matrix of A

Λ Diagonal matrix of eigenvalues

Σ Diagonal matrix of singular values

ija (),i j -th element of matrix A

ib Size of a diagonal block iB , 1 i q≤ ≤

c Number of processor columns in a 2D processor grid

ie Vector with all zeros except that the i-th element is 1.

m Matrix rows . For real symmetric matrices, m n=

n Matrix columns

 xvi

List of Notation (continued)

bn Row and column block size for parallel 2D block cyclic distribution of

square matrices
p Number of processor

bp Panel width for column block operation

ip Number of processors in processor grid iG , 1 i q≤ ≤

q Number of diagonal blocks in real symmetric block tridiagonal matrix M

r Number of processor rows in a 2D processor grid

t Time complexity

α Start up time of a data transfer

β Time to transfer a double precision floating-point number

machε Machine precision

ijδ (),i j -th element of identity matrix, 1iiδ = and 0,ij i jδ = ∀ ≠

γ Time for one floating-point computation

iλ i-th eigenvalue of a matrix, 1 i n≤ ≤

iρ Approximate rank of iC , ()10 min ,i i ib bρ +≤ ≤

iσ i-th singular value of a matrix

τ Tolerance parameter, 0.1machε τ≤ <

 1

1 Introduction and background

To construct an efficient and flexible eigensolver for real symmetric matrices is a

challenging task because users with different backgrounds in the scientific community

have distinctive requirements.

 Practical applications generate real symmetric matrices of different kinds. For

example, dense versus sparse and structured versus non-structured. Requirements for the

matrix eigen-decomposition are also different. Some applications require only the

eigenvalues, and some require the full set of eigenvalues and eigenvectors, while still

others require only a few selected eigenpairs. In addition to the requirements from the

applications, current hardware capabilities may also limit how many eigenpairs are

computed and what eigen-decomposition algorithms are used.

In the first-principles calculation of electronic structures, the Schrödinger equation

 =H EΦ Φ (1.1)

is solved approximately. Here H is a Hermitian operator called the Hamiltonian, Φ is the

wave function of electrons, and E is the electronic energy. This equation is intrinsically

an eigenvalue problem because both Φ and E are unknown. The Schrödinger equation

contains all the necessary information of physical systems of particles. These systems

may have many electrons and nuclei whose interactions are often coupled. The study of

such a complex system is called many-body problem. Except for some very simple

systems like hydrogen atom, there is no way to get an exact solution for them.

 One of the widely used approximation methods for solving Equation 1.1 is called the

Hartree-Fock method. In this method, the many-electron system is approximated by an

effective one-electron system, where all other electrons are considered as effective

background. The many-body problem is thus reduced to a single-body problem [71]. The

resultant Hartree-Fock equation is a non-linear integro-differential equation containing

the desired unknown energy levels and wave functions. This equation is further converted

into a non-linear symmetric eigenvalue problem and solved by an iterative procedure

 2

called the self-consistent field (SCF) method (see Section 1.2 for details). In each

iteration of the SCF procedure, a linear real symmetric eigenvalue problem is solved. In

early and intermediate iterations, it may be more efficient to compute the eigenpairs to

reduced accuracy [91]. As the SCF iterations near convergence, eigenpairs are computed

to the required accuracy.

As the size of the system to be modeled and the requirements for the resolution of

answers increase, the magnitude of the computational problem increases significantly.

Solutions can soon only be obtained through the use of parallel and distributed

computation, which in turn requires either parallelization of sequential algorithms or

design of new parallel algorithms.

The goal of this dissertation is to develop an efficient parallel approximate eigensolver

for real symmetric matrices that chooses appropriate algorithms according to different

matrix structures and user-specified parameters such as accuracy tolerance.

1.1 Problem statement

For a real symmetric matrix n nA ×∈ and an accuracy toleranceτ , we design and

implement an efficient parallel approximate eigensolver that computes the approximate

eigenpairs of A to the prescribed accuracy tolerance τ bounded by 0.1machε τ≤ < . That

is, we compute X and Λ such that

 TA X X≈ Λ

where X contains the approximate eigenvectors, the diagonal matrix Λ contains the

approximate eigenvalues, X and Λ satisfy

()22

TA X X O Aτ− Λ = ,

and X is numerically orthogonal, i.e.,

() ()
2

max , 1 .T
i machXX I e O n i nε− = ≤ ≤

When high accuracy is required, an existing reliable eigensolver like those found in

ScaLAPACK [13] will be used; when lower accuracy suffices, then other algorithms

 3

based upon the block tridiagonal eigensolver [43] may be more efficient. Thus, a major

task for our parallel approximate eigensolver is to construct a symmetric block

tridiagonal matrix

1 1

1 2 2

2 3

1

1

T

T

T
q

q q

B C
C B C

M C B
C

C B
−

−

 =

,

which is an approximation to A , and to compute approximate eigenpairs of M efficiently.

The construction of M is implemented either by orthogonal transformations or by

alternative methods, depending on properties of A and the required accuracy.

1.2 Application and motivation

In quantum chemistry, material science and physics, electronic properties determine the

structure-property relationship of a specific material and are fully contained in the

electronic wave functions. The wave function of an electron in a molecule is called the

molecular orbital. These wave functions are fundamentally difficult to obtain. Different

approximation methods have been developed to compute electronic wave functions by

solving the Schrödinger equation (Equation 1.1) approximately, e.g., the Hartree-Fock

method [91, 17], density functional method [62, 78], and perturbation method [70]. Each

of those methods is appropriate for a specific application area. An important one of those

methods is the Hartree-Fock self-consistent method, which is used for electronic structure

calculations in quantum chemistry, condensed matter physics, optics, etc. Since the

Hartree-Fock equation is a non-linear differential equation, a molecular orbital is

expanded in terms of a linear combination of a set of basis functions, so that the Hartree-

Fock equation can be represented in matrix form. The resultant equation is called the

Roothaan equation [91],

()F C C SC= E , (1.2)

 4

where ()F C , C , S and E are the Fock matrix, the eigenvector matrix, the overlap

matrix between basis functions, and the diagonal matrix of eigenvalues, respectively.

The eigenvector matrix contains the coefficients for the wave functions, and the

eigenvalues are electronic energies. The matrix S is positive definite.

 To compute the coefficients for the wave functions that best describe molecular

orbitals, one needs to solve the Roothaan equation, typically by the self-consistent field

(SCF) method as shown in Figure 1.1. In the SCF procedure, Equation 1.2 is first reduced

to a standard non-linear real symmetric eigenvalue problem

 F C C′ ′ ′= E , (1.3)

where 1 () TF U F C U− −′ = , TC U C′ = and U comes from a factorization of the overlap

matrix TS UU= . Then Equation 1.3 can be solved iteratively until convergence (or self-

consistency) is achieved. In each iteration, after C′ is computed, a new F ′ is computed

as a function of C′ ; thus, a new Equation 1.3 is solved.

One criterion that can be used for convergence is the total electronic energy of each

iteration, i.e., the difference between the total electronic energies of two successive

iterations should be bounded by a prescribed tolerance. For a system with N electrons,

 1

SCF Procedure
1)
2)
3)

3.1) :
3.2)
3.3)
3.4)
3.5) , ,

T

T

T

T

Initial guess of wave functions C
Factorize overlap matrix S UU
do

Normalize Fock matrix F U FU
Compute C U C
Solve F C C
Compute new C U C
If not converge construct new F got

− −

−

=

′ =

′ =
′ ′ ′=

′=

E

3.1.o

 Figure 1.1 Self-consistent field (SCF) procedure.

 5

this total electronic energy equals
2

,
1

2
N

i i
i=
∑E if N is even, and () ()

()1 2

, 1 2, 1 2
1

2
N

i i N N
i

−

+ +
=

+∑ E E if

N is odd. Theoretically, in order to guarantee an exact solution of wave functions, the

number of basis functions must be infinite. Practically, only a finite number of basis

functions can be used. The size of the matrix generated is determined by the number of

bases. For N electrons in a molecule, at least N basis functions are needed to represent

the molecule. As the number of molecules and electrons to be modeled increases, the

number of bases becomes larger, and so does the corresponding matrix size. Thus, a

� � 荊� 鍨먒� �脈 �� 愁� ℀n the SCF method is to solve large symmetric eigenvalue

problems efficiently in each iteration.

We will use the SCF method in electronic structure calculations as our model problem.

The sizes of our test matrices from quantum physics and chemistry range from moderate

to large. Also, random matrices and matrices with specific eigenvalue distributions will

be generated for testing specific properties of the eigensolver and very large problems.

1.3 Brief review of related work

Real symmetric eigenvalue problems have been studied intensively and extensively [26,

49, 77, 96]. Different algorithms have been developed for solving effectively and

efficiently problems with different properties and requirements, such as dense matrices,

sparse matrices, full spectrum required, or partial eigensystem required.

As the processors manufactured today become more powerful, the gap between CPU

speed and memory access time has become much greater. To minimize this effect,

algorithms have been reconstructed to take advantage of the deep memory hierarchy of

modern computers and distributed data storage in parallel computers. For example,

numerical software packages like LAPACK [1] and ScaLAPACK [13] implement linear

algebra software using blocked algorithms to increase the number of floating-point

operations per data access by maximizing the use of level 3 BLAS operations. References

are made to such algorithms below as current algorithms are briefly described.

Traditional real symmetric eigensolvers for dense matrices decompose a real

 6

symmetric matrix in three steps:

1) Reduce a dense matrix into a symmetric tridiagonal form using orthogonal

 transformations.

 LAPACK currently implements the reduction in one step [35]. First, a sequence of

 k Householder transformations is computed and accumulated, which involves

 matrix-vector multiplications, that is, level 2 BLAS operations [34]. Then the rest of

 the matrix A is updated using a symmetric rank-2k update, which is a level 3

 BLAS operation [33]. The level 2 BLAS operations count for about 50% of the total

 floating-point operations in the reduction to tridiagonal form.

 Successive Bandwidth Reduction (SBR) [8, 12, 11] implements the reduction in

 two steps. First, a dense matrix is reduced to a banded form using mostly level 3

 BLAS operations, and then the banded matrix is reduced to tridiagonal form using

 mostly level 2 BLAS operations. This approach has a more favorable data access

 pattern and a higher ratio of level 3 BLAS operations. However, the total amount of

 floating-point operations of SBR is higher than that of the LAPACK reduction

 algorithm. In addition, when the eigenvectors are required, the back transformation

 from SBR results in more storage space and higher computational complexity.

2) Compute eigenpairs of the tridiagonal matrix.

 Let n nT ×∈ be a real symmetric tridiagonal matrix; some of the frequently used

 algorithms for computing its eigensystem are described below:

 2.1) Symmetric QR iteration with shift [40] as shown in Figure 1.2 is a

 stable method and still commonly used to compute all eigenpairs of T . The

 computational complexity of the symmetric QR algorithm for computing all

 eigenvalues and eigenvectors is ()3O n .

 The shift in the QR iteration is used to speed up the convergence [97]. The

 algorithm is typically implemented in an implicit form using a double shift,

 avoiding the potential numerical error and complex arithmetic in the above

 7

0

1

1, 2,

k

k k k k

k k k k

T T
for k

choose shift
compute QR factorization

Q R T I
T R Q I

end

µ

µ
µ

−

=
=

= −
= +

…

 Figure 1.2 QR iteration.

 formulation [84].

 The QR algorithm is sequential in nature. Parallel implementations

 of the QR algorithm have been developed in an attempt to exploit more

 parallelism [3, 61, 63, 93, 69], for example, by adjusting the sequential

 algorithm [93] or by pipelining the computation [63].

 2.2) The Divide-and-conquer algorithm [16, 24, 48, 87, 92] is typically more than

 twice as fast as the symmetric QR [92] and also computes all eigenvalues and

 eigenvectors of a symmetric tridiagonal matrix. The computational complexity

 of the divide-and-conquer algorithm is also ()3O n in the worst case.

 The matrix order of the problem is reduced by re-writing T as

 1

2

TT O
T uu

O T
δ

= +

,

 where 1 1 1T n n∈ × and 2 2 2T n n∈ × are tridiagonal matrices, 1 2n n n+ = ,

1 11,n ntδ += and

1 2

0, 0,1,1,0, ,0
n n

u

 =

. We then compute the eigen-

 decomposition of the smaller subproblems 1T and 2T to obtain 1 1 1 1
TT Q Q= Λ and

 2 2 2 2
TT Q Q= Λ . Now, we have

 8

 1 1 1

2 2 2

T
T

T

Q Q O
T uu

O Q Q
δ

 Λ
= + Λ

 ()1 1

2 2

T
T

T

Q O Q O
D yy

O Q O Q
δ

= +

,

 where 1

2

D
Λ

= Λ
 and 1

2

T

T

Q O
y u

O Q

=

. To decompose TD yyδ+ into

 TV VΛ , the eigenvalues Λ of TD yyδ+ can be computed by solving the secular

 equation ()
2

1
1 0

n
j

j j

y
f

d
λ δ

λ=

= + =
−∑ efficiently and stably [66, 72].

 For a computed eigenvalue îλ , its corresponding eigenvector îv can be

 computed by

()
()

1

1

2

ˆ
ˆ

ˆ
i

i

i

D I y
v

D y

λ

λ

−

−

−
=

−
. (1.4)

 However, with close eigenvalues, eigenvectors computed with this formula will

 lose their orthogonality [89, 24]. Fortunately, there is a numerically stable

 method to compute the orthogonal eigenvectors without using extended

 precision [52, 51]. First, the computed eigenvalues îλ are taken as the exact

 eigenvalues of another matrix TD yyδ+ . Each component of y can be

 computed by

 ()
1

ˆ
ˆ

n
j i

i i i
j j i
j i

d
y d

d d
λ

λ
=
≠

−
= −

−∏ . (1.5)

 Then vector y in Equation 1.4 is replaced by y in Equation 1.5, and the

 9

 eigenvectors of TD yyδ+ are computed by

()
()

()

1

1

2

1

1

2

2
1

ˆ
ˆ

ˆ

, ,ˆ ˆ
.

ˆ

i
i

i

T

n

i n i

n
j

j
j i

D I y
v

D y

yy
d d

y

d

λ

λ

λ λ

λ

−

−

=

−
=

−

− − =

−
∑

 The eigenvector matrix of T can then be computed by 1

2

Q
Q V

Q

=

, with

 the eigenvalues on the appropriate diagonals of Λ .

 In this recursive algorithm as shown in Figure 1.3, the matrix T is divided

 into submatrices recursively until the submatrices are small enough to be

 solved quickly using other stable methods.

 The divide-and-conquer algorithm is considered inherently parallel. However,

 its parallel implementation is a challenging task [36, 44, 58, 92]. One needs to

 handle deflation (see Section 2.1.3) properly to minimize floating-point

 operation count and communication cost and maintain workload balance,

 all at the same time [92].

 2.3) Bisection and Inverse iteration [49] is able to compute selected eigenpairs of

 T . The worst-case computational complexity is ()3O n when all eigenpairs are

 computed.

 Define the polynomial)det()(ITp rr µµ −= [49], where nr ,,2,1= and

 (1: ,1:)r r rT T= . Set 0 () 1p µ = , 1 1,1()p tµ µ= − . For nr ,,3,2= ,)(µrp can be

 expressed recursively as 2
, 1 , 1 2() () () ()r r r r r r rp t p t pµ µ µ µ− − −= − − .

 10

[] ()

[] ()
[] ()

[]

1

2

1 1 1

2 2 2

1

2

1

2

, &

, &

, &

,

,

T

T

T

T T

subroutine Q D C T
if T is small

solve T V V
return

else
T O

T uu
O T

Q D C T

Q D C T

construct D yy D

decompose D yy V V
Q

compute Q V
Q

return Q
end

δ

δ

δ

Λ =

= Λ

= +

Λ =

Λ =

Λ
+ = Λ

+ = Λ

=

Λ

 Figure 1.3 Divide-and-conquer (D&C) algorithm.

 The sequence { }0 1(), (), , ()np p pµ µ µ forms a Sturm sequence of

 polynomials; the root of)(µnp can be found in)(2nO time complexity

 using the bisection method [47].

 After an eigenvalue λ has been computed by the bisection method, the

 corresponding eigenvector can be computed by inverse iteration [80, 57, 59] as

 shown in Figure 1.4.

 Reorthogonalization is required to compute orthogonal eigenvectors when

 the eigenvalues form a tight cluster, i.e., the gap between any two eigenvalues

 in the cluster is small [77]. That may lead to ()3O n computational complexity

 in the worst case.

 11

(0)

(1) ()

(1) (1) (1)

1,2,
()

/

k k

k k k

v b
for k

solve T I v v

v v v

end

λ +

+ + +

=
=

− =

=

…

 Figure 1.4 Inverse iteration.

 In parallel implementation, sometimes a multisection algorithm is used to

 compute the eigenvalues [6, 69]. When eigenvalues are well separated, then the

 eigenvectors can be computed independently without communication. For

 clustered eigenvalues, reorthogonalization may be necessary and involves

 significant communication if those eigenvectors are not on the same processor.

 2.4) The Multiple Relatively Robust Representations (MRRR) algorithm

 [29, 30, 32] typically computes all the eigenvectors in ()2O n time without

 explicit reorthogonalization.

 First a relatively robust representation of T is computed in the form of

 TT I LDLµ+ = where T Iµ+ is positive definite. Based on the fact that

 eigenvalues are less sensitive to perturbations in off-diagonal entries of a

 bidiagonal matrix [76, 39], the eigenvalues of T can be computed to high

 relative accuracy using this representation. For clustered eigenvalues, a new

 shift that is close to the clustered eigenvalues is used to compute a new

 relatively robust representation [31, 75]. A twisted factorization [29, 31] is

 computed to find which equation of the near singular system ()ˆ ˆ 0T I vλ− = is

 to be neglected so that an accurate eigenvector can be calculated. Finally,

 differential variants of the quotient-difference algorithm [39, 85, 86] is used to

 compute both the accurate eigenvalues and numerically stable twisted

 factorizations. Figure 1.5 shows the important steps in the MRRR algorithm.

 12

:

*

T
p p p

T
p p p

Choose shift for an RRR
Compute RRR T I L D L

Compute eigenvalues from L D L to high accuracy

if eigenvalues are isolated
for each isolated eigenvalues

compute twisted factorization
find the equation to neglect
compute eigen

µ

µ+ =

*

vectors
end

else
compute new RRR for clustered eigenvalues
goto

end

 Figure 1.5 Multiple Relatively Robust Representations (MRRR) algorithm.

 MRRR algorithm usually does not require reorthogonalization to compute

 orthogonal eigenvectors corresponding to a group of clustered eigenvalues. In

 addition, each eigenvector can be computed independently, which enables a

 coarse-grained parallelization [7].

 3) Back transform eigenvectors of the tridiagonal matrix to those of the original matrix

 through matrix multiplications.

 Orthogonal transformation matrices can either be accumulated during the process

 of reduction, or constructed after the reduction has been completed. Given a group

 of Householder vectors 1 2, , , n
kv v v ∈… , the corresponding orthogonal matrix of

 Householder transformations 1 2 kH H H H= can be represented as TH I WY= −

 where , n kY W ×∈ [10], or as TH I YRY= − where n kY ×∈ and k kR ×∈ is upper

 triangular [88]. LAPACK and ScaLAPACK use TH I YRY= − representation for

 back transformation, while SBR uses TH I WY= − representation.

 13

All of the above algorithms successfully compute eigenpairs of real symmetric

matrices to full accuracy. They have both sequential and parallel implementations. In

efficient implementations, blocked algorithms are used whenever possible [1, 2, 13, 20].

Some other algorithms with inherent parallelism, such as the Homotopy method [22, 65,

67, 68, 73, 74] and the invariant subspace methods [54, 55, 5], have also attracted broad

interest.

In our research, we pay attention not only to the blocked implementation of algorithms,

but also to the blocked structure of the input matrix itself to reduce further the overhead

of data access. Different algorithms are chosen based upon matrix structure and accuracy

requirement provided by the user. The kernel of our approach is to parallelize the

symmetric block tridiagonal divide-and-conquer (BD&C) eigensolver [42, 43], which

computes approximate eigenpairs of a real symmetric block tridiagonal matrix directly,

that is, not requiring any further reduction to a condensed form. Consequently, we handle

input matrices according to the following classification:

1) Block tridiagonal matrices. A parallel BD&C eigensolver is implemented for the

 decomposition of such matrices. This parallel eigensolver computes the full

 spectrum of a real symmetric matrix up to a prescribed accuracy.

 2) Dense matrices. For parallel eigen-decomposition of a dense matrix, ScaLAPACK

 subroutines can be used to compute eigenpairs to full accuracy efficiently. If lower

 accuracy is required, an alternative approach is likely to be more efficient. Earlier

 investigations [12, 11] have shown that reducing a full matrix to a banded matrix

 can be implemented using level 3 BLAS operations. By contrast, if we directly

 reduce a full matrix to a tridiagonal one [35], only half of the operations can exploit

 the high performance of level 3 BLAS operations. We extend this concept in that we

 first reduce a full matrix to a block tridiagonal form using orthogonal

 transformations, and then decompose the block tridiagonal matrix using the parallel

 BD&C eigensolver.

3) Sparse matrices. Reordering algorithms have been developed to reduce the

 bandwidth of an unstructured sparse matrix. Based on the permuted matrix, we may

 14

 determine a block tridiagonal structure on which we can apply the parallel BD&C

 eigensolver [4]. Note that the sparse matrix structure here can also be a dense matrix

 that is “effectively” sparse, meaning that although most of the matrix elements are

 nonzeros, many of them can be considered zero within the user-specified accuracy

 requirements of the eigenvalues. The concept of “effectively” sparse matrix is

 applicable to matrices with larger elements close to the diagonal and smaller

 elements away from the diagonal, which reflects a locality principle that frequently

 occurs in physical applications.

 The parallel approximate eigensolver first determines what algorithm will be used to

transform the matrix into block tridiagonal form depending on whether the input matrix

has some structure or not. Then, the block tridiagonal matrix is decomposed using the

parallel BD&C eigensolver.

1.4 General notation

Symbols that will be used consistently throughout this dissertation in all sections are

listed on pages xv – xvi. Symbols used only in one specific section will be defined in

their context when they are used.

Throughout this dissertation, matrices are denoted by uppercase letters. For example, A

denotes a real symmetric matrix and TA denotes the transpose of matrix A . The (),i j -th

element of matrix A will be represented by ija . A submatrix of A containing columns

1j to 2j and rows 1i to 2i will be denoted using the Matlab notation ()1 2 1 2: , :i i j jA . The j -th

column of A will be denoted by ja . ijA will represent the (),i j -th submatrix of A . The

identity matrix will be denoted by I . The (),i j -th element of I is given by ijδ , with

0ijδ = , i j∀ ≠ and 1iiδ = .

 15

Vectors are denoted by lower case letters such as v . The i -th element of v will be

denoted by iv .
1

0, ,0,1,0, ,0
T

k
k n k

e
− −

=

… … will represent the vector with its k -th element

having the value 1.

Lower case letters p , r and c will be used to denote the number of processors and the

corresponding processor rows and columns in a processor grid. Letters m , n will be

reserved for matrix sizes, and q will be used to denote the number of diagonal blocks of

a block tridiagonal matrix.

Lower case Greek letters denote scalars. Eigenvalues of a real symmetric matrix of

order n will be denoted by 1λ , 2λ , , etc., with 1 2 nλ λ λ≤ ≤ ≤ . Similarly, singular

values of a matrix will be denoted by 1σ , 2σ , , nσ , but sorted in descending order.

The diagonal eigenvalue matrix will be denoted by Λ , while the singular value matrix by

Σ .

A tilde over a symbol denotes the modified value of that quantity, while a circumflex

over a symbol denotes a computed value. For example, TA A vu= + implies that A is a

rank-one update of A , and îλ represents a computed approximate eigenvalue in contrast

to an exact eigenvalue iλ . α represents scalar α rounded up to the nearest integer,

and α represents scalar α rounded down to the nearest integer.

denotes the set of real numbers, and m n× denotes the set of m n× real matrices.

Unless explicitly specified otherwise, all matrices are of size n n× and all vectors are of

size n .

Finally, since the terms “floating-point operations” and “floating-point operations per

second” are used frequently to quantify computational complexity and performance of an

implementation, respectively, we use flops to represent “floating-point operations”, and

FLOPS to represent “floating-point operations per second”.

 16

1.5 Outline of dissertation

This dissertation is organized as follows:

1) In Section 2, essential sequential algorithms for an approximate real symmetric

 eigensolver are reviewed. The block tridiagonal divide-and-conquer algorithm

 computes the full spectrum of a block tridiagonal matrix to prescribed accuracy. The

 orthogonal block tridiagonal reduction algorithm reduces a real symmetric dense

 matrix to block tridiagonal form using orthogonal transformations. The block

 tridiagonalization algorithm re-constructs an “effectively” sparse matrix into block

 tridiagonal form.

2) In Section 3, issues in design and implementation of parallel block tridiagonal divide-

 and-conquer eigensolver are discussed in detail. Analyses of complexities in

 computation and communication are given for understanding of performance and

 scalability.

3) In Section 4, parallel pre-processing algorithms of dense matrices and their

 implementations are presented. The purpose of those pre-processing steps is to

 construct a block tridiagonal matrix that is similar to the original dense matrix.

4) In Section 5, numerical results for the parallel approximate eigensolver and its major

 components are presented. A flow chart of major steps in the approximate eigensolver

 shows the criteria for choosing different algorithms depending on user specified

 requirements. Test matrices include those from applications in quantum chemistry

 and physics, random matrices, and matrices with specific eigenvalue distributions.

5) Finally, in Sections 6 and 7, we summarize results in this dissertation and discuss how

 some of our work can be further developed and improved.

 17

2 Sequential algorithms for an approximate real symmetric

eigensolver

As mentioned above, a parallel version of the block tridiagonal divide-and-conquer

(BD&C) eigensolver with its ability to compute approximate eigensystems will be a key

algorithm of our approximate eigensolver. We may also need pre-processing algorithms

to obtain the necessary block tridiagonal structure if the input matrix does not initially

possess such a structure. The sequential versions of these algorithms are reviewed below.

2.1 Block tridiagonal divide-and-conquer (BD&C) algorithm

Given a block tridiagonal matrix n nM R ×∈ and an accuracy tolerance 0.1machε τ≤ <

where machε is the machine precision, the BD&C algorithm computes eigenpairs of M to

the prescribed accuracy τ :

1 1

1 2 2

2 3

1

1

T

T

T
q

q q

B C
C B C

M C B
C

C B
−

−

 =

 ≈ VΛVT,

where q is the number of diagonal blocks, V is an approximation to the eigenvectors of

M and Λ is a diagonal matrix containing approximations to the eigenvalues of M , so

that ()22

TM V V O Mτ− Λ = and V is numerically orthogonal.

There are three major steps in the BD&C algorithm [43]: subdivision, solution of

subproblems and synthesis of solutions.

2.1.1 Subdivision
The off-diagonal blocks iC of sizes 1i ib b+ × are approximated by lower rank matrices

using their singular value decompositions:

1

i
i i i T T

i j j j i i i
j

C u v U V
ρ

σ
=

≈ = Σ∑ ,

 18

where iρ is the chosen approximate rank of Ci based on the accuracy requirement,

1i ib
iU ρ+ ×∈ is the orthogonal matrix containing the first iρ left singular vectors,

i ib
iV ρ×∈ contains the first iρ right singular vectors, iΣ is the diagonal matrix that

contains the largest iρ singular values of iC , and 1,2, , 1i q= − .

Using the above factorizations, the block tridiagonal matrix M can now be represented

as an updated block diagonal matrix as follows:

1

1

q
T

i i
i

M M WW
−

=

= + ∑ , (2.1)

where { }1 2, , , qM diag B B B= ,

1 1 1 1 1

1 1 1

1 1 1

,

, for 1,

,

T

T T
i i i i i i i i

T
q q q q q

B B V V

B B U U V V i q

B B U U
− − −

− − −

= − Σ

= − Σ − Σ 2 ≤ ≤ −

= − Σ

1/ 2
1 1

1/ 2
1 1

1 0
0

V
U

W

 Σ

Σ =

,
1/ 2

1/ 2

0

0

i i
i

i i

V
W

U

 Σ =
 Σ

 for 2 2i q≤ ≤ − , and 1/ 21
1 1

1/ 2
1 1

0
0

q
q q

q q

W
V
U

−
− −

− −

 =
 Σ
 Σ

.

2.1.2 Solve subproblems
Each diagonal block iB~ is factorized:

 ,T
i i i iB Z D Z= for 1,2, ,i q= , (2.2)

from which we obtain

 TM ZDZ= , (2.3)

where

 1 2{ , , , }qZ diag Z Z Z= is a block diagonal orthogonal matrix, and

1 2{ , , , }qD diag D D D= is a diagonal matrix.

Note that traditional algorithms may be applied to compute the eigen-decomposition of

the diagonal blocks. Typically, the number of diagonal blocks q in a block tridiagonal

matrix is much greater than 2 and the block sizes ib are small compared to the matrix

 19

size n . Thus, the eigen-decomposition of each subproblem iB in Equation 2.2 involves

only a diagonal block, which yields better data access time pattern than traditional

decomposition methods on the much larger full matrix.

2.1.3 Synthesis
From Equations 2.1 and 2.3 we have:

1

1

()
q

T T
i i

i

M Z D YY Z
−

=

= + ∑ , (2.4)

where T
i iY Z W= .

Denoting
1

1

q
T

i i
i

S D YY
−

=

= + ∑ and
1

1

q

i
i

ρ ρ
−

=

= ∑ in the synthesis step, S is represented as a

sequence of ρ rank-one modifications of D. The iρ rank-one modifications

() ()1,2, , and 1,2, , 1
Ti i

j j iD y y j i qρ+ = = − corresponding to an off-diagonal block

iC are called one merging operation, where { }i
jy are the vectors that determine iY . Thus,

the algorithm performs a total of 1q − such merging operations. For each rank-one

modification of the i-th merging operation, the modified matrix is first decomposed:

() ()T Ti i i i i
j j j j jD y y V V+ = Λ , and the eigenvector matrix from this decomposition is then

multiplied onto the accumulated eigenvector matrix starting with the block diagonal

eigenvector matrix Z . The accumulation of an intermediate eigenvector matrix for each

rank-one modification involves matrix-matrix multiplications. Figure 2.1 illustrates a

possible merging sequence of a matrix with four blocks. The shaded areas are eigenvector

matrix blocks.

Deflation happens when there is either a zero (or small) component in i
jy or two equal

(or close) elements in D [24, 36]. If the k -th component in i
jy is zero, then the k -th

diagonal kd of D is an eigenvalue of ()Ti i
j jD y y+ and the corresponding eigenvector is

the identity vector ke . If there are two equal elements on the diagonal of D , Givens

 20

 Figure 2.1 Merging operations to accumulate eigenvectors.

Z1

Z2

Z3

Z4

 Z12

 Z34

 Z1234

 21

rotation is used to zero out one of the corresponding element in i
jy , and corresponding

eigenpairs can be computed as the former case. When deflation occurs, no computation is

required to compute and accumulate the corresponding eigenvector. Further, a

permutation matrix P is used to move the deflated components of i
jy to the bottom of

i
jy :

1

1
()

q
T T T T T T T T

i i
i

M ZG P P PPG D YY G P P PPGZ
−

=

= + ∑ ,

so that columns in T TZ ZG P= are re-grouped according to their structure [50, 92]. The

structure of T T TZ ZG P P= from the first rank-one modification of a merging operation is

shown in Figure 2.2, and that from the rank-one modifications after the first one is shown

in Figure 2.3.

The deflation criteria can be relaxed if the accuracy tolerance is greater than full

accuracy. Under this condition, the synthesis step also involves approximations. As

shown in Figure 2.4 [43], the percentage of deflation increases drastically as the blocks in

the accumulated Z matrix become larger.

 Moreover, the approximate rank of the off-diagonal blocks in the first step of BD&C

typically becomes smaller as the accuracy requirement becomes lower, which also

reduces the computational complexity. Those two factors lead to high efficiency of the

BD&C algorithm as accuracy decreases as demonstrated on a random block tridiagonal

matrix in Figure 2.5 [43].

 A merging operation is a balanced one if the sizes 1b and 2b of the two blocks to be

merged are approximately the same, i.e., 1 2b b≈ . If 1 2b b or 1 2b b , then the merging

operation is an unbalanced one. It has been shown that the time complexity for the most

unbalanced merging operation is less than that for the most balanced one but with a

higher rank – even an increase in rank of only one [43]. Therefore, a block tridiagonal

structure is preferred that allows for low rank modifications in the final merging

operation, regardless of the relative sizes of the blocks being merged. In our parallel

approximate eigensolver, advantage is taken of this fact whenever possible.

 22

 Figure 2.2 Structure of Z from the first rank-one modification
 in a merging operation.

 Figure 2.3 Structure of Z from rank-one modifications after
 the first one in a merging operation.

 0

 0

 D
ef

la
te

d
 P

ar
t

 D
ef

la
te

d
 P

ar
t

 23

 Figure 2.4 Lower and upper bound for deflation in the merging
 operations with different types of eigenvalue distribution.
 Matrix size 3000n = with constant block size 10b =
 and 410τ −= [43].

 Figure 2.5 Execution time with different deflation tolerances and ranks,
 matrix size 3000n = with constant block size 10b = [43].

T B
D

&
C

 /
T D

SY
EV

D

 24

2.1.4 Computational complexity of BD&C

Assume that matrix n nM ×∈ is a real symmetric block tridiagonal matrix with q

diagonal blocks, n is divisible by q and each block has the same size b n q= . To

simplify the time complexity analysis, we further assume that each off-diagonal block has

the same rank ρ .

For the BD&C algorithm, if deflation is not counted, the dominant part of the

computational time is the matrix multiplications to accumulate eigenvectors during the

merging operations; the complexity of all other computations, i.e. solving secular

equations, computing eigenvectors, is 2()O n or less. Therefore, the leading term in the

computational complexity of BD&C (i.e., matrix multiplications) is

log 1

3
&

0

1 12
2 4

iq

BD C
i

flops nρ
−

=

 = −

∑

 3
2

8 1 11
3 2

n
q

ρ
 = − −

 ()3 3 28 4
3 3

n n O b nρ ρ≈ − + (2.5)

2.2 Transformation of “effectively” sparse matrix – block

tridiagonalization (BT) algorithm

Most matrices generated in real applications do not have a block tridiagonal structure;

however, many may be sufficiently approximated by one. Given a full symmetric matrix
n nA R ×∈ and an accuracy tolerance 0.1machε τ≤ < , A is called “effectively” sparse if

many of the nonzeros of A may be set to zero without perturbing the eigenvalues of A

more than Aτ . The 6-step heuristic Block Tridiagonalization (BT) algorithm [4] has

been developed to transform a full matrix that is “effectively” sparse into a sparse matrix

and then find a block tridiagonal structure for the sparse matrix as shown in Figure 2.6.

 25

11 12 13 14 1 11 13

21 22 23 24 2 22 23 24

31 32 33 34 3 31 32 33 3

41 42 43 44 4 42 44

1 2 3 4 3

1 1

1

0 0 0
0 0

0
0 0 0

0 0 0

n

n

n n

n

n n n n nn n nn

T

a a a a a a a
a a a a a a a a
a a a a a a a a a

A
a a a a a a a

a a a a a a a

B C
C B

= ⇒

⇒
2 2

2 3

1

1

T

T
q

q q

C
MC B

C
C B

−

−

 =

 Figure 2.6 Transform a full symmetric matrix into a block tridiagonal matrix [4].

 The BT algorithm partitions τ into two parts, 21 τττ += , allowing a portion of the

acceptable error to be used for different steps in the algorithm. The algorithm is described

below.

2.2.1 The 6-step block tridiagonalization algorithm
 Step 1. Global threshold A with Aτ

 We start with a threshold τ τ′ = , larger than permitted by the accuracy requirement,

and obtain matrix A′ by eliminating all elements in A less than Aτ . For many

matrices resulting from modeling physical phenomena with strong locality properties,

most of the elements will be eliminated. The resultant matrix A′ will contain only the

largest elements of A and would hopefully be sparse. We start with a randomly permuted

matrix shown in Figure 2.7 as an example. Figure 2.8 shows A′ as the resultant matrix

from a global threshold of A . The vertical color bar to the right of the matrix indicates

the magnitudes of the matrix elements by color; that is, matrix elements whose

 26

 Figure 2.7 A randomly permuted matrix A .

 Figure 2.8 A′ from global threshold of A , 610τ −= .

 27

magnitudes are of order 1 or larger are essentially black, while elements with smaller

magnitudes go from black to red, then to yellow and finally to white.

 Step 2. Reorder A′

In this step, A′ is reordered to reduce its bandwidth using the Gibbs-Poole-Stockmeyer

(GPS) algorithm [46, 64, 23]. Thus, the elements of A′ are moved closer to the diagonal.

Figure 2.9 shows that the bandwidth of A′ has been greatly reduced after the

permutation. The permutation matrix P accomplishing this task is obtained and will be

used in Step 3.

 Step 3. Permute A with permutation matrix P from Step 2

The permutation matrix P computed in Step 2 is applied to A, resulting in matrix

APPA T=′′ . The larger elements of A are expected to be closer to the diagonal in A′′ as

shown in Figure 2.10.

Step 4. Target threshold A′′ with 1 Aτ

In this step, we try to eliminate those elements far away from the diagonal in matrix

A ′′ whose influence on the error of any eigenvalue is negligible compared to A1τ . This

step produces matrix A′′′ such that

 A A E′′ ′′′= + , with 11
E Aτ< .

It can be shown [26, 49] that the absolute difference between the eigenvalues iλ of

A′′ and the eigenvalues iλ′ of A′′′ is bounded by

2 1i i E Eλ λ′− ≤ ≤ .

Since the eigenvalue errors are bounded by the 1-norm of the error matrix E, the

algorithm traverses the matrix elements along the off-diagonals from the end toward the

center as illustrated in Figure 2.11, zeroing elements before each column-wise sum of

absolute values of the dropped elements exceeds A1τ . Figure 2.12 shows A′′′ as the

result of target threshold of A′′ .

 28

 Figure 2.9 Permuted A′ using the GPS algorithm.

 Figure 2.10 Permuted APPA T=′′ .

 29

××××××
×××××

××××
×××

××
×

 Figure 2.11 Traverse elements along matrix off-diagonals [4].

 Figure 2.12 A′′ after target threshold, 6
1 10τ −= .

 30

Step 5. Covering A′′′

 The sizes of the diagonal blocks, which also fix the sizes of the off-diagonal blocks,

are determined such that the resulting block tridiagonal matrix contains all the matrix

elements that are effectively nonzero (i.e., nonzeros in A ′′′). These are the matrix elements

whose effect on the accuracy of the eigenpair approximation may be non-negligible.

Figure 2.13 shows block sizes obtained from A′′′ along x-axis.

 Step 6. Target block reduction (TBR)

 As an option, the last step of the BT algorithm attempts to produce a few small blocks

for a lower computational complexity in the merging operations of the BD&C algorithm.

In step 4, none of the matrix elements dropped are greater than the given error bound

1 Aτ . It may be possible to eliminate some of the matrix elements whose absolute values

are larger than the given error bound without causing the accumulative error in the

eigenvalues to exceed this error. Wilkinson [96] has given a sensitivity analysis that

estimates the eigenvalues of a perturbed matrix M Eε+ in terms of the eigenvalues and

eigenvectors of the original matrix M:

 ())()()(2εελελ OExxMEM T ++=+ , (2.6)

where x denotes the eigenvector corresponding to the eigenvalue)(Mλ of M .

 From Equation 2.6, the eigenvalue error as a result of zeroing matrix elements ijm and

jim can be estimated by

 =∆λ)(2 2
ijjiij mOxxm + . (2.7)

Several elements may be eliminated as long as the maximum of the sum of the

eigenvalue errors is less than the given error bound. In our case, this error bound is 2 Aτ .

Note that step 6 is only possible if an approximation for the eigenvectors is available. For

an iterative method solving a non-linear eigenvalue problem (like the SCF method), we

may use the eigenvectors from the previous iteration as an approximation. There may be

other similar applications with eigenvector approximations permitting this last step in the

algorithm.

 31

 Figure 2.13 Blocks that cover all nonzeros of A ′′′ .

Using TBR, we may reduce the size of a few diagonal blocks and hope that the

corresponding off-diagonal blocks have a lower rank. As an example, for a matrix
8 8xM R∈ as shown in Figure 2.14, eliminating elements 25m , 35m , and their symmetric

counterpart 52m and 53m would lead to a totally different block tridiagonal structure as

illustrated in Figure 2.15.

2.2.2 Computational complexity of BT

Most of the operations involved in the BT algorithm are comparisons, additions and

permutations. The computational complexity and the number of data accessed are both

()2O n . Let 1nnz and 2nnz be the number of nonzero elements of matrices A′ and A′′′ ,

respectively (typically 1 2nnz nnz n<). In Table 2.1, the maximal time complexity for

each step of the algorithm is listed. In Step 6, k denotes the number of matrix elements

that are checked for elimination (typically k << n). Since 1nnz and 2nnz are both no

greater than 2n , total complexity of steps 1 – 5 of BT is ()2O n regardless of their values.

 32

× × ×
 × × × × ×
 × × × × ×
 × × × × ×
 × × × × × × ×

× × × × ×
 × × × ×

× × × ×

 Figure 2.14 Block tridiagonal structure that covers all nonzeros.

25

35

52 53

m
m

m m

× × ×
 × × × ×
× × × ×

 × × × × ×
 × × × × ×
 × × × × ×
 × × × ×

× × × ×

 Figure 2.15 Block tridiagonal structure after eliminating
 entries (2,5), (3,5), (5,2) and (5,3).

 Block1

Block2

Block3

 Block
 1

Block
 4

Block 2

Block

 3

 33

 Table 2.1 Worst-case time complexity of BT [4].

Steps Comparison and

data movement

Addition and

multiplication

1. Global threshold 2n

2. GPS reorder 3
23

2
n [45]

3. Symmetric permutation 23n

4. Target threshold 2
2n nnz− 2

2n nnz−

5. Covering n

6. Reduce block size 2n 2kn

However, the bound on k is 2n , so the complexity of step 6 could be ()3O n . The

computational complexity of the BT algorithm is ()2O n when ()k O n≤ .

2.3 Orthogonal block tridiagonal reduction of dense matrix (OBR)

If a full symmetric matrix cannot be transformed into a block tridiagonal matrix for use

by the BD&C algorithm with little computational effort as described above, one may

choose to use a sequential eigensolver from a robust and efficient numerical library (e.g.

DSYEVD [87] from LAPACK) to decompose it. However, for large matrices, the data

locality in the reduction-to-tridiagonal step may not be as good as those of matrices of

moderate size. Studies have shown that by reducing the dense matrix successively to a

banded matrix and finally tridiagonal matrix [12, 41], one has a better data access pattern

and larger portion of level 3 BLAS operations. We further extend this idea to produce a

sequential algorithm for the reduction to block tridiagonal form.

 Given a dense real symmetric matrix n nA ×∈ , we desire to apply a sequence of

orthogonal similarity transformations to reduce A to a block tridiagonal matrix M .

 34

There are different ways to construct the orthogonal matrices, for instance, the QR

factorization and the singular value decomposition. This section will consider only the

QR factorization algorithm.

2.3.1 Reduction using QR factorization

The orthogonal transformations annihilate elements below the block subdiagonal panel

by panel as shown in Figure 2.16. We will denote each matrix panel by i im n
iG ×∈ , each

diagonal block of M by iB and off-diagonal block by iC . As a general rule, each matrix

panel has same panel width bp , and all diagonal blocks have the same size

1 2 1qb b b b−= = = = where q is the number of diagonal blocks and ()1 / 1q n b= − + ,

except that the last block has the size ()1qb n q b= − − .

We start with 0A A= , QR factorization of the first panel 1 1 1G Q R= is computed, and

we obtain the first diagonal block 1B and off-diagonal block 1C which is the upper

triangular part of 1R as shown in Figure 2.17. Submatrix 1A is updated using 1 1 1
TQ AQ .

Next the second panel 2G is factorized into 2 2Q R . Then we obtain blocks 2B and 2C ,

and update submatrix 2A in the same way as shown in Figure 2.18.

 Figure 2.16 Orthogonal factorization performed in column blocks.

G1

G2

G3

 35

 Figure 2.17 Reduction of the first panel.

 Figure 2.18 Reduction of the second panel.

 0

 1 1 1

TQ AQ

B1

C1
1
TC

 A1

G1

 0

 2 2 2

TQ A Q

B1

C1
1
TC

B2

C2
2
TC

 0

 A2

B1

G2

C1
1
TC

 36

In a general case, bp is the width and i bm n i p= − × is the length of the i-th panel iG ,

b is the block size of the reduced block tridiagonal matrix. In this Section and Section

2.3.2, we only illustrate the case when bp b= . The cases of bp b≠ are discussed in

Section 2.3.3.

Let () ()i i i im n m n
iA + × +∈ as illustrated by Figure 2.19 be the lower right principal

submatrix of A at the i-th stage of orthogonal reduction. For each matrix panel

i im n
iG ×∈ in Figures 2.16 and 2.19, its QR factorization i i iG Q R= where i im m

iQ ×∈ and

i im n
iR ×∈ is used to reduce A to a block tridiagonal matrix. Partition

0

i

i

R
R

 =

 where

()()1: ,1:i i
i i n n

R R= is upper triangular. A will be reduced to a block tridiagonal matrix with

triangular off-diagonal blocks. Partitioning iA as

 Figure 2.19 Matrix A at the i-th stage of orthogonal reduction.

1B

 iA

1
TC

1iB − 1
T
iC −

1C

C i-1

iG

 37

 11 12

21 22

i i

i i
i

i i i
i

n m

nA A
A

mA A

=

,

and then applying iQ to it, we have

 11

22

i T
i

iT i
i i i

I O I O A R
A

O Q O Q R A

=

. (2.8)

The diagonal block 11
iA and off-diagonal block iR can be obtained directly, and

1 22 22
i T i

i i iA A Q A Q+ = = . We continue this procedure until the whole matrix A is reduced to

a block tridiagonal matrix M . All the subdiagonal blocks of M except the last one are

upper triangular. The panel width bp needs to be chosen carefully. It should be small

enough to keep cache miss rate low and yet large enough to benefit from data-reuse in

level 3 BLAS operations.

2.3.2 Computational complexity of OBR

To reduce a real symmetric matrix A to a block tridiagonal matrix M with fixed panel

width bp and block sizes bb p= as shown in Figure 2.19, computational complexity of

QR factorization i i iG Q R= of each matrix column block i im n
iG ×∈ where i bn p= and

i bm n i p= − × is 2 322
3i i in m n− [49]. Here the Householder vectors are saved for the

update of 22
iA and the computational complexity to construct iQ is also 2 322

3i i in m n− [49].

Finally, the time complexity for rank-2b updating of 22A is approximately 24 i im n [49].

Assume that the size n of A is divisible by bp and /b bq n p= is the number of panels in

A . The total number of floating-point operations for reduction from A to M thus

becomes

 38

 () ()
1

23 3 3

1

44 4
3

bq

OBR b b b b b
i

flops q i p p q i p
−

=

 = − − + −
∑

 () () ()3 2 1 2 142 1 (1)
3 3

b b b
b b b b

q q q
p q q q

− −
= − − − +

 3 34 8 4
3 3 3b b bp q q = − +

 ()3 2 34 8
3 3 b bn p n O p≈ − + , (2.9)

and the number of floating-point operations in rank-2b update that are level 3 BLAS

equals

 ()
1

23 3 3 2 2

1

4 24 2
3 3

bq
BLAS
OBR b b b b

i
flops q i p n p n p n

−

=

 = − = − + ∑ . (2.10)

Although the leading term of computational complexity of both ORB and LAPACK

tridiagonal reduction is 34
3

n [35], the performance of OBR should be better due to higher

ratio of level 3 BLAS operations. This is confirmed by the performance test results

shown in Figure 2.20. In this test, we use subroutine DSYRDB from the SBR package [8]

to reduce a real symmetric matrix to a block tridiagonal matrix with two different block

sizes, 32 and 64, and use subroutine DSYTRD from LAPACK [1, 2] to reduce the same

matrix to tridiagonal form. The panel width in DSYRDB equals the block size. The

processor we use is one of the thirty-two 1.3 GHz Power4 processors on a node of the

IBM p690 system at Oak Ridge National Laboratory [98]. The system has 27 nodes, and

most of the nodes have 32 GB of memory. Level-1 instruction cache is 64 KB per

processor, and the data cache is 32 KB per processor. The level-2 cache is 1.5 MB shared

between the two processors. The level 3 cache is 32 MB and is off chip. The system goes

by the nickname Cheetah at ORNL.

In Figure 2.20, the ratios of execution times and floating-point instructions (FLPINS)

measured by PAPI [14, 15] show that the difference between execution time is much

greater than that between floating-point operation count, and larger block size brings

slightly better performance in general.

 39

 Figure 2.20 Ratio of execution time and FLPINS of DSYRDB to DSYTRD.

 We may use QR factorizations to reduce matrix A to a block tridiagonal matrix M, and

then use BD&C to compute the eigenpairs of M. Adding Equations 2.5 and 2.9 yields the

total computational complexity of eigen-decomposition of a dense matrix using OBR

followed by BD&C without deflation:

 3 28 ()
3FULLflops n O b nρ≈ + . (2.11)

In contrast, the time complexity for first reducing matrix A to a tridiagonal matrix T and

then computing the eigenpairs of T using the divide-and-conquer method with no

deflation adds up to ()3 28
3

n O n+ , which is lower than the combination of OBR and

BD&C unless 1ρ = . However, taking into account improved performance of DSYRDB

over DSYTRD, the consequent higher ratio of deflation (see Figures 2.4 and 2.5) for

lowered accuracy requirements, and a better data access pattern, the performance of the

former algorithm may not necessarily be worse than the latter one.

 40

2.3.3 Relationship between panel width and block size

In the block tridiagonal reduction algorithm in Section 2.3.1, there are two closely related

parameters: the panel width bp for the blocked QR factorization and the block size b for

the block tridiagonal matrix. There are three possible combinations for
b

p and b :

bp b> , bp b< and bp b= .

We first consider the most straightforward case bp b= shown in Figure 2.21. The

reduction algorithm involves QR factorizations of column blocks i im n
iG ×∈ ,

accumulation of Householder transformations in blocked form T
i i iQ I YW= − where iY

contains columns of Householder vectors and iW contains columns of scaled

Householder vectors, construction of the update matrix

 1
2

T
i i i i i i iZ AW YW AW= − , (2.12)

and update of the submatrix of iA (yellow shade) with rank-2pb updates

 1
T T

i i i i i iA A Y Z Z Y+ = − − . (2.13)

Next we consider the case of bp b< . As shown in Figure 2.22, after the QR

factorization of panel iG , a one-side update of bb p− columns (gray shade part) must be

computed, then the block Householder transformations T
i i iQ I YW= − can be applied to

submatrix of iA from both sides as in the case of bp b= .

In the last case bp b> as shown in Figure 2.23, the update of bp b− columns in gray

shade by the Householder transformations from the right involves accessing all entries of

submatrix iA ; while in the cases of bp b< and bp b= , reduction of each iG only

requires accessing data in iG . Therefore, reduction of iG with bp b> cannot be

computed directly by QR factorization without accessing the matrix entries outside iG .

 41

 Figure 2.21 Orthogonal reduction in the case of bp b= .

 Figure 2.22 Orthogonal reduction in the case of bp b< .

 Figure 2.23 Orthogonal reduction in the case of bp b> .

 b

 pb

 Ai

 b

 Qi

 A i

 pb

 b

pb

 Ai

 42

Consequently, matrix iZ for the rank-2pb update used in Equation 2.13 cannot be

computed using matrix multiplications as shown in Equation 2.12. However, iZ can be

constructed column by column using the formula

 ()1 1
1
2

Ti i i i i i i
j j j j j j jz A w y w A w− −= − , 1 bj p≤ ≤ (2.14)

during each Householder transformation. This approach is similar to the LAPACK

symmetric tridiagonal reduction subroutine DSYTRD.

 Theorem 2.1 For 4n b≥ where n is the matrix size and b is the block size in the

orthogonal block tridiagonal reduction algorithm that uses QR factorizations, a ratio of

level 3 BLAS operations greater than 50% can be obtained only if the algorithmic panel

width bp is no greater than the block size b .

Proof. Based on the above observation of three cases of bp and b , we can estimate how

many level 3 BLAS operations are exploited in each case. Here we still assume that the

panel width bp is divisible by the matrix size n and that /b bq n p= is the total number

of matrix column blocks.

Case 1) bp b= . Based on Equations 2.9 and 2.10, the ratio of level 3 BLAS operation

 ()
3 2 2

3 2

4 22
3 33 4 8

3 3
b

b b

p b

b

n p n p n
ratio BLAS

n p n
=

− +
=

−

3 2

3

4 2
3

4
3

bn p n

n

−
>

 31
2

bp
n

= −

 31
2
b
n

= − . (2.15)

 43

Case 2) bp b< . The floating-point operation count for each one-side update of

bb p− columns as shown in gray shade in Figure 2.22 is ()()()4 1b b bp n p i b p+ − − and in

total takes

 () ()()
1

1
4 1

bq

one side b b b b
i

flops p p q i b p
−

−
=

= + − −∑

 () 21 12 2
2 2b b

b

b p n n p
p

 = − + − +

floating-point operations.

When accumulated Householder transformations are applied to the bb p− columns

from the left, bb p− must be large enough so that this one-sided update can exploit the

high performance of level 3 BLAS operations. Otherwise, we do not expect the high

performance of level 3 BLAS operations can be fully exploited. Consequently, the ratio

of level 3 BLAS operation satisfies the following inequality:

()
()

3 2 2

3 2 2

4 22
3 33

4 8 1 12 2
3 3 2 2

b

b b

p b

b b b
b

n p n p n
ratio BLAS

n p n b p n n p
p

<

− +
≥

 − + − + − +

()

3 2

3 2

4 2
3

4 5
3 2

b

b

n p n

n b p n

−
>

+ −

()

51 8 5
3

b

b

b p

n b p

−
= −

+ −

 151
8

b
n

≥ − . (2.16)

 44

Case 3) bp b> . The dominant computational cost of each vector i
jz using Equation

2.13 is a matrix-vector multiplication and takes ()22 1bn p i j− − + floating-point

operations, 1 bi q≤ < and 1 bj p≤ ≤ . In total, the construction of vectors i
jz takes

()
1

2
_

1 1
2 1

b bq p

construct z b
i j

flops n p i j
−

= =

= − − +∑∑

 2

1

= 2
b

b

n p

k p

k
−

= +
∑

 () () () ()3 2 3 22 2 2= 1 1 1 1
3 3 3 3

n pn p n p p p− + − − + + − − + + +

 () ()3 2 2 32 12 1 2 2
3 3b b bn p n p p n O p = − − + − + +

.

Since the leading term of the computational complexity of orthogonal reduction is 34
3

n ,

approximately 50% of the floating-point operations are level 2 BLAS operations to

compute i
jz when bp b> , similar to that of the LAPACK tridiagonal reduction

subroutine DSYTRD [35, 37].

The ratio of level 3 BLAS operations in cases bp b< and bp b= exceeds 50% when

4n b≥ , while the ratio of level 3 BLAS operations in case bp b> is always about 50%

and does not change with matrix size.

Corollary 2.2 If bp b≤ where bp is the algorithmic panel width and b is the block

size in the orthogonal block tridiagonal reduction algorithm, the ratio of level 3 BLAS

operations increases with matrix size n .

Proof. From Equations 2.15: 3
31
2BLAS
bratio
n

≥ − and Equation 2.16: 3
151
8BLAS

bratio
n

≥ − ,

ratio of level 3 BLAS operation increases with n .

 45

Since the ratio of level 3 BLAS operations is higher in cases 1) and 2) than in case 3)

for most reasonable cases (4n b≥), block tridiagonal reduction using QR factorization

should be implemented with bp b≤ . Figure 2.24 shows that the ratio of level 3 BLAS

operations exceeds 90% quickly as the matrix size increases.

2.3.4 Back transformation
After the eigenvalues and eigenvectors of TM V V= Λ have been computed, V will be

back transformed to the eigenvector matrix of A in a backward order:

 ()() ()()1 1 2 2 1 1
T T T T

k k k kX I W Y I W Y I W Y I W Y V− −= − − − −

where X is the eigenvector matrix of A and T
i iI WY− , 1 i k≤ ≤ is the product of bp

Householder transformations.

Since only iY is stored, redundant computation is required to re-construct iW before

bp Householder transformations can be applied to V by matrix multiplications. The

 Figure 2.24 Ratio of level 3 BLAS operations in OBR with bp b= .

 46

overhead of re-constructing iW is 2 322
3i i in m n− [49] and the computational complexity

for applying T
i iI WY− to V is approximately ()4 1i in m n+ . Here im , in , bp are the same

as defined in Section 2.3.2 and b bq n p= . Total floating-point operations for the back

transformation is therefore

 ()
1

2 3

1

22 4 1
3

bq

back i i i i i
i

flops n m n n m n
−

=

= − + +∑

 () ()()
1

2 3

1

22 4 1
3

bq

b b b b b
i

p n ip p p n ip n
−

=

= − − + + −∑

 ()
1

3 3

1

22 4 1
3

bq

b b b b
i

p i p p p ni
−

=

= − + +∑

 ()3 2 212
2 2

b
b b

qn n p O np ≈ − − + +

.

 47

3 Parallel block tridiagonal divide-and-conquer (PBD&C)

implementation

The BD&C algorithm has the potential of parallelism in that it is divide-and-conquer and

recursive in nature. However, the size of each subproblem and the amount of work for

solving each of those subproblems at the same level of the recursion is usually different,

which leads to workload imbalance. Earlier effort on the parallelization of BD&C

achieved modest speedup with 4 – 16 processors [25]. In that implementation, the high

performance of the parallel matrix multiplication subroutine in PBLAS [19] cannot be

fully exploited due to its storage scheme of matrix sub-blocks. A fine-grained PBD&C is

designed here to achieve workload balance and data balance at the same time. Some

major issues in such an implementation are: 1) overhead of data communication; 2) order

of merging sequence; 3) handling of deflation. We discuss them in detail in the context of

PBD&C implementation and give estimation of complexities to help us understand the

behavior of PBD&C.

Recall that γ denotes the time for one floating-point operation, α denotes the latency

for one communication, β denotes the time to transfer one double precision number, and

bn denotes the block size of the 2D block cyclic parallel matrix distribution. We define

LCM as the least common multiple and GCD as the greatest common divisor. For two

integers a and b , () (), ,LCM a b GCD a b ab= . The union of two processor grids is

called a supergrid. In the computational complexity analyses in this section, we assume

0% deflation unless otherwise specified.

3.1 Data parallelism versus task parallelism

There are different ways to distribute a matrix on a processor grid. Data parallelism

distributes data evenly to all the processors and invokes all relevant processors to work

on the same task as the algorithm proceeds. Task parallelism assigns each processor to a

different task in the algorithm working simultaneously whenever possible. For example,

assume we have a block tridiagonal matrix n nM ×∈ with 4 blocks of equal size 4b n= ,

 48

as shown in Figure 3.1 and a 4-processor grid G in the shape of 0 1

2 3

p p
p p

. Each matrix

sub-block is highlighted by distinctive color.

We first distribute M using the 2D block cyclic data distribution and assume 2bn b= .

The distribution of M as shown in Figure 3.2 is an example of data-parallelism. (Note

that due to symmetry, only the lower triangular part is shown as distributed.)

For task parallelism, one could distribute the matrix blocks to the processors as

illustrated in Figure 3.3.

One of the advantages of data parallelism is the data distribution and workload balance.

However, it has the potential of increased communication resulting in degraded

performance. In addition, in problem subdivision, subproblem solution, and at the

beginning of the BD&C recursive merges, with data parallel implementation, not all the

processors may be working on a single matrix block due to small block size relative to

grid size, which causes workload imbalance and a waste of resources. On the other hand,

with task parallelism, subsets of processors work on different subproblems independently

with reduced communication overhead. However, it may lose data balance and limit the

 Figure 3.1 A symmetric block tridiagonal matrix with 4 blocks of equal size.

 1B

 2B

 3B

 4B

 1C

 2C

 3C

 49

 Figure 3.2 Matrix M distributed for data parallelism.

 Figure 3.3 Matrix M distributed for task parallelism.

 50

size of subproblems to be solved. Moreover, with task parallelism, the overhead of data

redistribution before a merging operation in the BD&C algorithm may be large,

compared to the computational effort.

To achieve both workload balance and data balance, PBD&C implementation uses a

mixed (data/task) parallelism [18]. To be specific, each subproblem iB will be assigned a

group of processors iG based upon its anticipated computational complexity, and each

group of processors works on a subproblem simultaneously, as shown in Figures 3.4 –

3.6.

Implementation of PBD&C using mixed parallelism involves periodic redistribution of

matrix sub-blocks from one processor grid to another (see Sections 3.2.2 and 3.4.1 for

details). In what follows, we examine the general data redistribution pattern and

communication complexity.

 Assume we are given two 1D processor grids: []1 0 1 2 3p p p p=G and

[]2 4 5 6 7 8 9p p p p p p=G . Grid 1G has 4 processors and 2G has 6 processors. A matrix

m nB ×∈ is distributed in 1D block cyclic pattern with 12 blocks. Figure 3.7 shows the

distribution of B on 1G and Figure 3.8 shows the distribution of B on 2G . If we

redistribute B from 1G to 2G , then each processor in 1G sends out three blocks to

processors in 2G , and each processor in 2G receives two blocks from processors in 1G .

For example, 0p sends one block to each of 4p , 8p and 6p , while 4p receives one block

from each of 0p and 2p . In general, For each processor in 1G , the number of blocks it

sends equals ()1 2

1

,LCM c c
c

 where 1c and 2c are the number of processors in grids 1G and

2G , respectively. The size of data sent by each processor in 1G equals 1mn c . Similarly,

for each processor in 2G , the number of blocks it receives equals ()1 2

2

,LCM c c
c

. The size

of data received by each processor in 2G equals 2mn c . If a processor needs to send more

 51

1 1

1 2

1

1

T

T
q

q q

B C
C B

C
C B

−

−

 Figure 3.4 Block tridiagonal matrix with q diagonal blocks.

 Figure 3.5 Each diagonal block iB is assigned processor subgrid iG .

 Figure 3.6 Data distribution of block 1B on a 2 2× processor subgrid 1G .

 G1

 G2

 Gq

 G1

 Gq-1

 52

 Figure 3.7 Matrix B distributed on 1D grid 1G .

 Figure 3.8 Matrix B distributed on 1D grid 2G .

than one block to another processor, those blocks should be packed and sent as one data

package.

 Analogously, with 2D processor grids, if we redistribute a matrix that is originally

distributed in 2D block cyclic pattern on grid 1G with 1r processor rows and 1c processor

columns onto grid 2G with 2r processor rows and 2c processor columns, each processor

in 1G sends () ()1 2 1 2

1 1

, ,LCM r r LCM c c
r c

⋅ data packages to processors in 2G , and each

processor in 2G receives () ()1 2 1 2

2 2

, ,LCM r r LCM c c
r c

⋅ data packages from processors in 1G .

If grids 1G and 2G are disjoint, then each processor in 1G may be able to send out

packages simultaneously without conflict. Otherwise, ordering of send/receive may be

required to avoid deadlock because two processors may send to and receive from each

other at the same time.

3.2 Parallel subdivision

Suppose we have a block tridiagonal matrix n nM ×∈ with q number of blocks as shown

in Figure 3.4 and p number of processors. Denote size of the i-th diagonal block iB by

ib where
1

q

i
i

b n
=

=∑ and the number of processors assigned to iB by ip with
1

q

i
i

p p
=

=∑

 53

where p is the total number of processors available. The i-th off-diagonal block iC has

size 1i ib b+ × and approximate rank iρ . Processors ip form a subgrid i i ir c= ×G where ir

and ic are the number of rows and columns of the processor subgrid iG , respectively.

3.2.1 Assign processors to submatrices

The number of processors ip in the i-th subgrid iG is determined by

3

3

1

i
i q

i
i

bp p
b

=

=

∑
 (3.1)

based on the fact that the computational complexity for solving each subproblem is

()3
iO b . Also, as shown in Figures 3.4 and 3.5, we use the ip processors assigned to iB

for 1 1i q≤ ≤ − to compute the approximate rank of the off-diagonal blocks iC using the

singular value decomposition T
i i i iC U V= Σ . Processors qp assigned to subgrid qG will be

idle during the SVD computation, but the time for computing the SVD is negligible in

comparison to the total time of the PBD&C algorithm, so that it would not lead to

noticeable effect on the workload balance.

3.2.2 Distribute a matrix sub-block from one subgrid to another subgrid

To modify the diagonal block: 1 1 1 1 1
T T

i i i i i i i iB B U U V V+ + + + += − Σ − Σ , left singular vector

matrix iU on processor subgrid iG must be redistributed to processor subgrid 1i+G as

illustrated in Figure 3.9.

 The time for sending iU to a new processor grid 1i+G is given by

() ()1 1 1, ,i i i isend i i

i
i i

LCM r r LCM c c bt
p p

ρα β+ + += + .

Note that each processor subgrid except the first one and the last one sends out its copy of

iU and receives a copy of 1iU − from its neighbor. The time for processor subgrid iG to

 54

 Figure 3.9 Distribute a matrix block from one grid to another.

receive a copy of 1iU − from subgrid 1i −G is given by

 () ()1 1 1, ,i i i irecv i i
i

i i

LCM r r LCM c c bt
p p

ρα β− − −= + .

 Modern interconnection technology can support overlap of point-to-point

communication, which to some extent enables simultaneous sends and receives on a

processor grid. In the worst case, when send and receive on one processor subgrid cannot

be overlapped, the total time for redistribution of singular vectors equals

 1redistr send recv
i i it t t= +

 () () () ()1 1 1 1, , , ,i i i i i i i i

i i

LCM r r LCM c c LCM r r LCM c c
p p

α + + − −
= +

 1 1i i i i

i i

b b
p p

ρ ρβ + −
+ +

. (3.2)

All the processor subgrids perform their own data communication with their neighbors

simultaneously. Therefore, the total time for singular vector matrix redistribution is
1

2, 1
max redistr

ii q
t

= −
 in the worst case. This type of redistribution is required only once in PBD&C.

1

1 1 1
T

U V

C

∑

=

 1B

2

2 2 2
TU V

C

∑

=

 2B

 3B

 U1

 G1

 G1

 U2
 G2

 G2

 G3

 55

3.3 Parallel solution of subproblems

Each subgrid can perform the eigen-decomposition of each subproblem independently.

There is no communication between any two subgrids; any communication required

occurs only within a subgrid. During the solution of subproblems step, all processors are

busy solving the subproblem iB assigned to their subgrid.

3.4 Parallel synthesis of solutions

Parallel synthesis is the most time consuming step of the PBD&C implementation, as

is the synthesis step of the sequential BD&C algorithm. Major issues are: (1) before each

merging step, submatrices on two subgrids need to be redistributed to its supergrid; (2)

during the accumulation of eigenvectors, deflation needs to be handled in a way to

minimize communication; and (3) a merging sequence needs to be determined that

minimizes both the computational complexity and processor idle time. The dominant

term in the complexity of PBD&C is determined by the complexity of the last several

steps of the synthesis, as in the sequential BD&C.

The synthesis step of PBD&C may be represented as a binary merging tree of merging

operations illustrated in Figure 3.10. The bottom of the merging tree is labeled as merge

level 0, and the leaves are the eigensolutions of the modified subproblems 1 2, , , qB B B ,

each of size ib distributed on subgrid iG with ip processors for 1 i q≤ ≤ . Each pair of

eigensolutions is merged simultaneously. Before each merging operation, two subgrids

 Figure 3.10 Merging tree and level of merging.

Level 4

Level 3

Level 2

Level 1

Level 0

 56

that hold the two eigensolutions to be merged need to be combined to form a supergrid,

and eigensolutions need to be redistributed as well. The union of two disjoint subgrids iG

and 1i+G is a supergrid 1i i r c+= ∪ = ×G G G . This supergrid will hold the eigensolutions of

the merged subproblems. After the adjacent merges at the bottom of the merging tree

finish, the next level of merge starts until the root of the tree is reached. The height of a

node is the longest path from that node to each leaf, and the height of a merging tree is

the longest path from the root to the furthest leaf. The root of the merging tree, which is

the final merging operation, is labeled as level h . For example, 4h = for Figure 3.10.

The merging levels before the final merging are labeled as 1h − , 2h − , , 1.

3.4.1 Redistribution of data from two subgrids to a supergrid

Before we start a merging operation, that is, a sequence of matrix multiplications, the two

subgrids that hold the two submatrices of eigenvectors must be grouped together to form

a supergrid. The corresponding submatrices must be redistributed to the supergrid

correspondingly. This type of data redistribution is invoked on each level of the merging

tree as the merging operations go up the tree. Figures 3.11 and 3.12 illustrate the

redistribution of two submatrices, one from a 2 2× grid and the second from a 2 4× grid,

to a 3 4× grid.

 In practice, boundaries of submatrices seldom match the natural boundaries of 2D

block cyclic distribution. The starting point of a submatrix iB in the supergrid is not

always a multiple of bn . In such a case, an offset between the two different types of

boundaries must be computed for the correct indexing of submatrices in the supergrid.

Assume processors redistribute their data in a canonical order without pipelining. That

is, with k processors numbered from 0 to 1k − , processor 0 sends out its data to

processors 1,2, , 1k −… , then processor 1 sends out its data to processors 0,2, , 1k −… ,

and so on, and finally processor 1k − sends out its data to processors 0,1, , 2k −… . Since

the time for data redistribution for each processor is

 57

 Figure 3.11 The first submatrix held by a 2 2× grid, the second
 submatrix held by a 2 4× grid.

 Figure 3.12 Two submatrices redistributed to a 3 4× supergrid.

⇒

 58

2 2
1 1 1

1 1

(,) (,) (,) (,)i i i i i i

i i i i

LCM r r LCM c c LCM r r LCM c c b b
p p p p

α β+ + +

+ +

+ + +

,

redistribution of two matrix blocks from two disjoint subgrids to the union of those two

subgrids in such an order takes the total time

2 2
2 1 1 1

1 1
1 1

(,) (,) (,) (,)redistr i i i i i i
i i i i i

i i i i

LCM r r LCM c c LCM r r LCM c c b bt p p p p
p p p p

α β+ + +
+ +

+ +

= + + +

 ()2 21
1

1 1(,) (,) (,) (,)
i i

i i
i i i i

p pp b b
GCD r r GCD c c GCD r r GCD c c

α β+
+

+ +

= + + +

. (3.3)

As one may observe, the communication cost depends on the computer and network

specification as well as the shapes of subgrids and supergrids. When the number of rows

and columns of a supergrid and its corresponding subgrids are mutually prime, there are
2p communications to accomplish the data transfer, and the accumulative start up time

for communications is high. However, this is typically not the case. In the best case, the

frequency of communications can be reduced to 2 p if two subgrids have the same

number of processors.

3.4.2 Merging sequence

Each merging operation of two subproblems includes steps such as solving the secular

equation, deflation and accumulation of the eigenvector matrix. Among those steps, the

accumulation of eigenvector matrices is by far the most time consuming part. We

approximate the computational and communication costs of a merging operation by the

matrix multiplications involved.

In the sequential implementation of BD&C, merging starts from off-diagonal blocks

with the highest rank, leaving the off-diagonal block with the lowest rank for the final

merging operation to reduce the computational complexity of BD&C. This merging

sequence is sequential in nature and not completely appropriate for a parallel

implementation. For example, consider a block tridiagonal matrix M with p processors

 59

and 4 diagonal blocks of equal sizes, i.e., 4q = , 1 2 3 4 4
pp p p p= = = =

and 1 2 3 4 4
nb b b b= = = = as shown in Figure 3.13. Further assume 1 2 3 4ρ ρ ρ ρ< = = , i.e.,

the first off-diagonal block has the lowest rank.

 If we choose the off-diagonal block with the lowest rank for the final merging

operation, the processors in 1G and 2G stay idle while processors in 3G and 4G handle the

merge for blocks 3B and 4B ; then 1G stays idle while processors in 2G , 3G and 4G handle

the merge for blocks 2B , 3B and 4B . If one assumes 0% deflation and neglects the

overhead of communication, the total computational time per processor can be

approximated by

 () () ()3 4 2 3 4 1 2 3 4_ , , , , , ,low rank merge B B merge B B B merge B B B Bt t t t= + +

 () ()3 3 3

2 2 1

2 3 4
2

2 3 4
n n n
p p p

γ ρ ρ ρ

= + +

3 3

2 1
132
16

n n
p p

γ ρ ρ

= +

. (3.4)

 Figure 3.13 A block tridiagonal matrix with 4 blocks of same block size.

 G1

 G2

 G4

 G3

B1

B2

B4

B3

C1

C2

C3

Unbalanced final
merging operation
at lowest rank

Balanced final
merging operation at
the center

 60

 Suppose we now neglect the ranks and choose the off-diagonal block 2C for the final

merging operation and obtaining the most balanced merging sequence, then 1B and 2B

are merged simultaneously to the merging of 3B and 4B . In this situation, the total

computational time per processor of all the merging operations can be approximated by

 () ()3 4 1 2 3 4, , , ,balance merge B B merge B B B Bt t t= +

 ()3 3

2 2

2
2

2
n n
p p

γ ρ ρ

= +

3

2
52
4
n
p

γ ρ

=

. (3.5)

Comparing Equations 3.4 and 3.5, one concludes _low rank balancet t< only when

1 2
7

16
ρ ρ< . This indicates that unless the lowest rank of off-diagonal blocks is less than

half the rank of the off-diagonal block in the middle of M , choosing a balanced final

merging operation keeps all processors busy and achieves a better workload balance,

which subsequently leads to less idle time and consequently less total execution time.

Based on the above observation, we determine the position of the off-diagonal block

for the final merging operation according to both computational complexity and

workload balance.

The merging tree shown in Figure 3.10 has the same number of subproblems on the

left and right sides of the final merging operation. In general, this is not the case. In a

block tridiagonal matrix M , the off-diagonal block for the most balanced final merging

operation is the one closest to the middle of M . At the bottom of the merging tree,

subproblems usually have different sizes. As the merging moves up the tree, subproblems

on each level continue to have different sizes. In general, the number of matrix sub-

blocks on the left side of the final merging operation is different from that on the right

side, even if the final merging operation is a balanced one. However, in a balanced final

merging operation, it is guaranteed that the amount of workload per processor on both

sides of the final merging operation is approximately the same because processors are

assigned to subproblems based on problem size.

 61

Figure 3.14 shows a merging tree with different number of subproblems on the left and

right sides of the final merging operation. In order to evaluate the computational cost of

different merging sequences, one needs to consider not only the rank of the off-diagonal

block for the final merging operation, but also the sizes of the subproblems as well as the

number of idle processors and their idle time.

 Suppose we have a merging tree as shown in Figure 3.14 for a block tridiagonal matrix
n nM ×∈ with q blocks and p processors. Without loss of generality, we assume p q≥

so that each subproblem at the bottom of the merging tree is assigned at least one

processor. Otherwise, we may always re-block M to satisfy this assumption.

 Let f be the position of the off-diagonal block for the final merging operation and fρ

be the approximate rank of the corresponding off-diagonal block fC . The matrix sub-

blocks indexed from 1 to f construct a left subtree, while the matrix sub-blocks indexed

from 1f + to q construct a right subtree. If the height of the left and right subtrees are

lefth and righth , respectively, then the height of the whole merging tree is

()max , 1left righth h h= + . For example, 2lefth = , 3righth = and 4h = in Figure 3.14.

 Figure 3.14 Merging tree with different number of subproblems
 on the left and right of the final merging operation.

Final merging operation

Idle time

Level 4

Level 3

Level 2

Level 1

Level 0

hright

hleft

 62

We assume that a lower subtree finishes merging before a higher subtree does. The

merging process starts from level 0, and loses balance at level ()min , 1left righth h h′′ = + . At

this stage the processors in the lower subtree stay idle while the processors in the higher

subtree keep working. After the higher subtree finishes its merging operations at level

()max ,left righth h h′ = , all the processors work together again for the final merging

operation. Therefore, the time for all the merging operations is the time to merge the

higher subtree plus the time for the final merging operation.

Note that the computational time for the merge of each two adjacent blocks at the

lowest level is approximately
32

1
2 i

i
bγρ

=

∑ , where ρ is the rank of the off-diagonal

block that connects the two diagonal blocks to be merged. As the merges proceed up the

tree, each block itself may be the result of a previous merge of smaller blocks. The

approximate computational time to merge the higher subtree is the sum of the

approximate merging time for each level of that subtree:

2 3 4

1

2 3

3
2 1

0
1 2 1

1 1, ,

0

2 max

i

f f f
f

i
f

f f

h K K k K
k

i j K
K K k

k

b
t

p

ρ
γ

−

′ + +
=

−
= =

+ +
=

 =

∑
∑

∑
 (3.6)

where ()max , 1f left righth h h h′ = = − is the height of the higher subtree,

1

1

1

mod , 2
2 2

mod , 2
2 2

f righti i
f

f lefti i

q f q f if h h
K

f f if h h

−

−

 − − ′− = =
 ′− =

, (3.7)

()2 1 2 1f iK j= − + , (3.8)

3 0
f rightf

f left

f if h h
K

if h h
′ =

= ′ =
, (3.9)

1
4 32 2f i i fK j K−= − + , (3.10)

 63

2 3

2 3

f f
right

f f
left

q K K if h h
k

f K K if h h
′ − − =≤ ′− − =

.

The computational time for the final merging operation is approximately

3

2 2 fn
t

p
ρ

γ= . (3.11)

Equations 3.6 and 3.11 can be used to compare the computational time of a balanced

merge and an unbalanced one with lower rank. Assume the off-diagonal block for a

balanced final merging operation is located at position m and the rank of mC is mρ .

Correspondingly, assume the off-diagonal block of the final merging operation with the

lowest rank is at position l and the rank of lC is lρ .

Theorem 3.1 An unbalanced final merging operation with the lowest rank has less

computational time per processor than a balanced final merging operation with higher

rank only when

2 3 4 2 3 4

1 1

2 3 2 3

3 3
2 1 2 1

1 1
0 0

3 2 1 2 1
1 11, , 1, ,

0 0

max max

i i

l l l m m m
l m

i i
l m

l l m m

K K k K K K k Kh h
k k

m l
i ij K j K

K K k K K k
k k

b b
p
n

p p

ρ ρ
ρ ρ

− −

+ + + +− −
= =

− −
= == =

+ + + +
= =

 − > −

∑ ∑
∑ ∑

∑ ∑
 (3.12)

where lh is the height of the merge tree with the lowest rank for the final merging

operation, mh is the height of the merge tree with balanced final merging operation, and

1
lK , 2

lK , 3
lK , 4

lK , 1
mK , 2

mK , 3
mK and 4

mK can be computed by Equations 3.7 – 3.10.

Proof. Computational time per processor for an unbalanced merge tree with the lowest

rank for the final merging operation is

 _ _
_ 1 2

low rank low rank
low rankt t t= +

2 3 4

1

2 3

3
2 1

3
0

2 1
1 1, ,

0

2 2max

i

l l l
l

i
l

l l

K K k Kh
k l

i j K
K K k

k

b
n

p
p

ρ
ργ γ

−

+ +′
=

−
= =

+ +
=

 = +

∑
∑

∑
 (3.13)

 64

where ()_ _max , 1low rank low rank
l left right lh h h h′ = = − is the height of the higher subtree of the

unbalanced final merging operation,

_
1

1
_

1

mod , 2
2 2

mod , 2
2 2

low rank
l righti i

l

low rank
l lefti i

q l q l if h h
K

l l if h h

−

−

 − − ′− = =
 ′− =

,

()2 1 2 1l iK j= − + ,

_

3 _0

low rank
l rightl

low rank
l left

l if h h
K

if h h
′ == ′ =

,

and 1
4 32 2l i i lK j K−= − + .

 Computational time per processor for a merge tree with balanced final merging

operation is

 1 2
balance balance

balancet t t= +

2 3 4

1

2 3

3
2 1

3
0

2 1
1 1, ,

0

2 2max

i

m m m
m

i
m

m m

K K k Kh
k m

i j K
K K k

k

b
n

p
p

ρ
ργ γ

−

+ +′
=

−
= =

+ +
=

 = +

∑
∑

∑
 (3.14)

where ()max , 1balance balance
m left right mh h h h′ = = − is the height of the higher subtree of the

balanced final merging operation,

1

1

1

mod , 2
2 2

mod , 2
2 2

balance
m righti i

m

balance
m lefti i

q m q m if h h
K

m m if h h

−

−

 − − ′− = =
 ′− =

,

()2 1 2 1m iK j= − + ,

3 0

balance
m rightm

balance
m left

m if h h
K

if h h
′ == ′ =

,

and 1
4 32 2m i i mK j K−= − + .

 65

 Decision of which off-diagonal block to use for the final merging is based on the

difference between Equations 3.13 and 3.14. If the difference between the ranks of the

off-diagonal block in the middle and the one with the lowest rank satisfies the following

condition:

_ 0balance low rankt t− > , (3.15)

then the off-diagonal block with the lowest rank will be used for the final merging

operation. Otherwise, the off-diagonal block in the middle will be preferred. Replacing

balancet and _low rankt in Inequality 3.15 with Equations 3.13 and 3.14 yields Inequality 3.12

and completes the proof.

 As examples, suppose we are given a symmetric block tridiagonal matrix M of order

2000 with 100 diagonal blocks of equal size 20. Each diagonal block is assigned 1

processor; thus, the total number of processors available is 100. If all the off-diagonal

blocks have the same rank, then the final merging operation should be located at off-

diagonal block 50 in the middle of M . If only one off-diagonal block has rank of 0, then

it should be chosen for the final merging operation no matter where it is located. If all

off-diagonal blocks including the one in the middle have full rank 20 and only one off-

diagonal block has rank 10, then based on Theorem 3.1, the algorithm should choose the

off-diagonal block with rank 10 for the final merging operation if its index is within the

range 70 – 130 for minimal execution time.

3.4.3 Deflation

The efficiency of BD&C greatly depends on deflation. With lowered accuracy

requirement, the occurrence of deflation is very high and the amount of work in the

eigenvector accumulation is significantly reduced.

Consider the eigenvector accumulation stage (see Section 2.1.3). Let Z be a block

diagonal eigenvector matrix of subproblems, and V be the eigenvector matrix of TD yy+ .

Because V is modified to type deflateV P P GV= , Z must be modified to T
deflate typeZ ZG P P= ,

where G is an orthogonal matrix that accumulates all Givens rotations to deflate

eigenvalues in TD yy+ , deflateP is the permutation matrix that moves all deflated

 66

eigenvectors of V to the bottom, and typeP is the permutation matrix that groups columns

of deflateZ ZP= into four types. Those four types are: 1) matrix columns with zeros in

lower part; 2) matrix columns that are dense; 3) matrix columns with zeros in upper part;

and 4) matrix columns that are related to deflated eigenvectors. In BD&C and PBD&C,

only Z for the first rank-one modification in a merging operation has such a matrix

structure (see Figure 2.2). Z for the rest of the rank-one modifications has only two types

of columns: non-deflated and deflated (see Figure 2.3). The purpose of permuting by typeP

is to reduce the amount of computation in the matrix multiplication Q ZV= .

In a sequential implementation, the cost of matrix permutation is trivial compared to

the computational cost. In a parallel implementation, the cost of communication between

processors can not be neglected for frequent swaps of matrix columns. Suppose the

deflated eigenvectors of Z in the second rank-one modification of a merging operation

are distributed as shown in Figures 3.15 and 3.16. The 2 2× processor grid in this

example has the shape 0 1

2 3

p p
p p

 with 4p = , 2r = and 2c = . The column blocks with

vertical lines represent the matrix columns that are grouped into the deflated type.

If deflated eigenvectors in Z are permutated to the right end of the matrix to construct

Z as in the sequential algorithm and as shown in Figures 3.17 and 3.18, communication

costs are incurred by swapping matrix columns residing on different processor columns.

With high deflation rate, frequent column swaps will occur, and the performance will be

degraded.

 A strategy used in the ScaLAPACK subroutine PDSYEVD for tridiagonal eigenvalue

problems is to permute columns of Z that reside local on each processor column into

four groups shown in Figures 2.2 and 2.3, instead of a global permutation [92]. In that

implementation, the deflation counted is the minimum of the deflation on each processor

 67

 Figure 3.15 Matrix Z before grouping – matrix point of view.

 Figure 3.16 Matrix Z before grouping – processor point of view.

 68

Figure 3.17 Group columns based on their structures – matrix point of view.

Figure 3.18 Group columns based on their structures – processor point of view.

 69

column as illustrated by the column blocks with vertical lines in Figures 3.19 and 3.20.

Since processor column 0

2

p
p

 has two column blocks of deflated eigenvectors and

processor column 1

3

p
p

 has only one column block of deflated eigenvectors, only one

column block of deflated eigenvector on 0

2

p
p

 will be counted, and the column marked

with diagonal bars is not counted as deflated eigenvectors. Therefore, the number of

deflated eigenvectors incorporated into the algorithm usually does not equal to the

number of all deflated eigenvectors, because each processor column typically has a

different deflation count. In an example of a most pathetic case, imagine that half of the

eigenvectors are deflated, and they are all on processor column 0

2

p
p

. No eigenvectors on

processor column 1

3

p
p

 are deflated. Then the global deflation is zero, not 50%. However,

since matrices are distributed in 2D block cyclic pattern, such a case would be extremely

rare.

In ScaLAPACK subroutine PDSYEVD, good speedup is obtained although the matrix

multiplications performed are not of minimal size [92]. In our test cases of PBD&C as

given in Section 5, using the same strategy for matrix re-grouping, an average of 5% less

deflation count is observed, which does not significantly degrade the performance of

PBD&C.

3.4.4 Complexity of merging

The time complexity of merging operations depends on the matrix structure, i.e., the

size of each subproblem to be solved, the approximate ranks of the off-diagonal blocks,

the degree of deflation, and the time parameters for floating-point operation and data

communication. Those parameters depend both on machine specifications and network

 70

 Figure 3.19 Move deflated eigenvectors within processor column –
 matrix point of view.

 Figure 3.20 Move deflated eigenvectors within processor column –
 processor point of view.

 71

connection that could vary drastically from system to system. In the analysis of

computational and communication complexity of merging, we assume no deflation

because this parameter varies with matrices to be computed and cannot be predicted

before computation starts.

 If the sizes of two subproblems to be merged are 1b and 2b with 1 2b b b+ = , submatrix

1 has been assigned 1 1 1p r c= × processors, and submatrix 2 has been assigned 2 2 2p r c= ×

processors with 1 2p p p r c+ = = × , r c p= = , and the rank of a merging operation is

ρ , then the dominant cost of computation and communication per processor without

deflation is that of matrix redistribution and parallel matrix multiplications.

Using a ring topology for matrix multiplication, the total cost for one matrix

multiplication can be approximated by [94]

 ()
32 2 2 3multiplication

b bt b p
p p

γ α β

= + + − +

.

Using Equation 3.3, the cost of redistributing matrix blocks is

()2 21 2
1 2

1 1 2 2(,) (,) (,) (,)redistribution
p pt p b b

GCD r r GCD c c GCD r r GCD c c
α β

= + + +

.

Total cost for a merging operation includes one matrix redistribution and ρ matrix

multiplications:

_one merge redistribution multiplicationt t tρ= +

()

()

2 21 2
1 2

1 1 2 2

3

(,) (,) (,) (,)

2 2 2 3 .

p pp b b
GCD r r GCD c c GCD r r GCD c c

b bb p
p p

α β

ρ γ α β

= + + + +

+ + − +

 (3.11)

To simplify the complexity analysis, suppose we have a block tridiagonal matrix M

with q diagonal blocks of equal sizes b , each off-diagonal block has same approximate

rank ρ , and q is power of 2. The depth of the merging tree is therefore 2logd q= .

Assign s processors to each diagonal block with s r c= × being a square subgrid. The

 72

total number of processors in use is p sq= . Under the above assumptions, the total cost

for all the merging operations is given by

_ _
1

d
i

all merge one merge
i

t t
=

= ∑

()

2 1 3
1 1

1

2 1 2
1 2 2

2 2 2 4 2 6

2 6 22 2
2

id
i i i

i

i i
i i

i

b s b s
s

b bqb b
s

ργ α ρ ρ ρ

β ρ ρ

+
+ +

=

+
− +

= + + + − +

 −

+ +

∑

 ()
3 2

28 3.14 4 8
3
n np n n n

p p
ρ γ ρ α ρ ρ β

≈ + + + + + +

 ()
2nb nO O p O nb
p p

ρ ργ ρ α β

+ + +
. (3.12)

Since the time for problem subdivision and subproblem solution is trivial compared to

the time of subproblem synthesis and merging operations dominate computational and

communication complexity of the synthesis step, the total cost of PBD&C can be

approximated by the leading terms of the merging cost in Equation 3.12, i.e.,

 ()
3 2

2
&

8 3.14 4 8
3PBD C
n nt p n n n

p p
ρ ργ ρ α ρ β

≈ + + + + +

. (3.13)

Among those leading terms, 24 p nα β+ is the cost for redistributions of all

submatrices, and
38

3
n

p
ρ γ is the computational cost, which equals that of the sequential

BD&C divided by the number of processors p . Other leading terms in the

communication cost are those incurred by data transfer in matrix multiplications.

With a high percentage of deflation, which usually occurs with a lower accuracy

requirement for the computed eigenpairs, the cost of computation can be greatly reduced.

Equation 3.13 also shows one limitation of the PBD&C: If the ranks of the off-diagonals

are high, especially the rank for the last merging operation, the time complexity of

 73

PBD&C increases as a multiple of n3. Therefore, block tridiagonal matrices with low

ranks for off-diagonal blocks are preferred whenever possible.

 74

4 Toward block tridiagonal matrix

Most matrices generated from real application do not have block tridiagonal structure

except for the trivial case of 2q = . Some of them may have usable structure, and some

may not. In either case, pre-processing techniques are necessary to transform matrices

into block tridiagonal form. The type of pre-processing techniques used depends on the

characteristics of the original matrix, which we will divide into two groups.

 The first type includes matrices that are “effectively” sparse, meaning that most of

their entries can be neglected without affecting their eigenvalues to the prescribed

accuracy. For those matrices, threshold methods and symmetric permutation will be

applied to the original matrix in an effort to obtain a suitable block tridiagonal matrix.

 The second type includes matrices without properties useful for compressing into

blocked form with little computational effort. For these matrices, orthogonal

transformations will be applied to reduce the original matrix to a block tridiagonal matrix.

4.1 Parallel block tridiagonalization (PBT) of “effectively” sparse

matrix

 If an input dense matrix A is “effectively” sparse, the parallel block tridiagonalization

(PBT) algorithm will be used to construct a block tridiagonal matrix to approximate A .

The differences in eigenvalues of the resultant block tridiagonal matrix and the original

matrix are bounded by Aτ , where τ is the prescribed tolerance. In this section, we first

discuss the disadvantage of using a 2D block cyclic matrix distribution in PBT, followed

by the 6-step PBT implementation using a 1D column block matrix distribution.

4.1.1 1D column block matrix distribution for PBT

The block tridiagonalization (BT) algorithm [4] is heuristic and inherently sequential.

The floating-point operations in the algorithm are mainly comparisons and additions, and

typically its operation count is ()2nO [4]. Since the original matrix A is symmetric, an

operation on any entry ija inevitably involves its symmetric counterpart jia . If the matrix

 75

is not distributed properly, the performance of PBT could degrade severely as the matrix

size n and the number of processors p increases.

The 2D block cyclic matrix distribution, which is frequently used in scalable parallel

dense matrix algorithms, is not the most suitable data distribution pattern for the task of

block tridiagonalization by the BT algorithm. As an example, in the target threshold step

of the BT algorithm (see Section 2.2.1, step 4), the sum of the absolute values of the

elements to be eliminated in each column of matrix A′′ is monitored. Matrix elements are

traversed diagonally in the order shown in Figure 2.11. If the parallel implementation

directly follows this strategy, for each pair of symmetric entries checked, there will be

two types of communications: 1) two send/receive between the two processors that hold

ija and jia so that they can determine whether the symmetric matrix entries can be

dropped simultaneously; 2) one broadcast so that all other processors containing elements

in those two columns can update the column sums of the error matrix E . For a processor

grid with p r c= × processors where r is the number of rows and c is the number of

columns in the processor grid, communication overhead invoked by type 1) is of ()2O n ,

and that invoked by type 2) is of ()2 logO n r . To reduce the communication overhead,

one possible alternative is to implement the sequential algorithm in blocked pattern as

shown in Figure 4.1 where matrix A is distributed on a 2 2× processor grid.

The sum of the dropped elements can be checked block by block along the off-diagonals.

But even so, the communication cost still sums to ()()
2

2 1 log
b

n r
n

α β+ + , which is a

function of ()2 1 logn r+ since bn is a constant.

 As in the BT algorithm, the matrix must be traversed column-wise numerous times in

the PBT algorithm. Based on this fact, intuitively, a 1D column block distribution with

n p matrix columns assigned to each processor, as shown in Figure 4.2, for the matrix is

most desirable, and will be used for the PBT algorithm.

 If the original input matrix A is distributed in a 2D block cyclic pattern, then it must

be redistributed from 2D to 1D for the PBT algorithm. If we assume that the system

 76

× × × × × × × ×
 × × × × × × × ×
× × × × × × × ×
 × × × × × × × ×
 × × × × × × × ×

× × × × × × × ×

 × × × × × × × ×

× × × × × × × ×

 Figure 4.1 Traverse off-diagonals block by block.

A1

P0

A2

P1

A3

P2

…

…

Ap

Pp

 Figure 4.2 Matrix A distributed in column blocks.

P2

P0

P3

P2

P1

P2

P0

P3

P0

P3

 77

buffer is large enough so that each message can be sent and received without being

partitioned into several smaller packages and point-to-point communication (i.e., send

and receive) cannot be overlapped, then the total communication cost in the worst case

for matrix redistribution from 2D block cyclic pattern to 1D column block pattern is

 βα 22
12 npt DD +=→ .

After the matrix has been redistributed, each processor holds pn / columns, and the

parallel block tridiagonalization is then applied.

4.1.2 The 6-step PBT algorithm

As in the sequential BT algorithm, there are also 6 steps in the PBT implementation,

and the accuracy tolerance τ is partitioned as 1 2τ τ τ= + for target threshold and optional

target block reduction, respectively.

 Step 1. Parallel global threshold with Aτ .

 This step is an embarrassingly parallel process. Every processor drops all elements

Aaij τ< , and stores indices of all elements Aaij τ≥ in compressed sparse row

(CSR) format. The resultant matrix A′ is expected to be very sparse and all its nonzero

entries can be stored on one processor. Therefore, after thresholding, each processor

sends its vectors of indices of nonzeros to a master processor. The master processor

stores indices of all the nonzeros of A′ . The collection of indices of nonzeros takes

()12 p n nnzα β+ + communication time where 1nnz is the number of nonzeros in A′ . No

floating-point operations are involved in this step.

 Step 2. Matrix reorder.

The most thoroughly studied and parallelized sparse matrix ordering algorithms are

nested dissection and minimum degree algorithms, which are used to minimize the fill-

ins during LU factorization of matrices in sparse linear systems [53]. Scalable and

 78

efficient parallel implementations of those algorithms such as ParMetis [60] are available.

However, the purpose of matrix ordering in the PBT is to minimize the bandwidth of a

sparse matrix, and the nested dissection and minimum degree methods do not directly

attack this objective.

Since the matrix after global threshold is expected to be very sparse and can be stored

on the local memory of one processor and the reordering consumes a small fraction of

computational time of the PBT, we do not parallelize the reordering step. Instead, only

the master processor that contains the indices of all nonzeros of A′ performs matrix

reordering. The Gibbs-Poole-Stockmeyer (GPS) algorithm [23, 46, 64], , which directly

attacks the bandwidth minimization problem, is used in the BT algorithm and will be

used in the PBT algorithm, while all other processors stay idle. After the permutations are

determined, the master processor broadcasts the permutation matrix P to all other

processors.

 Step 3. Parallel symmetric permutation of A .

The permutation matrix P from step 2 is used to permute the matrix A to produce the

matrix APPA T=′′ . Parallel symmetric matrix permutation can be an expensive step. As

shown by the blue arrow in Figure 4.3, if two matrix columns are on different processors,

the swap of those two columns invokes communication. In such a case, the

communication cost of each swap is 2 2nα β+ . In 1D column block distribution,

permutation of matrix rows does not involve any communication. If two rows of a matrix

are to be swapped, local data on each processor are exchanged as shown by the red arrow

in Figure 4.3. Thus, the worst-case communication cost is bounded by 2n nα β+ .

 79

 c

ol
um

n
i

 c

ol
um

n
j

row i

row j

 P0

P1

…

 Pp-1

 Pp

 Figure 4.3 Swaps of rows and columns in parallel matrix permutation.

Because of the potentially heavy communication, matrix permutation is executed only

when it can significantly reduce the bandwidth of A′ . For the PBT algorithm, we permute

A when the bandwidth can be reduced by at least 20%.

 Step 4. Parallel target threshold with 1 Aτ .

 In the sequential BT algorithm, all elements far away from the diagonal of matrix A′′

are eliminated if their influence on the error of any eigenvalue is less than 1 Aτ . The

resultant matrix is A A E′′′ ′′= + , with 11
E Aτ≤ . Here one traverses the off-diagonals

of A′′ while checking the 1-norm of the error matrix E . For each element ija′′ in the

lower triangular part of matrix A′′ that is checked for elimination, its symmetric counter

part jia′′ in the upper triangular of A′′ must also be checked. Elements ija′′ and jia′′ can be

 80

dropped only when the sum of the absolute values of the dropped elements in both the i-

th and the j-th column of A′′ is less than 1 Aτ .

In a parallel matrix distribution, chances are that entries ija′′ and jia′′ are often on two

different processors requiring communications between those two processors, in order to

inform each other whether ija′′ and jia′′ can be dropped simultaneously or not. On the

average, this leads to ()2O n communications.

The communication overhead can be reduced drastically if elements on each processor

can be checked independently without communication. For this purpose, the target

threshold algorithm is modified. The error bound 1τ is further split into two equal parts of

1
1
2

τ , and the error matrix E is also split into two parts: 1 2E E E= + , where 1E is an

upper triangular matrix and 2E is a lower triangular matrix.

The lower triangular part of A′′ is first checked column by column. An element in the

lower triangular part of A′′ can be eliminated if the sum of the absolute values of the

dropped elements in that column is less than 1
1
2

Aτ . This guarantees that the error

matrix 1E satisfies 1 11

1
2

E Aτ≤ . After that, the sum of the absolute values of all

dropped elements in each column of A′′ is broadcasted so that each processor contains a

copy of the accumulated error for each matrix column. Then the upper triangular part of

A′′ is checked in a similar way. This guarantees that the error matrix 2E which contains

all the dropped elements in the upper triangular part of A′′ satisfies 1 2 11
E E Aτ+ ≤ .

For each eliminated element ija′′ , its symmetric counter part jia′′ is not necessarily

eligible for elimination, and vise versa. In general, from the above procedure, 1E does not

equal 2
TE . Therefore, the sum of those two matrices, 1 2E E+ , is not symmetric. Since

matrices E and A′′′ must be symmetric, we need to symmetrize 1 2E E+ . For the

 81

i-th column and row of A′′′ , 1 i n≤ ≤ , the row index of the last nonzero of column i and

the column index of the last nonzero of row i is compared. The larger index is chosen as

the index of the last nonzero for the i-th row and column as shown in Figures 4.4 and 4.5.

The total number of communication in this modified parallel target threshold algorithm is

only ()4 4 logn pα β+ .

 By using the above approach in our parallel target threshold algorithm, we may not be

able to drop as many elements as we mathematically could and as in the sequential BT

algorithm. However, the difference in the bandwidths produced by BT and PBT is

typically small (less than 10%) as our test results of application matrices show.

 Step 5. Covering A′′′ .

 After the parallel target threshold step, all processors obtain the row indices of the last

nonzero entries in each column of matrix A′′′ . Each processor redundantly determines

the sizes of the diagonal blocks as in the sequential BT algorithm, so that the resulting

block tridiagonal matrix contains all the matrix elements that are effectively nonzero (i.e.,

nonzeros in A ′′′).

×
×
×

×
×
×

×
 × × × ×
 × × × × ×
 × × ×
 × × × × × ×

× × × × ×
 × × × ×

×

× × × ×

× × ×

× ×

×

×

×
 × × × ×
 × × × × ×
 × × ×
 × × × × × ×

× × × × ×
 × × × ×

× × × ×

×
×

× × × ×

× ××
×

×
×

×

×

×
×

 Figure 4.4 A′′′ after separate lower Figure 4.5 Symmetrize A′′′ by
 and upper triangular adding back nonzeros.
 eliminations.

 82

 Step 6. Parallel target block reduction using 2 Aτ .

The sequential BT algorithm provides the option of Target Block Reduction (TBR) to

produce a few small blocks in matrix A′′′ for a lower computational complexity in the

merging operations of the BD&C algorithm. In a merging operation of BD&C, a lower

rank of the off-diagonal block leads to a lower computational complexity. Since the ranks

of off-diagonal blocks are not available during block tridiagonalization, we use the

smaller dimension of an off-diagonal block as an approximation to its rank. TBR uses

sensitivity analysis to check elements in each column/row of an off-diagonal block from

outside toward inside for elimination. For the sensitivity analysis, approximations to the

eigenvectors are required (see Section 2.2.1 step 6). If approximate eigenvectors are not

available, we may set 1τ τ= and 2 0τ = so that this optional step is not applied.

For the parallel implementation of sensitivity analysis, we assume that the approximate

eigenvector matrix is distributed in 2D block cyclic pattern on a processor grid with r

processor rows and c processor columns as would typically be the case. When rows of

the approximate eigenvector matrix are required, they are sent from several processors to

one processor. That is, for each entry ija′′′ to be checked, the i-th and j-th row of the

eigenvector matrix need to be sent to the processor that possesses ija′′′ (see Equation 2.7),

which costs 2 2c nα β+ communication time. When several matrix entries in the same

column are checked for elimination, the strategy used in parallel TBR is to send all the

relevant rows in the eigenvector matrix to the processor that is applying the sensitivity

analysis. For example, as shown in Figures 4.6 and 4.7, if we want to check elements 25b ,

52b , 35b and 53b of a matrix B for elimination, rows 2, 3, and 5 of the eigenvector matrix

Z (red shade in Figure 4.7) are sent to 2P , since 25b and 35b are both on processor 2P .

The updated block size will then be broadcast to all other processors.

To find diagonal blocks eligible for sensitivity analysis, parallel TBR starts with the

smallest diagonal block. If there are several diagonal blocks with the same size, then the

diagonal block closest to the middle of A′′′ will be selected. The reduction of the size of

 83

 Figure 4.6 Check matrix entries Figure 4.7 Rows in the eigenvector
 (2,5), (3,5), (5,2) and (5,3). matrix Z for sensitivity
 analysis.

one diagonal block leads to the expansion of its neighboring diagonal block(s). To avoid

oscillation in block sizes, after a diagonal block has been compressed, it should not be

expanded any more. Next, the second smallest diagonal block is selected in a similar

manner for sensitivity analysis, and so on.

 In the sequential BT algorithm, all eligible diagonal blocks are checked for block size

reduction. However, this may be too costly for PBT since communication overhead for

collecting and distributing rows of the eigenvector matrix can be prohibitive. In out tests,

the TBR step usually takes about one-half of the execution time of PBT. Since our goal is

to find small blocks in an attempt to reduce the complexity of the last few merging

operations of PBD&C, we restrict the number of diagonal blocks to be checked to 3.

When the number of matrix elements to be checked in a column of an off-diagonal

block is large, the processor that receives the eigenvector information may not have

enough work space to store the required rows of eigenvectors. Thus, after step 5, when

the preliminary block sizes have been determined, we first check whether the work space

 84

of each processor has enough space to accommodate eigenvectors for the sensitivity

analysis. If there is not enough space, then the target block reduction is skipped and a

second round of target threshold is applied with tolerance 2 Aτ .

4.1.3 Complexity of PBT

In the sequential BT, the computational complexity and the number of data accessed are

both ()2O n [4]. In PBT, computational complexity per processor is ()2O n p ; thus, the

extra communication cost becomes the dominant part of the execution time since the time

to transfer one floating-point number is typically much longer than to execute a floating-

point operation.

 Table 4.1 shows total computational and communication complexities for each step of

PBT as well as the complexity of matrix redistribution between 2D and 1D at the

beginning and end of PBT. In Table 4.1, 1nnz and 2nnz are the number of nonzero

elements of matrices A′ and A′′′ , respectively (typically 1 2nnz nnz n<). In Step 6, k

denotes the number of matrix elements that are checked for elimination (typically k << n),

and c is the number of processor columns in the 2D distribution of the eigenvector

matrix.

As a pre-processing step for the PBD&C algorithm, the computational cost of PBT is

typically minor compared to the computational cost of PBD&C. However, the scalability

of the PBT algorithm may not be comparable to those algorithms with high

computational complexity because of its relatively large communication overhead. We

parallelize the block tridiagonalization algorithm with large application matrices in mind.

Those matrices must be stored on distributed memory, and parallelization of the BT

algorithm becomes essential for computing their eigensystems.

 85

 Table 4.1 Computational and communication complexities of PBT.

Steps Comparison and

local data movement

Communication

cost

Addition and

multiplication

0. Matrix redistribution

 2D ⇔ 1D

 2 22 2p nα β+

1. Global threshold 2n p ()12 p n nnzα β+ +

2. GPS reorder 3 23 2n [45] () logn pα β+

3. Symmetric

 permutation

2n p 2n nα β+

4. Target threshold ()2
2n nnz p− ()4 4 logn pα β+ ()2

2n nnz p−

5. Covering n

6. Target block

 reduction

2n

()2 2k c nα β+

2kn

4.2 Parallel orthogonal block tridiagonal reduction (POBR) of dense

matrix

The parallel orthogonal block tridiagonal reduction step reduces a dense matrix A to

block tridiagonal form using a sequence of QR factorizations on column blocks of A , as

shown in Figures 4.8 and 4.9. The resultant block tridiagonal matrix is similar to a

banded matrix except that the last off-diagonal block is not a triangular.

 There are parallel implementations [9, 99] of the orthogonal bandwidth reduction

algorithm. The first attempt [9] of parallelization sets the restriction that the algorithmic

panel width bp , bandwidth of the reduced banded matrix bw and the block size of the

2D block cyclic matrix distribution bn are all the same, and the matrix size n is a

multiple of bp . A later implementation [99] using PLAPACK has the flexibility of using

any values for bp , b and bn , but the performance is not as satisfactory as the first

 86

 Figure 4.8 QR factorizations of column-blocks of a matrix.

 Figure 4.9 Block tridiagonal matrix after orthogonal reduction.

 87

implementation [99]. In Section 4.2.1 we discuss how the algorithmic panel width bp ,

the size of tridiagonal blocks b and the size of parallel matrix distribution block bn are

chosen for our algorithm.

4.2.1 Selection of block size b and panel width pb

A critical issue in the orthogonal reduction from a dense matrix to a block tridiagonal

one is how to choose the algorithmic panel width bp of each QR factorization.

First, we consider the relationship between b and bp . Block size b directly affects the

computational complexity of the PBD&C merging operation. When b is large, the rank

of the off-diagonal blocks tends to be large as well, which increases the time complexity

of the PBD&C merging operation. Therefore we wish to obtain a block tridiagonal matrix

with small b . However, as explained in Section 2.3.3, b should not be smaller than bp ,

so we set bb p= . If we choose a small panel width bp , the resultant block size b is also

small, but we may not be able to obtain full performance of level 3 BLAS operations. If

bp is large, we may obtain slightly better performance during the reduction as shown in

Figure 2.20; but then b will be large and the rank of the off-diagonal blocks will likely

be large as well. The reduction of execution time in POBR is not likely to compensate the

increased execution time from PBD&C.

Second, we consider the relationship between bn and bp . Since matrices are

distributed using ScaLAPACK 2D block cyclic pattern, to reduce data transfer between

processor columns and the complexity of local index calculation, bp should equal bn , as

the ScaLAPACK reduction subroutine PDSYTRD does. This guarantees that QR

factorization of each matrix column block is performed on only one processor column,

and does not involve row-wise communication in the processor grid.

From the above two restrictions bb p= and b bp n= , we fix the sizes of panel width

and diagonal blocks of the reduced block tridiagonal matrix to be the block size of the

parallel 2D block cyclic matrix distribution, i.e., b bp b n= = .

 88

4.2.2 Complexity of parallel orthogonal reduction

To be consistent with notation used in Section 2.3, matrix column block

()()1: , 1 1:b b bi in n i n inG A + − += is the i-th panel to be factorized, and () ()()1 1: , 1 1:b bi i n n i n nA A − + − += is the

lower right principal submatrix of A at the i-th stage of orthogonal reduction as shown in

Figures 2.16 and 2.19. For convenience of reference, we replicate Figure 2.19 here as

Figure 4.10. We partition iA into 2 2× submatrix blocks:

 11 12

21 22

b b

i i
b

i i i
b

n n in

nA A
A

n inA A

−

= −

, (4.1)

where 21
i

iA G= is the submatrix to be factorized into i i iG Q R= , and 22
iA is the submatrix

to be updated from both sides by iQ .

 In POBR, there are four steps to compute a sequence of bn Householder

transformations and reduce column block ()()1: , 1 1:b b bi in n i n inG A + − += where 1 i q≤ ≤ and

1
b

nq
n

= −

. These four steps are:

 Figure 4.10 Matrix A at the i-th stage of orthogonal reduction.

1B

 iA

1
TC

1iB − 1
T
iC −

1C

1iC −

Gi

 89

 1) Compute QR factorization of each column block iG . The computed Householder

 vectors overwrite corresponding columns of iG .

2) Construct blocked Householder transformation in the form of 1b

T
i i nI YW H H− = ,

 where (), b bn in n
i iY W R − ×∈ , iY holds columns of Householder vectors ,1i

j by j n≤ ≤ , and

 iW holds vectors ()2
Ti i i

j j jy y y .

3) Compute submatrix ()b bn in n
iZ R − ×∈ using 22 22

1
2

i T i
i i i i iZ A W YW A W= − where

 ()22 1: , 1:b b

i
n i n n i nA A + += .

 4) Apply symmetric rank-2k update 22 22
i i T T

i i i iA A YZ Z Y= − − . A symmetric rank-2k

 update requires only half of the computation as that of a non-symmetric update, but

 the communication cost cannot be reduced.

 The computational and communication complexity of each step is listed in Table 4.2.

For a total of 1
b

nk
n

= −

 blocks and bm n in= − for 1 i k≤ ≤ , the total floating-point

operation count for all processors is

2 2 2 3

1
4 8 4 2 2

k

reduction b b b b b
i

flops m n mn mn n n
=

= + + + −∑

 ()()2 2 2 3

1
4() 8 4 2 2

k

b b b b b b b
i

n in n n in n n n n
=

= − + − + + −∑

 3 2 2 2 2 2 2 2 34 22 4 4 2 2 2 2 2 2
3 3b b b b b b b b bn n n nn n n nn n nn nn n nn n= − + + − + − + − − +

 ()3 2 2 2 34 162 1 2 2
3 3b b b bn n n nn n n= + + − − +

 ()3 24
3 bn O n n= + . (4.2)

 With a total of p processors, the floating-point operations executed by each processor

is approximately

 90

 Table 4.2 Computational and communication complexities of POBR for
 reduction of one matrix column block bm n

iG ×∈ where bm n n i= − .

Step Computational complexity Communication complexity

1) Compute QR

factorization of iG
()()

1

4 1 1
bn

b
j

m j n j
=

− + − +∑ ()()() ()
1

log 2
bn

b b
j

r n j r n jα β α β
=

+ − + + + − ∑

2) Construct blocked QR

factorization TI YW− 1
4(1)(1)

bn

j
j m j

=

− − +∑
1
(log)()(1) [(1)]

bn

j
r j r jα β α β

=

+ − + + −∑

3) Compute

22 22
1
2

T
i i i i iZ A W YW A W= −

2 22 4 2b b bm n mn mn+ + () () () ()()2 22 log log logb
b b

mnr r n r n
c

α β α β α β + + + + +

4) Compute

22 22
T T

i i i iA A Y Z Z Y= − −

()2 1 bm m n+ 2log 2log .b bmn mnr c
c r

α β α β + + +

 Total

2 2

2 3

4 8 4

2 2
b b b

b b

m n mn mn

n n

+ + +

−

()()() ()

() () ()

()() () ()

2

2

1 log 2 1

2 log log

log 2 log 2 log .

b b b b

b
b

b b
b

n n r r n n r

mnr r n
c

mn mnr n r c
c r

α β α β

α β α β

α β α β α β

+ + + + − +

 + + + +

 + + + + +

91

34

3
per proc
reduction

nflops
p

γ≈ . (4.3)

 The total communication cost for each processor is

()()() () ()
1

1 log 2 1 4 log
k

comm b
reduction b b b b

i

mnt n n r r n n r r
c

α β α β α β
=

 = + + + + − + + +

∑

 () () ()() ()2 2log log 2 log b
b b

mnr n r n c
r

α β α β α β + + + + +

 () ()1 2 log log
b

n r O r O c
n

α

≈ − + + +

 () ()2 2log log logr cn O n r O nr
c r

β + + +
 (4.4)

In POBR, the number of floating-point operations in steps 3) and 4) adds up to

()3 24 1
3 2bn n n O n − − +

. The ratio of BLAS 3 operations is then approximately

4
3

31
2

b

b

n
n n

−
+

. With fixed block size bn for parallel data distribution, we can have more

than 90% level 3 BLAS operations if 21 bn n> . Figure 4.11 shows the ratio of level 3

BLAS operations in POBR with different matrix sizes and block sizes. Eigenvalue

problems generated from application problems in scientific computing are usually very

large so that bn n . Therefore, we are guaranteed to have high ratio of BLAS 3

operations in POBR and would expect POBR to have good performance for such

matrices.

Assume the processor grid is a square grid with r c p= = , then the estimated

approximate speedup of block tridiagonal reduction can be expressed by

92

 Figure 4.11 Ratio of level 3 BLAS operation in POBR, block size of
 parallel matrix distribution 32,64bn = .

 () ()
3

23

4
3,

3 log24
3 b

n
Speedup n p

n pn pn
p n p

γ

γ α β

=

+ +

()

2

9 log31
2 4b

p
p pp p

n n n

βα
γ γ

=

+ +

 (4.5)

With Equation 4.5, a theoretical speedup of POBR can be calculated if machine

parameters α , β and γ are known. On Cheetah, we have 7 sα µ= and 5.7nsβ = from

message passing latency and bandwidth benchmarking results [38] and 0.315nsγ = from

performance test of vendor optimized matrix multiplication subroutine DGEMM [38].

The theoretical speedup curves are shown in Figure 4.12 with 32bn = .

93

 Figure 4.12 Theoretical speedup model of POBR.

94

5 Numerical results

In this section, we present results of accuracy and performance tests. Our tests were run

on the IBM p690 system nicknamed Cheetah in Oak Ridge National Laboratory. System

specifications and important benchmarking results are listed in Table 5.1. The

performance of the parallel block tridiagonal divide-and-conquer subroutine PDSBTDC

is compared to the ScaLAPACK divide-and-conquer subroutine PDSYEVD [92]; the

performance of parallel orthogonal block tridiagonal reduction subroutine PDSBTRD is

compared to the ScaLAPACK symmetric tridiagonalization subroutine PDSYTRD [21].

Parallel block tridiagonalization subroutine PDSBTRI is tested separately. Finally the

performance of the parallel approximate eigensolver which uses PDSBTDC, PDSBTRI

and PDSBTRD as core components is tested using application matrices with different

structures.

 The Fortran compiler on Cheetah is IBM's xlf version 8.1. Codes were compiled in

the default 32-bit compile mode and linked to the 32-bit PESSL library [56] which

includes the vendor optimized version of BLAS . The compiler options used are:
 -O4 -qarch=auto -qcache=auto –qtune=auto

 -bmaxdata:0x70000000.

 For the computed eigensolutions of a real symmetric matrix ˆ ˆ ˆ TA X X= Λ where X̂ is

the computed approximate eigenvector matrix and Λ̂ is the diagonal matrix that contains

the computed approximate eigenvalues, we use the scaled residual error

 2

1, ,
2

ˆˆ ˆ
max

i i i

i n

Ax x

A

λ
=

−
=R

and the scaled departure from orthogonality

()

1, , 2
ˆ ˆmax T

ii n
X X I e

n
=

−
=O

to evaluate the accuracy of results.

For all the numerical tests, the number of processors used is a power of 2. We start

from the smallest number of processors that provides sufficient memory to solve the

95

 Table 5.1 Cheetah system specifications and benchmarks [38].

Number of nodes 27

Memory per node 32 GB for most of the nodes

Processors per node 32

CPU frequency 1.3 GHz

Data 32 KB

L1 cache Instruction 64 KB

L2 cache 1.5 MB shared between 2 processors

L3 cache 32 MB off chip

Interconnect switch Federation

Message passing latency 7 µs

Message passing bandwidth 1400 MBs

DGEMM

GFLOPS per processor

3.174 GFLOPS

problems in parallel and verify computational results, and increment the number of

processors up to 512.

5.1 Test matrices

There are three types of matrices in our tests: 1) LAPACK/ScaLAPACK test matrices

with different eigenvalue distributions [27], 2) matrices generated from application

problems in quantum chemistry and condensed matter physics, and 3) random matrices.

Some of those matrices are banded or block tridiagonal, some are dense but “effectively”

sparse, and some are dense without any specific structure. Matrix sizes range from 3,014

to 20,000. In this section, we present representative performance and accuracy results.

The complete set of numerical test results is given in the Appendix.

96

5.1.1 LAPACK/ScaLAPACK test matrices

A banded matrix is a special form of block tridiagonal matrix in that all off-diagonal

blocks are triangular. We use banded matrices with different eigenvalues distributions

generated by LAPACK subroutine DLATMS to test PDSBTDC. Since the computational

complexity of PDSBTDC increases on the order of 3n with the rank of the off-diagonal

block for the final merging operation (see Section 2.1.4), we limit the bandwidth of test

matrices to 20, so that the ranks of the off-diagonal blocks are never greater than 20.

There are six types of matrices in this category with different eigenvalue distributions.

For each type, test matrices are generated for five different sizes: 4,000, 8,000, 12,000,

16,000 and 20,000.

P-clu0. Eigenvalues clustered at machε± , only one eigenvalue is 1± .

P-clu1. Eigenvalues clustered at 1± , only one eigenvalue is machε± .

P-geom. Eigenvalues distributed in a geometric sequence ranging from 1 to machε

with random signs attached to eigenvalues, () 1 1i n
i machλ ε − −= ± .

P-arith. Eigenvalues distributed in an arithmetic sequence ranging from 1 to machε

with random signs attached to eigenvalues, ()() ()1 1 1 1i mach i nλ ε= ± − − − − .

P-log. Logarithm of eigenvalues uniformly distributed in the range from 1 to machε

with random signs attached to eigenvalues.

P-rand. Random eigenvalues uniformly distributed in ()1,1− .

5.1.2 Application matrices

In this section we give a brief description of test matrices generated from the calculation

of the electronic structure for different types of molecules. For each type of molecule,

different test matrices are generated, typically by incorporating different number of

molecules in the model. However, their Fock matrices and eigenvalue distributions look

very similar, except that matrix sizes are different. In most of our tests, we only test the

largest matrix from a molecule family unless otherwise specified.

97

A-alk. Alkane. Matrices are generated from simulating alkane molecules using the

CNDO method [81, 82, 83]. The general molecular formula of an alkane is CnH 2n+2.

Figures 5.1 and 5.2 show the magnitudes of elements of a Fock matrix generated from

C502H 1006 and its eigenvalue distribution. The size of the matrix is 3,014.

A-ala. Polyalanine. Matrices are generated from simulating polypeptide molecules

made from alanine using the MNDO method [28]. Figures 5.3 and 5.4 show the

magnitudes of elements of the Fock matrix from a linear polyalanine chain of length

200 used in our test and its eigenvalue distribution. All matrices in this category are

banded matrices. The matrix used in our tests is of size 5,027, and its bandwidth is 79.

 A-Si. Silicon crystal. Matrices are generated from simulating silicon crystals using

 the PBE [79] functional in density functional theory with differing number of unit

 cells containing 8 atoms each. Figure 5.5 shows the magnitudes of elements in the

 matrix used in our tests with 5 unit cells in the x direction, and 4 in both the y and z

 directions. Figure 5.6 gives its eigenvalue distribution. The size of this matrix is 8,320.

A-tPA. Trans-Polyacetylene (PA). Trans-PA consists of a chain of CH units. It has

the general molecular formula trans-(CH)n. The SSH Hamiltonian [90], which is a

tight-binding approximation and includes only the nearest neighboring atoms, is

combined with the Hartree-Fock approximation to produce test matrices in this family.

Figures 5.7 and 5.8 show the magnitudes of matrix elements of trans-(CH)8000 and its

eigenvalue distribution. Matrices used in our tests are generated from trans-(CH)8000

and trans-(CH)16000, and the sizes of the corresponding matrices are 8,000 and 16,000,

respectively.

5.1.3 Random matrices

There are two types of random matrices in our tests. Each random matrix element is

generated by the C built-in random number generator. For each type, five different

matrices are again generated with sizes: 4,000, 8,000, 12,000, 16,000 and 20,000.

 R-bt. Random symmetric block tridiagonal matrices of block size 20. These matrices

are used to test the parallel block tridiagonal divide-and-conquer subroutine PDSBTDC.

98

 Figure 5.1 10log of absolute value of matrix elements for
 alkane C502H 1006 molecule, 3,014n = .

 Figure 5.2 Eigenvalue distribution of matrix in Fig. 5.1.

99

 Figure 5.3 10log of absolute value of matrix elements for
 linear polyalanine chain of length 200, 5,027n = .

 Figure 5.4 Eigenvalue distribution of matrix in Fig. 5.3.

100

 Figure 5.5 10log of absolute value of matrix elements for
 silicon crystal molecule, 8,320n = .

 Figure 5.6 Eigenvalue distribution of matrix in Fig. 5.5.

101

 Figure 5.7 10log of absolute value of matrix elements for
 trans-PA molecule, 8,000n = .

 Figure 5.8 Eigenvalue distribution of matrix in Fig. 5.7.

102

 R-den. Random symmetric full matrices for the test of the parallel orthogonal block

tridiagonal reduction subroutine PDSBTRD.

5.2 Test results for PBD&C subroutine PDSBTDC

In the tests of PDSBTDC, we use block tridiagonal matrices P-clu0, P-clu1, P-geom,

P-arith, P-log, P-rand and R-bt. Five matrices of each type are tested with different

orders: 4,000, 8,000, 12,000, 16,000 and 20,000; the block size on each is 20. We also

use application matrix A-ala, which has a matrix size of 5,027 and the block sizes of 104

for the first and the last blocks and 79 for other diagonal blocks. The execution times of

PDSBTDC are scaled by the execution times of the ScaLAPACK divide-and-conquer

subroutine PDSYEVD.

First we set the accuracy tolerance to 610− for PDSBTDC. Figure 5.9 shows the

relative execution time of PDSBTDC to ScaLAPACK subroutine PDSYEVD in log scale

using P-geom matrices — eigenvalues with geometric distribution. Figure 5.10 shows the

maximum residual R and orthogonality errors O over all five P-geom matrices.

Under the stated accuracy tolerance, all the block tridiagonal matrices in P-geom have

rank of 0 for the off-diagonal block of the final merging operation, which decouples the

problem into two smaller ones. In addition, matrices with clustered eigenvalues tend to

have very high ratio of deflation (see Figure 2.4). Those two factors lead to the high

efficiency of PDSBTDC. Matrices P-clu0, P-clu1 and P-log all have clustered

eigenvalues and display performance similar to that shown in Figure 5.9.

 Figure 5.11 shows the performance of PDSBTDC on P-arith matrixes. As the

eigenvalues are evenly distributed, deflation rate decreases. Another factor that

contributes to the slower performance of PDSBTDC is that the ranks of the off-diagonal

blocks in the P-arith matrices are much higher than those in other matrix types

mentioned in preceding paragraph. Performance of the random block tridiagonal matrices

R-bt is similar to that of P-arith. Performance of matrices with random eigenvalues P-

rand is slower than that of P-geom (Figure 5.9), but much better than that of P-arith

(Figure 5.11). Maximum residual R and orthogonality errors O for matrices P-arith are

103

 Figure 5.9 Execution time of PDSBTDC relative to PDSYEVD
 in log scale using P-geom matrices.

 Figure 5.10 Maximum residual and orthogonality error for
 PDSBTDC on P-geom matrices.

104

 Figure 5.11 Execution time of PDSBTDC relative to PDSYEVD
 using P-arith matrices.

displayed in Figure 5.12.

To test performance and accuracy of PDSBTDC with different accuracy requirements,

we use the application matrix A-ala and set the accuracy tolerance to different values:
410− , 610− , 810− , 1010− and 1210− . Figure 5.13 shows that as the tolerance decreases,

execution time increases due to less deflation and higher ranks for off-diagonal blocks.

For example, with a tolerance of 610− , the ranks of the off-diagonal blocks range from 20

to 21, and a very high deflation rate (about 90%) in the last 3 merging operations

significantly reduces the total amount of computation.

Since most of the matrices in our test are too large to be computed using one processor,

it is not feasible to measure the speedup of PDSBTDC using the traditional definition, i.e.,

s

p

Tspeedup
T

= where sT is the time to run the fastest sequential code and pT is the time to

run the parallel code with p processors. In Figure 5.14, we use a smaller matrix to

105

 Figure 5.12 Maximum residual and orthogonality error of

 PDSBTDC on P-arith matrices.

 Figure 5.13 Execution time of PDSBTDC relative to PDSYEVD

 using application matrix A-ala with different accuracy tolerance.

106

 Figure 5.14 Speedup of PDSBTDC using matrix A-ala with tolerances
 4 6 8 10 1210 ,10 ,10 ,10 ,10τ − − − − −= , matrix size 5,027n = .

evaluate speedup with different accuracy requirements since computational complexity

increases as accuracy tolerance becomes smaller. Speedup factors should be significantly

better on larger, more appropriately sized matrices.

5.3 Test results for POBR subroutine PDSBTRD

Random matrices are used to test performance of the parallel orthogonal block tridiagonal

reduction subroutine PDSBTRD. Figure 5.15 shows the execution times of PDSBTRD

scaled by that of the ScaLAPACK subroutine PDSYTRD. Performances of both

subroutines scale up with the number of processors in use. It should be noted that the

floating-point operation count for the two subroutines are not the same since PDSBTRD

only reduces a matrix to block tridiagonal form while PDSYTRD reduces a matrix to

tridiagonal form. The improved performance as a result of using level 3 BLAS operations

can be seen from the relative execution time of PDSBTRD to PDSYTRD. In particular,

107

 Figure 5.15 Relative execution time of PDSBTRD to PDSYTRD
 using random matrices R-den.

PDSBTRD performs better when the problem size per processor 2n p becomes larger,

which matches Corollary 2.2.

5.4 Test results for PBT subroutine PDSBTRI

In our application matrices, the alkane and trans-PA matrices have strong locality

property, that is, the larger elements are close to the diagonal and the magnitudes of

matrix elements decrease as they move away from the diagonal. In an iterative method

like the SCF, a non-linear eigenvalue problem is solved by solving a linear eigensystem

iteratively until convergence. For the alkane matrix A-alk of size 3014, we completed all

the iterations using a sequential SCF subroutine and stored the Fock matrices and

eigenvector matrices from each iteration. Thus, in the test of PDSBTRI using matrix A-

alk, we are able to test the optional target block reduction (PBT) step using the

eigenvector matrix from the previous iteration as approximate eigenvectors. The trans-PA

matrices A-tPA of sizes 8,000 and 16,000 are used for the test of PDSBTRI without PBT.

108

 Figure 5.16 shows the execution times of PDSBTRI with tolerance 610τ −= . The

parallel block tridiagonalization algorithm contains steps that are sequential in nature as

well as steps that parallelize well. For example, the matrix reorder (step 2) is completely

sequential; while the global thresholding (step 1) and the modified target thresholding

(step 4) are embarrassing (or pleasantly) parallel, in that each processor checks elements

to be eliminated independently. As the number of processors increases, the execution

times for steps 2 and 4 decrease. However, the overhead of redistributing the matrix from

2D block cyclic distribution to 1D column block distribution increases with the number

of processors. Therefore, the execution time of PDSBTRI on Cheetah remains almost

constant as the number of processors increases. Overall, the time for block

tridiagonalization is still very small compared to the time for solving eigenproblem.

We compare the eigenvalues of the block tridiagonalized matrix M and the original

matrix A computed to full accuracy. Table 5.2 shows that the errors in eigenvalues are

 Figure 5.16 Execution time of PDSBTRI using matrices
 A-alk and A-tPA with 610τ −= .

109

 Table 5.2 Scaled eigenvalue error () ()A M Aλ λ− .

Matrix Size With TBR Tolerance () ()A M Aλ λ−

No 610− 73.55 10−× A-alk 3,014

Yes 610− 73.57 10−×

8,000 No 610− 88.04 10−× A-tPA

16,000 No 610− 87.19 10−×

bounded by Aτ (see Appendix for performances and eigenvalue errors with tolerances

410− and 810−).

5.5 Test of parallel approximate eigensolver

As we described at the beginning of Section 1, our goal is to develop a parallel

eigensolver that computes approximate eigenpairs of a real symmetric matrix. This

eigensolver chooses eigen-decomposition algorithms based on matrix structure and the

accuracy requirement. The central parts of this approximate eigensolver are subroutines

PDSBTDC, PDSBTRD and PDSBTRI. In Section 5.5.1 we describe the structure of our

approximate eigensolver. Test results of the approximate eigensolver using application

matrices are shown in Section 5.5.2.

5.5.1 Structure of parallel approximate eigensolver

Given a real symmetric matrix n nA ×∈ and accuracy requirement 0.1machε τ≤ < , the

approximate eigensolver determines what algorithm to use to compute all eigenpairs of

A as the flow chart in Figure 5.17 shows:

1) If the accuracy requirement is high, then ScaLAPACK subroutine PDSYEVD is

 used to compute eigenpairs of A to full accuracy.

110

 Figure 5.17 Structure of parallel approximate eigensolver.

111

2) If the accuracy requirement is low and A is sparse or “effectively” sparse,

 PDSBTRI is used to transform A into block tridiagonal matrix M . After that,

 PDSBTDC is used to compute approximate eigenpairs of M .

3) If the accuracy requirement is low and A does not have any structure, i.e., A is not

 block tridiagonal or cannot be transformed into block tridiagonal matrix using

 PDSBTRI, then A is reduced to block tridiagonal matrix M using orthogonal

 block tridiagonal reduction subroutine PDSBTRD. Then PDSBTDC is used to

 decompose M . Finally, the eigenvector matrix of M is back transformed to the

 eigenvector matrix of A .

5.5.2 Numerical tests of parallel approximate eigensolver

All the decision-making steps in the approximate eigensolver are heuristic and do not

have an exact and unique solution. For example, when is an accuracy tolerance regarded

as “high accuracy,” and what matrix can be regarded as “effectively” sparse. Our user

interface provides the option for the user to input information about the matrix structure

and accuracy requirement. If the user knows the structure of the input matrix in advance,

he may provide this information. Otherwise, the approximate eigensolver uses a heuristic

method to determine what algorithms to use.

In our numerical tests, we used 610τ −= as a threshold for the accuracy requirement,

i.e. when 610τ −< , we compute eigenpairs of A to full accuracy; otherwise we compute

eigenpairs of A to the required low accuracy. Application matrices A-alk, A-ala, A-Si

and A-tPA are used to test the performances of PDSBTDC, PDSBTRI and PDSBTRD

working together as a whole package. Matrices A-alk and A-tPA are “effectively” sparse

matrices, thus PDSBTRI is used followed by PDSBTDC. Matrix A-ala is a block

tridiagonal matrix, therefore PDSBTDC can be directly applied to it. Matrix A-Si does

not have any usable structure, so it is first reduced to block tridiagonal form with block

size 32b = , then solved by PDSBTDC followed by back transformation.

112

With a tolerance 610τ −= , Figure 5.18 shows that PDSBTDC is very efficient for

matrices A-ala and A-tPA, because A-ala has a very high ratio of deflation although the

ranks of off-diagonal blocks are high, and all the off-diagonal blocks in A-tPA have very

low ranks. The approximate eigensolver does not perform well on matrix A-alk due to its

relatively low ratio of deflation. The off-diagonal blocks in matrix A-Si have full rank of

32 after orthogonal reduction, and the merging operations suffer from a low deflation rate.

Those two factors lead to slow execution though the accuracy tolerance is relatively large.

For matrices A-alk and A-Si, we further reduce the accuracy to 410− but leave the block

size for A-Si at 32. Figure 5.19 shows that PDSBTRI followed by PDSBTDC performs

much better on A-alk. The improvement of performance is a result of lower ranks for off-

diagonal blocks and a higher ratio of deflation. With matrix A-Si, the ranks of the off-

diagonal blocks remain unchanged after orthogonal reduction. Although there is a

significant improvement in performance due to a higher ratio of deflation, it is still slower

than PDSYEVD due to its high computational complexity introduced by the high ranks

of the off-diagonal blocks. With tolerance 410τ −= , we reduce the block sizes b of A-Si

to 16, so that the ranks of all off-diagonal blocks are no greater than 16. Compared to

32b = , there is a small amount of performance loss in PDSBTRD (less than 5%); but the

ranks of all off-diagonal blocks are reduced by half, which leads to approximately 50%

reduction in execution time in PDSBTDC. Figure 5.19 shows that the approximate

eigensolver is very competitive when block size and tolerance are set to 16b = and
410τ −= , respectively. However, with block sizes smaller than 16, the effect of level 3

BLAS operations is significantly reduced and the performance of the parallel

approximate eigensolver is also degraded.

113

 Figure 5.18 Relative execution times of approximate eigensolver to PDSYEVD
 using matrices A-alk, A-ala, A-Si and A-tPA with 610τ −= .

 Figure 5.19 Relative execution times of approximate eigensolver to PDSYEVD
 using matrices A-alk and A-Si with 410τ −= . For matrix A-Si, block
 sizes are 16 and 32.

114

6 Conclusion

In conclusion, this dissertation addresses several efficient algorithms for a parallel

approximate eigensolver for real symmetric matrices. Given a real symmetric matrix A

and an accuracy parameter τ , the approximate eigensolver computes the approximate

eigensolutions of A such that ()22

TA X X O Aτ− Λ = and

() ()
21, ,

max T
i machi n

XX I e O nε
=

− = , where X is the approximate eigenvector matrix and Λ

is the diagonal matrix that contains the approximate eigenvalues.

 The three major algorithms in this approximate eigensolver are: 1) parallel block

tridiagonal divide-and-conquer algorithm (subroutine PDSBTDC); 2) parallel orthogonal

block tridiagonal reduction algorithm (subroutine PDSBTRD); and 3) parallel block

tridiagonalization algorithm (subroutine PDSBTRI). Based on the matrix structure and

accuracy requirement, the approximate eigensolver chooses proper combination of

algorithms to compute efficiently all eigenvalues and eigenvectors of a real symmetric

matrix to prescribed accuracy. If high accuracy is required, the eigensolver chooses

PDSYEVD in ScaLAPACK to compute eigensolutions to full accuracy. On the other

hand, if low accuracy is sufficient, depending on matrix structure, a proper combination

of the above three subroutines is selected.

Complexity analyses and numerical tests show that for a low accuracy such as 610τ −= ,

PDSBTDC is very efficient on block tridiagonal matrices with either relatively low ranks

for off-diagonal blocks or very high deflation rate during the merging operations, or both.

Traditional eigensolvers for real symmetric dense matrices compute all eigenvalues

and eigenvectors in three steps: 1) reduction to tridiagonal form; 2) decomposition of

tridiagonal matrix; and 3) back transformation. It has been shown that the reduction step

is the most time consuming step [95] because of its high ratio of level 2 BLAS operations.

Although algorithms for real symmetric tridiagonal eigenvalue problems have been

intensively studied and improved, the execution time for orthogonal reduction to

tridiagonal form dominates the total execution time. The parallel block tridiagonal divide-

115

and-conquer algorithm does not require this reduction-to-tridiagonal step. Instead, it

solves the eigenproblem either directly or after reduction to block tridiagonal form. A

mixed data/task parallel implementation maintains workload balance and achieves good

speedup. However, when the rank of the off-diagonal block for the final merging

operation is large, say exceeds 20, and the deflation rate is low, then PDSBTDC is no

longer competitive due to its high computational complexity.

When the input matrix is sparse or “effectively” sparse, we use the block

tridiagonalization subroutine PDSBTRI to construct a block tridiagonal matrix M that is

a sufficiently accurate approximation to the original input matrix A . The execution time

of PDSBTRI is usually negligible compared to the execution time of the eigen-

decomposition of the resultant block tridiagonal matrix. When the combination of

PDSBTRI followed by PDSBTDC is used, its performance behaves similarly to that of

PDSBTDC.

When the input matrix is dense and has no specific structure, the parallel orthogonal

block tridiagonal reduction subroutine PDSBTRD followed by subroutine PDSBTDC is

used. PDSBTRD is very efficient by itself due to its high ratio of Level 3 BLAS

operations in the algorithm; however, the off-diagonal blocks tend to have full ranks even

when low accuracy is required. Since the block size of the block tridiagonal matrix equals

the block size of the parallel 2D matrix distribution, which is typically 32 in PDSBTRD,

each off-diagonal block usually has a full rank of 32. Reducing the accuracy requirement

increases the deflation rate, but typically does little to reduce the ranks. One may try to

reduce the ranks of off-diagonal blocks using smaller block size for parallel matrix

distribution. For our tests using a block size of 16, the effect of level 3 BLAS operations

in PDSBTRD is reduced and the frequency of data communication is increased, but the

performance improvement in PDSBTDC is great enough to compensate the small amount

of performance loss in PDSBTRD.

 In general, the parallel approximate eigensolver is efficient and accurate to the

prescribed tolerance. The time required for computing the approximate eigenpairs

decreases significantly as the accuracy tolerance becomes larger.

116

7 Future work

This dissertation addresses many important issues in the implementation of a parallel

approximate eigensolver for real symmetric matrices, based on the PBD&C algorithm.

Further improvements are possible. We recognize a few promising frontiers.

1) Adaptive eigensolver.

Based on matrix structure and accuracy requirement, the approximate eigensolver

chooses eigen-decomposition and pre-processing algorithms correspondingly. The

approximate eigensolver can be further developed into an adaptive eigensolver

that detects matrix structure automatically and then chooses proper algorithms.

The determination of matrix structure is a heuristic process and may involve

redundant computation. Plenty of test matrices from real applications, as well as

complexity analyses, are necessary to verify and adjust the adaptivity of

eigensolver.

 2) Fine-tuning of workload balance for parallel BD&C implementation.

 In the parallel block tridiagonal divide-and-conquer subroutine PDSBTDC, the

 position of the last merging operation is determined by both the computational

 complexity and workload balance. We will further investigate the possibility and

 benefit of applying this strategy to merging levels preceding the final merging

 operation.

 3) Complete data parallel implementation of BD&C.

 The parallel implementation of the BD&C algorithm in this dissertation uses a

 mixed data/task parallelism. Processors are assigned to matrix sub-blocks

 according to their sizes. At each level of the parallel merging tree, subproblems are

 merged simultaneously. When each subproblem on the same level of the merging

 tree has approximately the same deflation rate, we would expect all processors to

 finish one level of the merging tree at the same time. However, we lose workload

 balance when deflation rate varies drastically on the same level of the merging tree.

 In addition, when the number of processors is very small in comparison to the

117

 number of diagonal blocks, the position of the final merging can no longer be

 optimally determined by computational complexity and workload balance. For

 example, suppose we have only two processors, then the off-diagonal block for the

 final merging operation is the one at the middle of the matrix even if the off-

 diagonal block in the middle has a high rank.

 One possible solution is a complete data parallel implementation. The first

 attempt to parallelize the BD&C algorithm used data parallelism [25]. Due to

 the storage scheme of the diagonal blocks and off-diagonal blocks, that

 implementation was not able to exploit high performance of optimized parallel

 matrix multiplication. From our experience, the penalty of not being able to use

 optimized level 3 BLAS subroutine may degrade performance more severely than

 moderate overhead of extra data communication. A new completely data parallel

 implementation of BD&C will also involve matrix redistribution so that all the

 efficient algorithms in the sequential BD&C can be directly applied to the parallel

 implementation.

118

 Bibliography

119

Bibliography
[1] E. Anderson, Z. Bai, C. Bishof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK

User's Guide, 3rd Edition, Society for Industrial and Applied Mathematics, 1999.

[2] E. Anderson, J. Dongarra and S. Ostrouchov, Implementation Guide for LAPACK,

Technical Report UT-CS-91-138, University of Tennessee, Knoxville, TN, 1991.

[3] P. Arbenz, K. Gates and C. Sprenger, A Parallel Implementation of the Symmetric

Tridiagonal QR Algorithm, Proceedings of the Fourth Symposium on the

Frontiers of Massively Parallel Computations, IEEE Computer Society Press,

1992, McLean, VA (1992), pp. 382--388.

[4] Y. Bai, W. N. Gansterer and R. C. Ward, Block-Tridiagonalization of

"Effectively" Sparse Symmetric Matrices, ACM Trans. Math. Softw., 30 (2004),

pp. 326 -- 352.

[5] Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson and K. Stanley, The

Spectral Decomposition of Nonsymmetric Matrices on Distributed Memory

Computers, SIAM J. Sci. Comput., 18 (1997), pp. 1446-1461.

[6] H. J. Bernstein and M. Goldstein, Parallel Implementation of Bisection for the

Calculation of Eigenvalues of a Tridiagonal Symmetric Matrices, Computing, 37

(1986), pp. 85 -- 91.

[7] P. Bientinesi, I. S. Dhillon and R. A. van de Geijn, A parallel Eigensolver for

Dense Symmetric Matrices based on Multiple Relatively Robust Representations,

SIAM J. Sci. Comput., 27 (2005), pp. 43 -- 66.

[8] C. Bishof, B. Lang and X. Sun, The SBR Toolbox -- Software for Successive Band

Reduction, ACM Trans. Math. Softw., 26 (2000), pp. 602-616.

[9] C. Bishof, M. Marques and X. Sun, Parallel Bandreduction and

Tridiagonalization, Proceedings of the Sixth SIAM Conference on Parallel

Processing for Scientific Computing, SIAM Press, Philadelphia, PA (1993), pp.

383 -- 390.

120

[10] C. Bishof and C. F. Van Loan, The WY Representation for Products of

Householder Matrices, SIAM J. Sci. Comput., 8 (1987), pp. 2 -- 13.

[11] C. H. Bishof, B. Lang and X. Sun, A Framework for Symmetric Band Reduction,

ACM Trans. Math. Softw., 26 (2000), pp. 581 -- 601.

[12] C. H. Bishof, B. Lang and X. Sun, A Framework for Symmetric Band Reduction

and Tridiagonalization, Technical Report ANL/MCS-P586-0496, Argonne

National Laboratory, Argonne, IL, 1996.

[13] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J.

Dongorra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker and R. C.

Whaley, ScaLAPACK User's Guide, SIAM, Philadelphia, PA, 1997.

[14] S. Browne, J. Dongarra, N. Garner, G. Ho and P. Mucci, Portable Programming

Interface for Performance Evaluation on Modern Processors, The International

Journal of High Performance Computing Applications, 14 (2000), pp. 189-204.

[15] S. D. Browne, C., G. Ho and P. Mucci, PAPI: A Portable Interface to Hardware

Performance Counters, Proceedings of Department of Defense HPCMP Users

Group Conference, 1999.

[16] J. Bunch, C. Nielsen and D. Sorensen, Rank-one Modification of the Symmetric

Eigenproblem, Numer. Math., 31 (1978), pp. 31 -- 48.

[17] J. Callaway, Quantum Theory of the Solid State, Academic Press, Boston, 1991.

[18] S. Chakrabarti, J. Demmel and D. Yelick, Modeling the Benefits of Mixed Data

and Task Parallelism, Proceeding of the Seventh Annual ACM Symposium on

Parallel Algorithms and Architectures (1995), pp. 74 -- 83.

[19] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker and R. C. Whaley, A

Proposal for a Set of Parallel Basic Linear Algebra Subprograms, Technical

Report CS-95-292, University of Tennessee, Knoxville, TN, 1995.

[20] J. Choi, J. Dongarra, R. Pozo and D. Walker, ScaLAPACK: A Scalable Linear

Algebra Library for Distributed Memory Concurrent Computers, Proceedings of

Fourth Symposium on the Frontiers of Massively Parallel Computation, McLean,

121

Virginia), IEEE Computer Society Press, Los Alamitos, California (1992), pp.

120 -- 127.

[21] J. Choi, J. Dongarra and D. Walker, The Design of Parallel Dense Linear Algebra

Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form,

Numerical Algorithms, 10, Nos. 3 & 4 (1995), pp. 379 -- 400.

[22] M. Chu, A Simple Application of the Homotopy Method to Symmetric Eigenvalue

Problems, Linear Algebra and Appl., 59 (1984), pp. 85 -- 90.

[23] H. L. Crane, Jr., N. E. Gibbs, W. G. Poole, Jr. and P. K. Stockmeyer, Matrix

Bandwidth and Profile Reduction, ACM Trans. Math. Softw., 2 (1976), pp. 375 --

377.

[24] J. J. M. Cuppen, A Divide and Conquer Method for the Symmetric Tridiagonal

Eigenproblem, Numer. Math., 36 (1981), pp. 177 -- 195.

[25] R. M. Day, A Coarse-Grain Parallel Implementation of the Block-Tridiagonal

Divide-and-Conquer Algorithm for Symmetric Eigenproblems, Master Thesis,

University of Tennessee, Knoxville, TN, 2003.

[26] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.

[27] J. Demmel and A. McKenney, A Test Matrix Generation Suite, Courant Institute

of Mathematical Sciences, New York, 1989.

[28] M. J. S. Dewar and W. Thiel, Ground States of Molecules, 38. The MNDO

Method. Approximations and Parameters, J. Amer. Chem. Soc., 99 (1977), pp.

4899-4907.

[29] I. S. Dhillon, A new (N2) Algorithm for the Symmetric Tridiagonal

Eigenvalue/Eigenvector Problem, PhD. Thesis, University of California, Berkeley,

CA, 1997.

[30] I. S. Dhillon and B. N. Parlett, Multiple Representation to Compute Orthogonal

Eigenvectors of Symmetric tridiagonal Matrices, Linear Algebra and Appl., 387

(2004), pp. 1 -- 28.

[31] I. S. Dhillon and B. N. Parlett, Orthogonal Eigenvectors and Relative Gaps,

SIAM J. Matrix Anal. Appl., 25 (2004), pp. 858 -- 899.

122

[32] I. S. Dhillon, B. N. Parlett and C. Vömel, LAPACK Working Note: the Design and

Implementation of the MRRR Algorithm, Technical Report UCB/CSD-04-1346,

Computer Science Division, University of California at Berkeley, Berkeley, CA,

2004.

[33] J. Dongarra, J. Du Croz, I. S. Duff and S. Hammarling, A Set of Level 3 Basic

Linear Algebra Subprograms, ACM Trans. Math. Softw., 16 (1990), pp. 1 -- 17,

18 -- 28.

[34] J. Dongarra, J. Du Croz and S. Hammarling, An Extended Set of Basic Linear

Algebra Subprogram, ACM Trans. Math. Softw., 14 (1988), pp. 18 -- 32.

[35] J. Dongarra, S. Hammarling and D. Sorensen, Block Reduction of Matrices to

Condensed Forms for Eigenvalue Computation, J. Comp. Appl. Math., 27 (1989),

pp. 215 -- 227.

[36] J. Dongarra and D. Sorensen, A Fully Parallel Algorithm for the Symmetric

Eigenvalue Problem, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 139 -- 154.

[37] J. Dongarra and R. van de Geijn, Reduction to Condensed Form for the

Eigenvalue Problem on Distributed Memory Architectures, Parallel Computing,

18 (1992), pp. 973 -- 982.

[38] T. H. Dunigan, Jr., ORNL IBM Power4 (p690) Evaluation,

www.cs.ornl.gov/~dunigan/sp4.

[39] K. V. Fernando and B. N. Parlett, Accurate Singular Values and Differential qd

Algorithms, Numer. Math., 67 (1994), pp. 191 -- 229.

[40] G. J. F. Francis, The QR Transformation: A Unitary Analogue to the LR

Transformation, Parts I and II, Comput. J., 4 (1961), pp. 265 -- 271, 332 -- 345.

[41] W. N. Gansterer, D. F. Kvasnicka and C. W. Ueberhuber, Multi-sweep Algorithms

for the Symmetric Eigenproblem, Lecture Notes in Computer Science, Vol. 1573

(1998), pp. 20 -- 28.

[42] W. N. Gansterer, R. C. Ward and R. P. Muller, An Extension of the Divide-and-

Conquer Method for a Class of Symmetric Block-tridiagonal Eigenproblems,

ACM Trans. Math. Softw., 28 (2002), pp. 45 -- 58.

123

[43] W. N. Gansterer, R. C. Ward, R. P. Muller and W. A. Goddard, III, Computing

Approximate Eigenpairs of Symmetric Block Tridiagonal Matrices, SIAM J. Sci.

Comput., 25 (2003), pp. 65 -- 85.

[44] K. Gates and P. Arbenz, Parallel Divide and Conquer Algorithms for the

Symmetric Tridiagonal Eigenproblem, Technical Report, Institute for Scientific

Computing, ETH Zurich, 1994.

[45] N. E. Gibbs, W. G. Poole, Jr. and P. K. Stockmeyer, A Comparison of Several

Bandwidth and Profile Reduction Algorithms, ACM Trans. Math. Softw., 2

(1976), pp. 322 -- 330.

[46] N. E. Gibbs, W. G. J. Poole and P. K. Stockmeyer, An Algorithm for Reducing the

Bandwidth and Profile of a Sparse Matrix, SIAM J. Numer. Anal., 13 (1976), pp.

236 -- 250.

[47] W. J. Givens, Numerical Computation of the Characteristic Values of a Real

Symmetric Matrix, Technical Report ORNL-1574, Oak Ridge National Lab, 1954.

[48] G. H. Golub, Some Modified Matrix Eigenvalue Problems, SIAM Review, 15(2)

(1973), pp. 318 -- 334.

[49] G. H. Golub and C. F. van Loan, Matrix Computations, John Hopkins University

Press, Baltimore /London, 1996.

[50] M. Gu, Studies in Numerical Linear Algebra, PhD. Thesis, Yale University, New

Haven, Connecticut, 1993.

[51] M. Gu and S. C. Eisenstat, A Divide-and-Conquer Algorithm for the Symmetric

Tridiagonal Eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172 --

191.

[52] M. Gu and S. C. Eisenstat, A Stable and Efficient Algorithm for the Rank-one

Modification of the Symmetric Eigenproblem, SIAM J. Matrix Anal. Appl., 15(4)

(1994), pp. 1266 -- 1276.

[53] M. T. Heath, E. NG and B. W. Peyton, Parallel Algorithms for Sparse Linear

Systems, Parallel Algorithms for Matrix Computations, SIAM Press, philadelphia,

PA (1990), pp. 83 -- 124.

124

[54] S. Huss-Lederman, A. Tsao and T. Turnbull, A Parallelizable Eigensolver for

Real Diagonalizable Matrices with Real Eigenvalues, SIAM J. Sci. Comput., 18

(1997), pp. 869 -- 885.

[55] S. Huss-Lederman, A. Tsao and G. Zhang, A Parallel Implementation of the

Invariant Subspace decomposition Algorithm for Dense Symmetric Matrices,

Proceeding of the Sixth SIAM conference on Parallel Processing for Scientific

Computing in Norfork, VA, 1993.

[56] IBM, Parallel ESSL for AIX, Guide and Reference, V2.3, 2003.

[57] I. C. F. Ipesn, Computing an Eigenvector with Inverse Iteration, SIAM Review,

39 (1997), pp. 254 -- 291.

[58] I. C. F. Ipesn and E. R. Jessup, Solving the Symmetric Tridiagonal EIgenvalue

Problem on the Hypercube, SIAM J. Sci. Stat. Comput., 11(2) (1990), pp. 203 --

229.

[59] E. R. Jessup and I. C. F. Ipesn, Improving the Accuracy of Inverse Iteration,

SIAM J. Sci. Stat. Comput., 13 (1992), pp. 550 -- 572.

[60] G. Karypis and V. Kumar, A Parallel Algorithm for Multilevel Graph Partitioning

and Sparse Matrix Ordering, J. Parallel Distrib. Comput., 48 (1998), pp. 71 -- 95.

[61] L. Kaufman, A Parallel QR Algorithm for the Symmetric Tridiagonal Eigenvalue

Problem, J. Parallel Distrib. Comput., 23 (1994), pp. 429 -- 434.

[62] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and

Correlation Effects, Phys. Rev. A, 140 (1965), pp. A1133–A1138.

[63] D. Kuck and A. Sameh, A Parallel QR Algorithm for Symmetric Tridiagonal

Matrices, IEEE Trans. Computers, C-26, 1977.

[64] J. G. Lewis, The Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms for

Reordering Sparse Matrices, ACM Trans. Math. Softw., 8 (1982), pp. 190 -- 194.

[65] K. Li and T. Y. Li, An Algorithm for Symmetric Tridiagonal Eigenproblems --

Divide and Conquer with Homotopy Continuation, SIAM J. Sci. Comput., 14

(1993), pp. 735 -- 751.

125

[66] R.-C. Li, Solving the Secular Equation Stably and Efficiently, Technical Report,

Department of Mathematics, University of California, Berkeley, CA, 1993.

[67] T. Y. Li and N. Rhee, Homotopy Algorithm for Symmetric Eigenvalue Problems,

Numer. Math., 55 (1989), pp. 265 -- 280.

[68] T. Y. Li, H. Zhang and X. Sun, Paralle Homotopy Algorithm for the Symmetric

Tridiagonal Eigenvalue Problem, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 469

-- 487.

[69] S.-S. Lo, B. Phillipe and A. Sameh, A Multiprocessor Algorithm for the

Symmetric Eigenproblem, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 155 -- 165.

[70] O. Madelung, Introduction to Solid-State Theory, 2nd Ed., Springer-Verlag,

Berlin, 1996.

[71] N. H. March, W. H. Young and S. Sampanthar, The Many-body Problem in

Quantum Mechanics, Dover Publications, Mineola, NY, 1995.

[72] A. Melman, A numerical Comparison of Methods for Solving Secular Equations,

J. Comp. Appl. Math., 86(1) (1997), pp. 237 -- 249.

[73] M. Oettli, The Homotopy Method Applied to the Symmetric Eigenproblem, PhD.

Dissertation, ETH Zurith, 1996.

[74] M. Oettli, A Robust, Parallel Homotopy Algorithm for the Symmetric Tridiagonal

Eigenproblem, SIAM J. Sci. Comput., 20 (1999), pp. 1016 -- 1032.

[75] B. N. Parlett, Invariant Subspaces for Tightly Clustered Eigenvalues of

Tridiagonals, BIT, 36 (1996), pp. 542 -- 562.

[76] B. N. Parlett, Spectral Sensitivity of Products of Bidiagonals, Linear Algebra and

Appl., 275 -- 276 (1998), pp. 417 --431.

[77] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM Press, Philadelphia, PA,

1997.

[78] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules,

Oxford University Press, 1994.

[79] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation

Made Simple, Phys. Rev. Lett., 77 (1996), pp. 3865 -- 3868.

126

[80] G. Peters and J. H. Wilkinson, The Calculation of Specified Eigenvectors by

Inverse Iteration, Contribution II/18, Volumn II of Handbook of Automatic

Computation, Springer-Verlag, New York/Heidelberg/Berlin, 1971.

[81] J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, 1st ed.,

McGraw-Hill, New York, 1970.

[82] J. A. Pople and G. A. Segal, Approximate Self-Consistent Molecular Orbital

Theory. II. Calculations with Complete Neglect of Differential Overlap, 43 (1965),

pp. 136.

[83] J. A. Pople and G. A. Segal, Approximate Self-Consistent Molecular Orbital

Theory. III. CNDO Results for AB2 and AB3 Systems, J. Chem. Physics, 44

(1966), pp. 3289.

[84] C. H. Reinsh, A Stable Rational QR Algorithm for the Computation of the

Eigenvalues of a Hermitian, Tridiagonal Matrix, Numer. Math., 25 (1971), pp.

591 -- 597.

[85] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys.,

5 (1954), pp. 223--152.

[86] H. Rutishauser, Lectures on Numerical Mathematics, Birkhäuser, Boston, 1990.

[87] J. Rutter, A Serial Implementation of Cuppen's Divide and Conquer Algorithm for

the Symmetric Eigenvalue Problem, Technical Report CS-94-225, Department of

Computer Science, University of Tennessee, Knoxville, TN, 1994.

[88] R. Schreiber and C. F. Van Loan, A Storage-Efficient WY Representation for

Products of Householder Transformations, SIAM J. Sci. Comput., 10 (1989), pp.

53 -- 57.

[89] D. Sorensen and P. T. P. Tang, On the Orthogonality of Eigenvectors Computed

by Divide and Conquer Methods Techniques, SIAM J. Numer. Anal., 28 (1991),

pp. 1752 -- 1775.

[90] W. P. Su, J. R. Schrieffer and A. J. Heeger, Soliton Excitations in Polyacetylene,

Phys. Rev. B, 22 (1980), pp. 2099 -- 2111.

127

[91] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Dover Publications,

Mineola, NY, 1996.

[92] F. Tisseur and J. Dongarra, Parallelizing the Divide and Conquer Algorithm for

the Symmetric Tridiagonal Eigenvalue Problem on Distributed Memory

Architectures, SIAM J. Sci. Comput., 20 (1999), pp. 2223 -- 2236.

[93] R. van de Geijn, Deferred Shifting Schemes for Parallel QR Methods, SIAM J.

Matrix Anal. Appl., 14 (1993), pp. 180 -- 194.

[94] R. van de Geijn and J. Watts, SUMMA: Scalable Universal Matrix Multiplication

Algorithm, Concurrency: Practice and Experience, 9 (1997), pp. 255 -- 274.

[95] R. C. Ward, Y. Bai and J. Pratt, Performance of Parallel Eigensolvers on

Electronic Structure Calculations, Technical Report, UT-CS-05-560, University

of Tennessee, Knoxville, TN, 2005.

[96] J. H. Wilkinson, The Algebraic EIgenvalue Problem, Oxford University Press,

Oxford, 1965.

[97] J. H. Wilkinson, Global Convergence of the Tridiagonal QR Algorithm with

Origin Shifts, Linear Algebra and Appl., 1 (1968), pp. 409 -- 420.

[98] P. H. Worley, T. H. Dunigan, Jr., M. R. Fahey, J. B. White, III and A. S. Bland,

Early Evaluation of the IBM p690, Proceedings of the 2002 ACM/IEEE

Conference on Supercomputing, Baltimore, Maryland (2002), pp. 1 -- 21.

[99] Y. J. Wu, P. A. Alpatov, C. H. Bishof and R. A. van de Geijn, A Parallel

Implementation of Symmetric Band Reduction Using PLAPACK, Proceedings of

Scalable Parallel Library Conference, Starkville, Mississippi, 1996.

128

 Appendix

129

 Appendix Complete numerical test results

 Figure A. 1 Execution of PDSBTDC using P-clu0 matrices, 610τ −= .

 Figure A. 2 Execution of PDSYEVD using P-clu0 matrices.

130

 Figure A. 3 Execution of PDSBTDC using P-clu1 matrices, 610τ −= .

 Figure A. 4 Execution of PDSYEVD using P-clu1 matrices.

131

 Figure A. 5 Execution of PDSBTDC using P-geom matrices, 610τ −= .

 Figure A. 6 Execution of PDSYEVD using P-geom matrices.

132

 Figure A. 7 Execution of PDSBTDC using P-arith matrices, 610τ −= .

 Figure A. 8 Execution of PDSYEVD using P-arith matrices.

133

 Figure A. 9 Execution of PDSBTDC using P-log matrices, 610τ −= .

 Figure A. 10 Execution of PDSYEVD using P-log matrices.

134

 Figure A. 11 Execution of PDSBTDC using P-rand matrices, 610τ −= .

 Figure A. 12 Execution of PDSYEVD using P-rand matrices.

135

 Figure A. 13 Execution of PDSBTDC using R-bt matrices, 610τ −= .

 Figure A. 14 Execution of PDSYEVD using R-bt matrices.

136

Figure A. 15 Scaled residual 2

1, ,
2

ˆˆ ˆ
max

i i i

i n

Ax x

A

λ
=

−
=R of PDSBTDC using P-clu0,

 P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices, 610τ −= .

 Figure A. 16 Departure from orthogonality
()

1, , 2
ˆ ˆmax T

ii n
X X I e

n
=

−
=O of PDSBTDC

 using P-clu0, P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices,
 610τ −= .

137

 Figure A. 17 Scaled residual 2

1, ,
2

ˆˆ ˆ
max

i i i

i n

Ax x

A

λ
=

−
=R of PDSYEVD using P-clu0,

 P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices.

Figure A. 18 Departure from orthogonality
()

1, , 2
ˆ ˆmax T

ii n
X X I e

n
=

−
=O of PDSYEVD

 using P-clu0, P-clu1, P-geom, P-arith, P-log, P-rand, and R-bt matrices.

138

 Figure A. 19 Execution time of PDSBTDC and PDSYEVD using matrix A-ala. Matrix
 size 5,027n = . Tolerance for PDSBTDC 4 6 8 10 1210 ,10 ,10 ,10 ,10τ − − − − −= .

 Figure A. 20 Execution time of PDSBTDC and PDSYEVD using P-arith matrix.
 Matrix size 12,000n = . Tolerance for PDSBTDC
 4 6 8 10 1210 ,10 ,10 ,10 ,10τ − − − − −= .

139

 Figure A. 21 Execution time of PDSBTRI with 410τ −= .

 Figure A. 22 Execution time of PDSBTRI with 810τ −= .

140

 Table A.1 Scaled eigenvalue error () ()A M Aλ λ− of PDSBTRI.

Matrix Size With TBR Tolerance () ()A M Aλ λ−

No 410− 51.09 10−× A-alk 3,014

Yes 410− 65.79 10−×

8,000 No 410− 51.09 10−× A-tPA

16,000 No 410− 51.10 10−×

3,014 No 610− 73.55 10−× A-alk

 Yes 610− 73.57 10−×

8,000 No 610− 88.04 10−× A-tPA

1,6000 No 610− 87.19 10−×

3,014 No 810− 93.42 10−× A-alk

 Yes 810− 93.45 10−×

8,000 No 810− 105.38 10−× A-tPA

16,000 No 810− 105.26 10−×

141

 Figure A. 23 Execution time of PDSBTRD using R-den matrices.

 Figure A. 24 Execution time of PDSYTRD using R-den matrices.

142

 Figure A. 25 Execution time of parallel approximate eigensolver (PAE) and
 PDSYEVD.

143

 Vita

 Yihua Bai received a B.E. in Material Engineering from Jiao Tong University,

Shanghai, China and a M.S. in Computer Science from University of Tennessee,

Knoxville. She is currently pursuing her doctorate in Computer Science at the

University of Tennessee, Knoxville.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2005

	Studies in Rheology: Molecular Simulation and Theory
	Chunggi Baig
	Recommended Citation

	Microsoft Word - dissertation_final.doc

