1,788 research outputs found

    Spanish named entity recognition in the biomedical domain

    Get PDF
    Named Entity Recognition in the clinical domain and in languages different from English has the difficulty of the absence of complete dictionaries, the informality of texts, the polysemy of terms, the lack of accordance in the boundaries of an entity, the scarcity of corpora and of other resources available. We present a Named Entity Recognition method for poorly resourced languages. The method was tested with Spanish radiology reports and compared with a conditional random fields system.Peer ReviewedPostprint (author's final draft

    A cascade of classifiers for extracting medication information from discharge summaries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extracting medication information from clinical records has many potential applications, and recently published research, systems, and competitions reflect an interest therein. Much of the early extraction work involved rules and lexicons, but more recently machine learning has been applied to the task.</p> <p>Methods</p> <p>We present a hybrid system consisting of two parts. The first part, field detection, uses a cascade of statistical classifiers to identify medication-related named entities. The second part uses simple heuristics to link those entities into medication events.</p> <p>Results</p> <p>The system achieved performance that is comparable to other approaches to the same task. This performance is further improved by adding features that reference external medication name lists.</p> <p>Conclusions</p> <p>This study demonstrates that our hybrid approach outperforms purely statistical or rule-based systems. The study also shows that a cascade of classifiers works better than a single classifier in extracting medication information. The system is available as is upon request from the first author.</p

    Doctor of Philosophy

    Get PDF
    dissertationDisease-specific ontologies, designed to structure and represent the medical knowledge about disease etiology, diagnosis, treatment, and prognosis, are essential for many advanced applications, such as predictive modeling, cohort identification, and clinical decision support. However, manually building disease-specific ontologies is very labor-intensive, especially in the process of knowledge acquisition. On the other hand, medical knowledge has been documented in a variety of biomedical knowledge resources, such as textbook, clinical guidelines, research articles, and clinical data repositories, which offers a great opportunity for an automated knowledge acquisition. In this dissertation, we aim to facilitate the large-scale development of disease-specific ontologies through automated extraction of disease-specific vocabularies from existing biomedical knowledge resources. Three separate studies presented in this dissertation explored both manual and automated vocabulary extraction. The first study addresses the question of whether disease-specific reference vocabularies derived from manual concept acquisition can achieve a near-saturated coverage (or near the greatest possible amount of disease-pertinent concepts) by using a small number of literature sources. Using a general-purpose, manual acquisition approach we developed, this study concludes that a small number of expert-curated biomedical literature resources can prove sufficient for acquiring near-saturated disease-specific vocabularies. The second and third studies introduce automated techniques for extracting disease-specific vocabularies from both MEDLINE citations (title and abstract) and a clinical data repository. In the second study, we developed and assessed a pipeline-based system which extracts disease-specific treatments from PubMed citations. The system has achieved a mean precision of 0.8 for the top 100 extracted treatment concepts. In the third study, we applied classification models to reduce irrelevant disease-concepts associations extracted from MEDLINE citations and electronic medical records. This study suggested the combination of measures of relevance from disparate sources to improve the identification of true-relevant concepts through classification and also demonstrated the generalizability of the studied classification model to new diseases. With the studies, we concluded that existing biomedical knowledge resources are valuable sources for extracting disease-concept associations, from which classification based on statistical measures of relevance could assist a semi-automated generation of disease-specific vocabularies

    Mining the Medical and Patent Literature to Support Healthcare and Pharmacovigilance

    Get PDF
    Recent advancements in healthcare practices and the increasing use of information technology in the medical domain has lead to the rapid generation of free-text data in forms of scientific articles, e-health records, patents, and document inventories. This has urged the development of sophisticated information retrieval and information extraction technologies. A fundamental requirement for the automatic processing of biomedical text is the identification of information carrying units such as the concepts or named entities. In this context, this work focuses on the identification of medical disorders (such as diseases and adverse effects) which denote an important category of concepts in the medical text. Two methodologies were investigated in this regard and they are dictionary-based and machine learning-based approaches. Futhermore, the capabilities of the concept recognition techniques were systematically exploited to build a semantic search platform for the retrieval of e-health records and patents. The system facilitates conventional text search as well as semantic and ontological searches. Performance of the adapted retrieval platform for e-health records and patents was evaluated within open assessment challenges (i.e. TRECMED and TRECCHEM respectively) wherein the system was best rated in comparison to several other competing information retrieval platforms. Finally, from the medico-pharma perspective, a strategy for the identification of adverse drug events from medical case reports was developed. Qualitative evaluation as well as an expert validation of the developed system's performance showed robust results. In conclusion, this thesis presents approaches for efficient information retrieval and information extraction from various biomedical literature sources in the support of healthcare and pharmacovigilance. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. This can promote the literature-based knowledge discovery, improve the safety and effectiveness of medical practices, and drive the research and development in medical and healthcare arena

    Biomedical Information Extraction Pipelines for Public Health in the Age of Deep Learning

    Get PDF
    abstract: Unstructured texts containing biomedical information from sources such as electronic health records, scientific literature, discussion forums, and social media offer an opportunity to extract information for a wide range of applications in biomedical informatics. Building scalable and efficient pipelines for natural language processing and extraction of biomedical information plays an important role in the implementation and adoption of applications in areas such as public health. Advancements in machine learning and deep learning techniques have enabled rapid development of such pipelines. This dissertation presents entity extraction pipelines for two public health applications: virus phylogeography and pharmacovigilance. For virus phylogeography, geographical locations are extracted from biomedical scientific texts for metadata enrichment in the GenBank database containing 2.9 million virus nucleotide sequences. For pharmacovigilance, tools are developed to extract adverse drug reactions from social media posts to open avenues for post-market drug surveillance from non-traditional sources. Across these pipelines, high variance is observed in extraction performance among the entities of interest while using state-of-the-art neural network architectures. To explain the variation, linguistic measures are proposed to serve as indicators for entity extraction performance and to provide deeper insight into the domain complexity and the challenges associated with entity extraction. For both the phylogeography and pharmacovigilance pipelines presented in this work the annotated datasets and applications are open source and freely available to the public to foster further research in public health.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Doctor of Philosophy

    Get PDF
    dissertationThe primary objective of cancer registries is to capture clinical care data of cancer populations and aid in prevention, allow early detection, determine prognosis, and assess quality of various treatments and interventions. Furthermore, the role of cancer registries is paramount in supporting cancer epidemiological studies and medical research. Existing cancer registries depend mostly on humans, known as Cancer Tumor Registrars (CTRs), to conduct manual abstraction of the electronic health records to find reportable cancer cases and extract other data elements required for regulatory reporting. This is often a time-consuming and laborious task prone to human error affecting quality, completeness and timeliness of cancer registries. Central state cancer registries take responsibility for consolidating data received from multiple sources for each cancer case and to assign the most accurate information. The Utah Cancer Registry (UCR) at the University of Utah, for instance, leads and oversees more than 70 cancer treatment facilities in the state of Utah to collect data for each diagnosed cancer case and consolidate multiple sources of information.Although software tools helping with the manual abstraction process exist, they mainly focus on cancer case findings based on pathology reports and do not support automatic extraction of other data elements such as TNM cancer stage information, an important prognostic factor required before initiating clinical treatment. In this study, I present novel applications of natural language processing (NLP) and machine learning (ML) to automatically extract clinical and pathological TNM stage information from unconsolidated clinical records of cancer patients available at the central Utah Cancer Registry. To further support CTRs in their manual efforts, I demonstrate a new approach based on machine learning to consolidate TNM stages from multiple records at the patient level
    corecore