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ABSTRACT

Unstructured texts containing biomedical information from sources such as elec-

tronic health records, scientific literature, discussion forums, and social media offer

an opportunity to extract information for a wide range of applications in biomedical

informatics. Building scalable and efficient pipelines for natural language processing

and extraction of biomedical information plays an important role in the implemen-

tation and adoption of applications in areas such as public health. Advancements

in machine learning and deep learning techniques have enabled rapid development of

such pipelines. This dissertation presents entity extraction pipelines for two public

health applications: virus phylogeography and pharmacovigilance. For virus phylo-

geography, geographical locations are extracted from biomedical scientific texts for

metadata enrichment in the GenBank database containing 2.9 million virus nucleotide

sequences. For pharmacovigilance, tools are developed to extract adverse drug reac-

tions from social media posts to open avenues for post-market drug surveillance from

non-traditional sources. Across these pipelines, high variance is observed in extrac-

tion performance among the entities of interest while using state-of-the-art neural

network architectures. To explain the variation, linguistic measures are proposed to

serve as indicators for entity extraction performance and to provide deeper insight

into the domain complexity and the challenges associated with entity extraction. For

both the phylogeography and pharmacovigilance pipelines presented in this work the

annotated datasets and applications are open source and freely available to the public

to foster further research in public health.
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Chapter 1

INTRODUCTION

Technology adoption across the globe has led to a massive increase in growth of digital

content production in the areas of healthcare, social media, news and public internet

forums among many others. Information from these sources have often been used

in applications to further serve the consumer. Among the forms of digital content,

printed media or written text has a large presence and is one of the prevalent medi-

ums of communication among humans. Publicly available text offers a tremendous

amount of insight into the structure and evolution of the language we use. It also

enables building tools to extract usable information in secondary applications. In this

dissertation, we intend to focus on two information extraction applications utilizing

unstructured information like texts for improving public health.

1.1 Public Health

Public health and its monitoring programs are broadly focused on the prevention

of disease and the overall health and wellness in the communities of interest. This

involves three important roles played by public health agencies including: (1) assess-

ment, which includes monitoring and surveillance; (2) policy making, which includes

outreach and partnerships with the community to formulate policies, intervention and

protocols; (3) Assurance, which includes enforcing the policies created thus ensuring

that people who need the said intervention actually receive them (Paul and Dredze,

2017). All three steps tend to overlap each other as enforced policies need to be as-

sessed for health outcomes and policy effectiveness, and are further linked to targeted

monitoring for populations with continued need for future interventions. In the United

1



States, such programs are run by the Center for Disease Control (CDC) and local

and state public health departments for infectious disease surveillance (Curran et al.,

2011; Ginsberg et al., 2009; Santillana et al., 2015; Yom-Tov, 2015), pharmacovigi-

lance (Harpaz et al., 2012; Sarker et al., 2015), and epidemiology (Chorianopoulos

and Talvis, 2016; Sewalk et al., 2019). Both active and passive surveillance measures

play important and effective roles in the programs (Härmark and van Grootheest,

2012; Vogt et al., 1983; Musa et al., 2018). Many of these monitoring applications

rely on information gathered from a wide variety of sources: (1) health providers

like primary care and specialized care hospitals including veterinary clinics (Henriks-

son, 2015; Dalianis, 2018; Lependu et al., 2013) (2) medical experts and researchers

(Harpaz et al., 2014; Henriksson, 2015; Min et al., 2018) (3) insurance data (Smith-

Bindman et al., 2006; Lentine et al., 2009) (4) consumer self-reporting databases

(Perrotta et al., 2019; Siafis et al., 2019) (5) public surveys such as the Behavioral

Risk Factor Surveillance System (BRFSS) and U.S. The National Survey on Drug

Use and Health (NSDUH) (Dredze et al., 2016) and so on. Data from these sources

are often available in a combination of structured, semi-structured and unstructured

formats. Structured data can be used almost directly as information in analysis and

reporting e.g. blood pressure of a patient over time, number of patients tested posi-

tive for HIV across counties. However, unstructured data like texts or semi-structured

data like user entries in metadata fields often require extraction and/or normalization

steps for the information to be available and usable.

In this dissertation, we present information extraction methods from biomedical

or health-related texts for applications in public health. All the methods presented

can be used across applications and pipelines in all domains including biomedical

applications besides public health (Barbosa-Silva et al., 2011; Maqungo et al., 2010;

Ongenaert et al., 2007; Swain and Cole, 2016). However, we present the pipelines
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with a specific focus on public health applications and evaluate our hypotheses on the

biomedical datasets presented. Our aims for this dissertation are restricted to building

methods for enriching metadata in biomedical databases and tools for monitoring and

surveillance. However, the methods presented in this work have been previously used

in various biomedical and non-biomedical applications that may overlap with aims of

public health agencies such as monitoring and surveillance programs. For this reason,

we do not attempt to draw distinctions in the information extraction methods by

individual domains as we find the information extraction methods themselves to be

domain independent and widely applicable across other domains.

1.2 Natural Language Processing

Processing raw texts for extracting meaningful information requires one or more

natural language processing (NLP) techniques. NLP is a branch of computer science

that deals with computational analysis and processing of human generated language,

primarily in textual form (Collobert et al., 2011). One of the most fundamental tasks

involved in automation of NLP techniques is text classification. For example, given

a document containing news, the task may involve extracting names of people. This

task will involve splitting the text by whitespace and/or punctuation into individual

words (also known as tokens) and then processing every single word to determine if

it is likely to be the name of a person. An expert might determine that one of the

rules to include to make the decision on the token is if it has the title case. This

may work in many cases but will likely have false positives by retrieving organization

names or names of geographical locations. Another classification task example would

be determining if a given document is related to the topic of influenza from news

articles of interest to public health researchers. Creating manual rules for identifying

phrases or document of interest may be effective. However, maintaining such rules
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for complex tasks may become difficult over time. It has been shown that building

an automated generalized classifier that can learn from human annotated examples

may be very useful in classification tasks (Culotta, 2010; Guo and Chen, 2014; Khalil

et al., 2017; Wakamiya et al., 2018).

1.3 Machine Learning and Deep Learning for NLP

This approach where labels are automatically assigned to examples based on learn-

ing from human annotated data is commonly known as supervised machine learning.

The other branch of machine learning is unsupervised machine learning where algo-

rithms learn information representations from processing large quantities of unan-

notated examples. While machine learning is used in various domains for decision

making such as vision (Nishii, 2007; Eguchi and Nishii, 2007; Wang et al., 2016) and

speech (Yadav and Aggarwal, 2015; Li et al., 2019; Vogel et al., 2019; Kamath et al.,

2019), advances in machine learning areas have also helped in building learning al-

gorithms for NLP, where information complementary to the individual word such as

morphology and syntax can be learned for making better classification decisions at

the word, sentence or document level (Xu et al., 2016). A newer branch of machine

learning is the field of deep learning (Goodfellow et al., 2016), which allows for stack-

ing multiple layers of learning parameters to build complex models without losing

information during the error back-propagation stages (LeCun et al., 2012).

1.4 Natural Language Processing Pipelines

Since most of the NLP techniques are automated using rules added by either an

expert or rules learned by a machine learning system, errors may be introduced in

the individual steps and the flow of information in the subsequent steps can often

multiply the errors (Marciniak and Strube, 2005; Roth and Yih, 2007; van den Bosch
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et al., 1998). The categories of errors could either originate due to the processing steps

employed or inherent ambiguity in the text due to the missing context information.

A pipeline here can be simply described as a series of steps that can extract desirable

information from raw data. Most NLP applications in information extraction require

extensive information that involve tasks such as:

Text classification: This task is used to determine if the given document or sen-

tence positive or negative for the presence of information we desire. In this example,

every document or sentence is annotated into two labels i.e. positive and negative

and learned through machine learning algorithms. However, there are no limits on

the number of labels for a given classification task and a given document can belong

to multiple labels (Yin et al., 2016; Sun et al., 2016).

Sequence labeling : This task is typically used to tag a sequence of tokens with a

label for each token. An example task would be to assign parts-of-speech (POS) to

words in a sentence which is popularly known as POS-tagging. Sequence labeling is

also used for named entity recognition (NER) which indicates the presence or absence

of a given piece of information at the said token (Goodfellow et al., 2016; Habibi et al.,

2017; Lample et al., 2016). NER can also be characterized as classification at the token

level. The topic of NER is central to the dissertation presented in this paper, hence

we cover them in detail in Chapter 2 and Chapter 3. In Chapter 2 we focus on NER

for extracting geographical location in scientific literature and in Chapter 3 we focus

on NER for identifying drug and condition related entities in clinical notes and social

media texts.

Relation Extraction: This task typically involves classification of a pair of entities

extracted in a sentence into one of many possible relations. In Chapter 2 we explore

relation extraction to identify if a given geographical location is in fact a location

of infected host. In Chapter 3, we explore relation extraction in the clinical domain
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to identify seven types of relations with respect to a given drug including adverse

drug reaction (ADR), drug, dosage, route etc. in clinical notes. We also identify

and discuss the need for more annotations to encourage the task of ADR relation

extraction among tweets.

Entity Normalization: This task involves assigning a unique concept from a stan-

dardized dictionary to an entity identified using sequence labeling. Often, this task

involves resolving ambiguity between multiple matches of concepts i.e. disambigua-

tion. In Chapter 2 we normalize geographical locations by disambiguating the location

identified using the NER step to a unique location in a database of geographical loca-

tions. In Chapter 3, we normalize ADRs identified in the NER step to standardized

terms in a medical terminology dictionary.

In this dissertation, we build, evaluate and demonstrate the use of two pipelines

based on deep learning for extracting information from health-related texts for ap-

plications in public health. Health-related texts range from text generated by health

providers like qualified doctors in electronic health records (EHRs) and researchers in

scientific articles about new findings, to everyday users who discuss personal health

related topics on forums and social media. The first pipeline extracts geographical

locations from biomedical scientific articles for applications in phylogeography and

the second set of pipelines extract ADRs in health related texts such as clinical notes

and health discussion forums and social media posts. Depending on the application

in question, there is a large variety in the type of information available in text and

a large variance when it comes to performance measures of the extraction pipelines.

For example, the extraction of ADRs in drug labels and clinical notes have better

performance than ADR extraction in social media texts. While the noisy nature of

social media text is often attributed to such disparities, empirical methods for deter-

mining the degree of noise do not exist. We propose the use of corpus-based features
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to explain the performance disparities and demonstrate the use of such features to

analyze the performance of the other pipelines described in this chapter.

1.5 Aims and Hypotheses

Our aims for this dissertation are as follows:

Aim 1: Develop and evaluate an end-to-end pipeline for enriching geographical

location information in GenBank metadata for applications in phylogeography. We

address this aim in Chapter 2.

1.1: Evaluate a named entity recognition and normalization model to extract

geographical location (toponym) mentions from biomedical scientific texts.

1.2: Evaluate the end-to-end application for extracting the location of infected

hosts and enriching GenBank metadata information.

Aim 2: Develop and evaluate pipelines for adverse drug reaction extraction for

pharmacovigilance. We address this aim in Chapter 3.

2.1: Build an information extraction pipeline for Medication, Condition and ADR

extraction in clinical notes.

2.2: Build a named entity recognition and normalization model for ADR extrac-

tion and normalization in social media posts.

Aim 3: Develop and evaluate corpus-based linguistic features that provide insight

into domain complexities serve as indicators for entity extraction performance. We

address this aim in Chapter 4.
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Our design of the pipelines and experiments to evaluate the performance of the

pipelines in our aims are motivated by three hypotheses:

Hypothesis 1: The necessity of feature extraction and engineering methods (that

are generally domain expert-driven) in traditional NER tasks is declining with the

emergence of generalized deep learning architectures for NER tasks. We test this

hypothesis in Aims 1 and 2 described above.

In Aim 1.1, we improve the NER performance in extraction of geographical lo-

cations over previous manual feature engineering methods using deep learning ar-

chitectures. In the same work, we propose that the performance could be further

improved by training on weakly supervised examples generated by domain experts.

However, in a subsequent publication, we employ newer deep learning architectures

such as bidirectional RNN-based architectures to find that the performance achieved

by newer models surpasses our previous previous models presented including the ones

that were trained additionally of weakly supervised examples. Similarly, we find the

same phenomenon in the Adverse Drug Reaction extraction pipeline in Aim 2.

Hypothesis 2: Training an named entity recognizer on positive examples only

results in sub-optimal performance. We test this hypothesis as part of the work in

Aim 2.2 where we attempt to extract adverse drug reactions from social media posts.

We show that training a named entity recognizer only on posts known to contain

adverse drug reactions results in lower performance than a named entity recognizer

trained on posts that are both positive and negative for the presence of adverse drug

reactions.

Hypothesis 3: Commonly reported NER corpus features such as number of span

annotations can be accompanied by other statistics that serve as better indicators of

the presence of noise and entity extraction performance. We test this hypothesis in

Aim 3 described above.
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We address the above Aims 1, 2 and 3 in detail by describing the methods, eval-

uation strategies, results and future work in chapters 2, 3 and 4 respectively. The

rationale behind dividing the aims individually into chapters is mainly driven by the

differences in the nature of the corpora, type of entities being extracted and mo-

tivation behind the development of the pipelines. To elaborate, Aim 1 deals with

building an end-to-end pipeline for extracting geographic locations from scientific lit-

erature for the purpose of phylogeography and Aim 2 dealing with the building of

end-to-end pipelines for extracting ADRs and Indication related entities from social

media texts and clinical notes for the purpose of pharmacovigilance. We discuss the

results of Aim 1 and Aim 2 in Chapter 3 and focus on the variance in extraction per-

formance across different datasets and named entities. We propose corpus statistics

for NER tasks to determine good indicators of a NER’s performance for said entities.
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Chapter 2

TOPONYM EXTRACTION FOR PHYLOGEOGRAPHY

This chapter describes information extraction methods for enriching metadata in a

nucleotide sequence repository for purposes of applications in virus phylogeography.

It has been described in three sections where the first two sections discussing named

entity recognition architectures have been currently published (Magge et al., 2018b,

2019). The third section which describes the end-to-end pipeline is currently unpub-

lished.

2.0.1 Background

The steady increase in global travel over the past decades has led to a great con-

cern for public health officials, and recent events like Zika and Ebola outbreaks make

it even more important to track the origin and spread of infectious diseases, both

geographically and over time. In order to model the spread of the virus, phylogeog-

raphy researchers utilize DNA sequences of the virus as well as additional metadata

describing the virus and the infected host (Dellicour et al., 2018; Dudas et al., 2017a).

The National Center for Biotechnology Information (NCBI) maintains GenBank R©

(Benson et al., 2018, 2015), one of the largest open access and publicly available

databases of biological information that includes viral nucleotide sequences. 1

Nucleotide sequences from GenBank are widely used in phylogeographic studies

allowing researchers to analyze sequences published by multiple laboratories over time

and use them in virus specific studies spanning multiple years (Holmes et al., 2016;

Grubaugh et al., 2017). A typical result from a phylogeographic study contains an

1https://www.ncbi.nlm.nih.gov/genbank/ Accessed: 20 Oct 2019
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Figure 2.1: Phlygeographic Spread Generated Using ZooPhy for a Random Sub-
sample of Nucleotide Sequences from GenBank for the Ebola Outbreak in West Africa
2014.

animation displaying the migration of virus over time and the phylogenetic tree for

the set of sequences used in the study as shown in Figure 2.1. Analyzing nucleotide

sequences along with metadata information and other predictor information such as

temperature, precipitation, humidity, elevation, human population density, livestock

density among others have shown to be effective in determining the predictors for

transmission dynamics of viruses (Lemey et al., 2014; Si et al., 2013; Gilbert et al.,

2008; Loth et al., 2011; Magee et al., 2015).

The database is organized by records, and each record’s metadata potentially

contains information such as organism, strain, host, gene, date and location of col-
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Figure 2.2: An Example of a Nucleotide Sequence Record (KU497555) in NCBI
GenBank (left) Metadata Fields Showing Unique Identifiers and Author Informa-
tion Along with Directly Associated PubMed Article. (top right) Features in Source
Metadata with Details Critical To Phylogeography and Epidemiology such as Date
of Collection, Infected Host, Country, etc. along with the (bottom right) Nucleotide
Sequence.

lection, and when available, a link to the PubMed Central R© article describing the

research that produced the virus sequence. 2 An example GenBank record accession

(KU4975553) is shown in Figure 2.2.

While the record metadata usually contains the country name, a more precise

geolocation of the infected host is often unavailable, making it unsuitable for local-

ized phylogeography studies. Previous analyses have shown that the percentage of

GenBank records that have insufficient location information range from 64% to 80%

(Scotch et al., 2011; Tahsin et al., 2014a). In such cases the articles associated with

the records have to be parsed to extract a more precise location of the virus. Due

to the exponential increase in GenBank data each year (Lathe et al., 2008), it is not

feasible to manually curate the location metadata. As of August 2019, GenBank

contains 213 million entries including 2.9 million viral sequences averaging 1000 vi-

2https://www.ncbi.nlm.nih.gov/pubmed/ Accessed: 20 Oct 2019
3https://www.ncbi.nlm.nih.gov/nuccore/KU497555 Accessed: 20 Oct 2019
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ral sequences added per day in the last year. The availability of such a database

supports research in various domains of public health, particularly infectious diseases

(Dudas et al., 2017b; Pybus et al., 2012), where sequences play a vital role in con-

ducting phylogenetic, phylogeographic and epidemiological studies to understand the

dynamic nature of evolution and migration of pathogens across countries and conti-

nents. However, the quality of geographic metadata about the location of infected

host (LOIH) that is readily available at the individual record level may be insufficient

for studies conducted at the state/province levels within the country (Tahsin et al.,

2014b; Scotch et al., 2011).

Geographic metadata (if any) about the infected host is often present in Gen-

Bank’s optional fields such as the lat lon field containing the approximate coordinates

and/or the country field containing the country, state and city. However, among the

2.9 million viral sequences, only about 1% of the records contained the infected host’s

coordinates in the lat lon field and only 26% contained host information more specific

than a country in the country field. Although the lack of geographical metadata is

more prevalent in older records, there has not been significant improvement in recent

years. Over the past 10 months (October 2018 - August 2019), 296,550 viral records

have been added to GenBank, the presence of such finer geographic information in

the metadata of this subset was at 38%. Such unavailability of detailed metadata

in GenBank creates barriers for large-scale phylogeographic and population genetic

analysis at a finer level as researchers are then required to manually analyze other

metadata fields in the record and/or review any associated PubMed articles. If no ad-

ditional metadata is found, then the researcher might decide to exclude these records

from the study altogether reducing the sample size of the study.

This motivates the use of natural language processing (NLP) methods to find the

geographic location (or toponym) of infected hosts in the full text. In NLP, this task
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of detecting toponyms from unstructured text, and then disambiguating the locations

to their coordinates is formally known as toponym resolution. Toponym resolution

in scientific articles can be used to obtain precise geospatial metadata of infected

hosts which is highly beneficial in building transmission models in phylogeography

that could enable public health agencies to target high-risk areas. Improvement

in geospatial metadata also enriches other scientific studies that utilize GenBank

data, such as those in population genetics, environmental health, and epidemiology

in general, as geographic location is often used in addition to or as a proxy of other

demographic data. Toponym Resolution is typically accomplished in two stages (1)

toponym detection (geotagging), a named entity recognition (NER) task in NLP and

(2) toponym disambiguation (geocoding) (Weissenbacher et al., 2015a).

For instance, given the sentence “Our study mainly focused on pediatric cases with

different outcomes from the most populated city in Argentina and one of the hospitals

in Buenos Aires where patients are most often referred.” (Barrero et al., 2011), the

detection stage deals with extracting the locations “Argentina” and “Buenos Aires”.

The disambiguation stage deals with assigning the most likely, unique, identifiers from

gazetteer resources like Geonames to each location detected e.g. 3865483:Argentina

from 145 candidate entries containing the same name and 3435910:Buenos Aires from

943 candidate entries with variations of the same name. Both tasks bring forth

interesting NLP challenges with applications in a wide number of areas.

2.0.2 Chapter Outline

We present methods for solving this problem in three stages to address challenges

in the field of geographical location information extraction in biomedical scientific

articles. The first challenge deals with the limited availability of human annotated

data for training such a NER system. To tackle this challenge we present a distant
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supervision method for creating noisy annotated data and demonstrate how such a

system can be used to achieve state-of-the-art performance scores. This work has been

published in Bioinformatics (Magge et al., 2018b). Secondly, we present a two stage

system using the recurrent neural network architectures for the toponym extraction

NER and population heuristics for toponym resolution. This work has been published

in the Proceedings of the Pacific Symposium of Biocomputing 2019 (Magge et al.,

2019). Finally, we present the end-to-end pipeline for enriching GenBank metadata

information and making such a system available in a scalable and efficient online

application.

2.1 Background

The toponym detection task is defined as the automatic identification of the

boundaries of all toponym mentions in selected articles. Like many NLP tasks, de-

tection of toponyms is challenging due to the inherent ambiguity of natural language.

For instance, words like “May” which appear in “was extracted in May, Russia”

needs to be tagged as toponym, but not in “found in May 2013”. Previous solutions

for toponym detection have included dictionary lookups, rule-based and machine

learning-based approaches but they suffer from well-known limitations, such as cov-

erage or scalability among others (Piskorski and Yangarber, 2013). Dictionary-based

approaches are unable to resolve correctly the ambiguities between phrases in doc-

uments and entries in the dictionary, resulting in many false positives. Rule-based

techniques encode the contexts where toponyms appear to solve these ambiguities.

However the rules, written manually, never describe all possible contexts, resulting in

many false negatives (Weissenbacher et al., 2015b; Tamames and de Lorenzo, 2010).

Machine learning (ML) systems, classifiers or sequence labelers, are able to learn the

rules from annotated examples. With better performances, they have been dominant
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over rule-based approaches in recent times. ML systems rely on features describing

the examples to learn the rules. Features, which commonly include orthographic,

lexical, syntactic and semantic information about the phrase and its context, are typ-

ically manually selected and encoded. Features are valuable in decision making in

NLP systems, but feature engineering can be challenging because it is never known in

advance if a feature or a combination of features contribute to increased performance

of the ML system (Tang et al., 2014). Moreover, many basic features are often com-

puted from other NLP systems that are individually error-prone (e.g. part-of-speech

taggers or dependency parsers) and, as a consequence, can be susceptible to adding

noise when combined. Noisy features make the inferences of ML systems harder dur-

ing their training and quickly degrade their deductions at runtime (Goldman and

Sloan, 1995; Zhu and Wu, 2004).

NERs based on deep learning (DL) have been shown to be effective at selecting

and computing the features required for their tasks directly from vectors represent-

ing words. In this representation, also known as word embedding, each word of a

predefined vocabulary is represented by, or embedded in, a vector of n floating point

numbers (Habibi et al., 2017). n is often called the dimensionality of the word embed-

dings and it is the length of the word vector. n is fixed for all words in the vocabulary.

Each vector encodes the position of the word it embeds in a high dimensional space.

Word embeddings are initialized randomly and trained on a large unlabeled corpus

to adjust the values based on the idea that words which are used in similar contexts

must have vectors with similar values. Hence, in a pre-trained word embedding, the

vectors for words in the vocabulary are clustered such that words with similar mean-

ing lie close to each other in the n-dimensional space (Li et al., 2015a; Kusner et al.,

2015).
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Word embeddings have been shown to capture morphological, lexical, syntactical

and shallow semantic properties of phrases in their raw representation of the vectors

(Mikolov et al., 2013; Pennington et al., 2014). The use of word embedding removes

the need to encode manually basic features into the architecture and limits the errors

caused by noisy features during their inference. Leveraging this knowledge represen-

tation has shown to improve performance in a multitude of NLP tasks that rely on

semantics(dos Santos and Guimarães, 2015).

2.2 Distant Supervision for Toponym Extraction

Many advanced neural network architectures like convolutional neural networks

(CNNs) (Xu et al., 2016), recurrent neural networks (RNNs)(Socher et al., 2013)

and long short term memory (LSTM)(Lample et al., 2016) systems have since been

explored to accomplish state-of-the-art performances in NLP tasks. However, their

optimal performances are limited by the availability of human annotated data for

training. We propose a solution to this problem by using distant supervision to

generate additional training instances for greater coverage.

Distant supervision is a form of weak supervision where the idea is to leverage

weakly structured data to obtain labeled data (Mintz et al., 2009; Liu et al., 2003).

As most ML systems have the potential to improve their performance with more

training data, distant supervision techniques have been used for multiple relation ex-

traction tasks where labeled data for training ML systems are limited or not available

(Nguyen and Moschitti, 2011; Takamatsu et al., 2012; Krause et al., 2012). In NER

tasks, labeled data are also difficult or expensive to obtain (Purver and Battersby,

2012; Roth et al., 2013). To overcome limited labeled data available for training

our NER, we employ distant supervision to generate additional positive and nega-

tive examples from publicly available articles on PubMed Central that are linked to
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GenBank articles. We rely on distant supervision data within the domain as opposed

to annotated geographic mentions in other domains (Richman and Patrick, 2008) for

multiple reasons. Firstly, the differences in effective vocabulary between the domains

can be quite large (as shown later) and such differences can affect the performance of

the NER task. Secondly, our method to generate the examples uses the geographic

location of the infected host i.e. the virus location in GenBank metadata. Hence, we

hypothesize that this method may prioritize the identification of geographic locations

that helps the eventual task for resolving the geographic location of the infected host.

Sequence labelers such as Conditional Random Fields (CRF) and most recently

recurrent neural models such as RNNs (Li et al., 2015b), LSTMs (Limsopatham and

Collier, 2016a; Lample et al., 2016), and Gated Recurrent Units (GRUs) (Yang et al.,

2016), are often used for NER due to their fundamental design to factor in previous

decisions into the current decision, a design well adapted to fit the sequential nature

of the natural language. However, in this work we use a feed-forward neural network

(also known as multi-layer perceptron) to make use of a very large volume of training

data obtained from distant supervision. A choice uncommon but not unprecedented,

deep neural networks have been previously used for NER tasks (Godin et al., 2015)

including works in the biomedical domain (Wu et al., 2015). The distant supervision

method used in this system reveals only some of the toponyms contained in sentences

whereas the others remain unlabeled. This prevents the use of sequence labelers which

require all toponyms to be labeled during the training phase.

Our previous work on the dataset evaluated in this section such as (Weissenbacher

et al., 2015b) and (Weissenbacher et al., 2017) have used rule-based and CRF-based

NER systems respectively. The first paper introduces the dataset and provides base-

line performance scores using a rule-based classifier. The second improves over the

previous classifier using a CRF labeler that uses handcrafted lexical, morphological
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and semantic features to improve the performance. The second paper suggests the use

of distant supervision data for improving the performance of the labeler through ad-

ditional training and lists the steps involved in creating a distant supervision dataset.

It uses a Naive Bayes classifier to evaluate the quality of the distant supervision exam-

ples and reports a poor performance when tested on the gold-standard annotations.

The paper stops short of evaluating the contribution of distant supervision examples

in conjunction with gold-standard annotations on the overall NER task using the

CRF labeler. In this work, we propose a new NER model with significantly better

performance, make improvements in generating the distant supervision examples, and

perform a comprehensive evaluation of multiple NER systems.

2.2.1 Distant Supervision Architecture Using Fully Connected Feed Forward

Neural Network

In Figure 2.3, we show the architecture of our NER system. As illustrated in the

figure, there are three different phases of operation for the NER: distant supervision,

supervision and production. At the core of each phase is a deep neural network that

forms the NER. The first two phases involve training the NER to detect toponyms

and the last phase, the testing phase, uses a trained system to detect toponyms. We

begin by describing the components and steps involved in training our NER.

Input

The annotated data consists of scientific articles in which toponyms have been tagged

by either human annotators or using distant supervision. Training instances created

from the annotated data are used as input during the NER’s training phase. Each

training instance consists of an input word, the word’s context, and a label indicating

if the word is in a phrase which is a toponym. The context of the word is formed
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Figure 2.3: The NER Architecture with Distant Supervision. The NER Model is
First Trained on Distant Supervision Data Followed by Human Annotated Data to
Obtain the Final Model.

by the words in its neighborhood, i.e. a window of words where the given word is

at the center. The size of the window is fixed. For instance, the sentence “AIV

H9N2 was detected in domestic ducks in Hong Kong until 1985 .” (Parvin et al.,

2014) contains 13 tokens including the period, thereby forming 13 training instances.

All punctuations are stored as single tokens. Hyphenated words are treated as a

single word. For the word Hong, the words “ducks in Hong Kong until” form its

context when the window size is 5. We use the context of a word because it helps

in determining if the word is or is not in a toponym phrase. Words in the beginning

and end of the document that lack neighbors are padded with the required number

of start words or end words.

Word Embeddings

Each word is represented by its word embedding obtained from unsupervised pre-

training. A word embedding consists of a vector formed by a set of real numbers, that

represents its position in a multi-dimensional space. A word’s context is represented

by the concatenation of individual word embeddings of the words in the window to

form a long input vector. We use a randomly initialized vector to represent all words
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not present in the vocabulary of the pre-trained word embeddings used during our

experiments.

Feature Embeddings

In addition to the word’s context, features describing properties of the word, its

context or properties of the document that may help in decision making can also be

concatenated into the input vector. For instance, features could include information

about the section of the article the word was taken from (i.e. abstract, introduction,

body, table), or information if the word was found in a database of city names. A

feature is represented by a one-hot vector, (e.g. for binary features, the corresponding

index of either ‘Yes’ or ’No’ is set to 1 and the other is set to 0). To demonstrate

the capability of embedding features, we implement two simple word-based binary

features: the word’s presence in a publicly available toponym dictionary, for our

experiments we used GeoNames 4, and the presence of full uppercase letters in the

word. For example, for the phrase “isolated from pigs, turkey, and quail in Canada”

(Nfon et al., 2011) in Figure 2.4, the feature to detect if ‘turkey’ is an abbreviation

will check if all letters of the word are uppercase and since it is not, the index for ‘No’

is set to 1 and added to the input vector. In the architecture proposed, embedding

features are optional but we introduce them to demonstrate the NER’s capability of

using them.

Training

The NER model consists of weight matrices, where the weights are real numbers

initialized randomly and optimized during the training procedure. The training phase

of the NER involves a series of matrix multiplication operations between the input

4http://www.geonames.org/ Accessed: 20 Oct 2019

23



Figure 2.4: The Training Procedure of the NER’s Neural Network with Two Hidden
Layers.

matrix and the NER model’s weight matrices in the hidden and output layers of the

model. The output of each training phase includes the collection of matrices that

form the NER model’s weights that have been optimized during training and ready

to be used in the NER system. The model outputs from the training phase is used

to initialize the final NER system that processes articles and extracts toponyms from

the text.

The first two phases of the architecture in Figure 2.3 involve training the NER

that consists of two parts: forward estimation to determine the probability of a word

being in a toponym, and error back-propagation to adjust the model weights and

embeddings to reduce error in future predictions. The testing phase involves only the

forward estimation part. A representation of the training phase in a neural network

with two hidden layers based on a window size of 5 is shown in Figure 2.4.
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Forward-estimation

The text from the input PubMed articles are tokenized into words and punctuations

which form an input stream of training data processed as windows of words. The

input vector is constructed as described earlier. From the training data, the tokens

occurring in a phrase labeled as toponym, i.e. inToponym(I), are encoded to the

value of 1 while others tokens, outToponym(O), are encoded to 0. Hence, for the

previous example the encodings will be ”AIV=0 H9N2=0 was=0 detected=0 in=0

domestic=0 ducks=0 in=0 Hong=1 Kong=1 until=0 1985=0 .=0”

The overall transformations for the two layer feedforward neural network are

shown following equations:

h1(xi) = ReLU (W1xi + b1) (2.1)

h2(xi) = ReLU (W2h1(xi) + b2) (2.2)

y = p(xi) = softmax (Uh2(xi) + b3) (2.3)

Here, W1 ∈ Rd×w∗n, W2 ∈ Rd×d, and U ∈ R1×d represents the first, second and

output layer weights respectively, where d is the number of dimensions of the hidden

layer. xi ∈ Rw∗n×1 represents the input layer vector, where w is the number of words

in the window and n is the number of dimensions in the word embeddings. b1 ∈ Rd×1,

b2 ∈ Rd×1, and b3 ∈ R1×1 represents the bias terms of the first, second and final layer.

After evaluating available activation functions such as tanh and sigmoid, rectified

linear units (ReLU) were found to be most efficient. We use a dropout function at

layer 2 with a probability of 0.5 to prevent the model to overfit the data, leading to

poor generalization. More hidden layers (depth) can be added to the architecture by

repeating equation 2.2. At the output layer, a softmax function is used to decide the

label of the word.
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Error back-propagation

During the training phase, the error for each prediction is computed by the cross

entropy function. This loss function computes a score reflecting the scale of the

difference between the expected output value y and the probability estimated by our

system for the encoded label values 0 (for O) or 1 (for I). To minimize the lost, the

system uses stochastic gradient descent (SGD) (Bottou, 1991) to determine the values

for U , b3, W2, b2, W1, b1 that maximizes the likelihood of the predictions. We do not

update or fine-tune the word embeddings during training as they did not reveal a

significant boost in performance. For purposes of brevity, the objective function and

derivations of the equations are left out of the paper, but they can be inferred from

previous works (Collobert et al., 2011; LeCun et al., 1998, 2012).

In addition to the word embeddings, handcrafted feature embeddings can be con-

catenated to the input layer along with the word embeddings and be trained. Post-

training, the matrices of the hidden layers (i.e. U , b3, W2, b2, W1, and b1) form the

model of the NER system. The NER system can now be used to identify toponyms

in unseen articles by following the first 6 steps shown in Figure 2.4.

Corpus

To evaluate the performance of the system, the system presented in this paper was

trained on annotated data obtained from two different sources, manual annotation

and automatic generation with distant supervision, Ddist.

Distant supervision

The performance of deep neural networks have shown to improve with increase in

training size even when the training data may contain a small amount of noise.(Chilimbi

et al., 2014; Amodei et al., 2016) Distant supervision uses heuristic rules to generate
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both positive and negative training examples. Positive examples for NER tasks refers

to word windows where the center word is in a toponym (e.g. “several regions of

Spain , and infection”) and negative examples are ones where the center word is not

in a toponym (e.g. “samples collected in December 2009 and January”). Distant

supervision was used to generate 8 million training examples that could be used to

train the NER in addition to the 260,000 instances from manually annotated data.

We estimated the quality of the distance supervision examples generated by manually

analyzing a random sample of 200 positive and 200 negative examples to find 19 false

positives and 6 false negatives. The false positives were dominated by tokens that

were part of an organization, institution or strain. Due to the sparsity of toponym

mentions in large documents, we restricted the ratio of positive/negative examples to

its ratio observed in the training set.

Generating Positive Examples

The following steps were used to generate positive examples: 1) Find GenBank records

for which a location in the location field of the metadata and a link to the full

text article are both available. 2) Annotate as toponyms in the article all phrases

which match the locations in the metadata of the records. 3) Include the annotated

locations’ word windows as positive examples for training. A manual inspection

of positive examples generated revealed that the positive examples included many

false positives which we needed to eliminate. 4) Analyze the false positives and

manually create a list of words called blacklistPOS that contains frequent words that

are collocated with the false positives. For instance, blacklistPOS will contain words

that indicate organization entities such as University, Department, or Center and

words that refer to organism entities such as virus, isolate and strain. 5) Check

for presence of blacklistPOS words in positive examples from step 3 and move them
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to negative examples because they are crucial in eliminating similar false positives

during NER training.

Generating Negative Examples

Negative examples were generated using similar steps as documented previously in

(Weissenbacher et al., 2017). We summarize them: 1) Manually compile a list of

words called whitelistNEG that contain words collocated with toponyms in the word

windows by analyzing word windows from human annotated training data. The

whitelistNEG will contain words such as ‘isolated’, ‘locations’, ‘near’ or ‘from’. 2)

Process articles and select sentences that contain phrases matching with toponyms

in a dictionary based on case-sensitive lookups. Sentences such as “Gene UL111A

encodes viral interleukin-10 (Lockridge et al., 2000)” are selected where Lockridge

is a phrase matching a toponym in our dictionary, GeoNames. 3) Create nega-

tive examples by generating word windows from the sentences where no words from

whitelistNEG appear in the examples.

Human Annotated Data

The second type of annotated data that the NER was trained on was a publicly avail-

able annotated corpus of articles from PubMed Central.(Weissenbacher et al., 2015b)

The dataset contains 60 PubMed articles manually annotated with 1881 toponym

mentions and an inter-annotator agreement of 97%. For purposes of comparison, the

proposed system uses the same 48 articles (containing 1596 toponym mentions) for

training, data Dtrain, and 12 articles (containing 285 toponym mentions) for testing

data, Dtest, as used in those tasks (Weissenbacher et al., 2017). Of the 48 articles

available for training, 5 articles (containing 159 toponym mentions) were initially sep-

arated as held-out data for validation and tuning the hyperparameters of the model.
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Although the BIO schemes of annotation is popular in multiple word named enti-

ties (e.g. [...]in(O) Papua(B) New(I) Guinea(I) and(O)[...]), we use the IO scheme

because it reduces the NER task from choosing between three labels to a binary

classification problem. In the annotated corpus containing 1881 toponym instances,

there was only one occurrence (0.0005%) where a toponym immediately followed a

multi-word toponym i.e. a B-I-B sequence.

Pre-trained Word Embeddings and Model Hyperparameters

In our experiments, we used publicly available pre-built word embeddings from two

different data sources: glove (Pennington et al., 2014) uses text gathered by Common-

Crawl,5 and wiki-pm-pmc uses a collection of abstracts and articles from PubMed and

Wikipedia.(Pyysalo et al., 2013) We observed that dimensions of the word embed-

dings and the effective vocabulary (i.e. the set of different words found in the word

embedding vocabulary) for the annotated dataset vary greatly, 300 and 152,786 for

glove, and 200 and 201,380 for wiki-pm-pmc. We also compose a baseline word em-

bedding with random numbers using the largest vocabulary and the largest dimension

among the embeddings.

The performance of the proposed NER model depends on the tuning of hyper-

parameters of the deep neural network during the training phase. We limit the ar-

chitecture to use two hidden layers because additional hidden layers did not improve

the performance significantly. We set the number of dimensions of both hidden layers

to 150 and learning rate was set to 0.001. For initializing the weight matrices in the

hidden layers, U , W1, and W2, random numbers from a uniform distribution in the

range (−r,+r) were used, where r = 2
√

6/(m+ n) and m and n are the dimensions

of the said matrix. The bias terms, b1, b2, and b3 are all initialized to zeros.

5http://commoncrawl.org/ Accessed: 20 Oct 2019
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Comparison with Other Classifiers

For the purpose of comparison, we train additional models using the random forest

and support vector machine (SVM) (Vapnik, 2013) classifiers which use the same con-

catenated input of word embeddings and custom features. For these models we train

on the entire training dataset under 10-fold cross-validation (by training instances)

to pick the best model and evaluate them on Dtest. The random forests classifier

(Breiman, 2001) works by constructing multiple decision trees on subsamples of the

training data that optimize the decisions for the labels given the inputs (i.e. the

concatenated word embeddings and features). In the final model, the labels are cho-

sen by averaging predictions from the individual decision trees. In our experiment

with the random forest classifier we construct 10 individual trees where the minimum

number of samples i.e. leaves required for a split is 1. The SVM classifier on the other

hand is fundamentally very similar to the single layered feedforward neural network,

in that both classifiers try to find a linear separation between the classes (I and O) in

high dimensional vector space. However, the key difference lies in the usage of kernel

functions in the SVM classifier to assist linear separations for non-linear classifica-

tion problems. Feedforward neural networks typically do not employ kernel functions

although they could be added into the network. In our experiment with the SVM

classifier, we use the radial basis function (RBF) as the kernel function.

2.2.2 Results and Discussion

We evaluate our NER on Dtest containing 12 manually annotated articles. For

our experiments, the NER model was trained for 50 epochs with each of the 3 word

embeddings described above and the one with the highest accuracy on the valida-

tion set was selected. The results for the models running under the three different
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Table 2.1: Precision, Recall and F1 Scores Using Strict Tokenwise Evaluation for
Toponym Detection.

Configuration Name P R F1

1-layer

no pre-training 0.97 0.65 0.779

glove 0.89 0.87 0.883

wiki-pm-pmc 0.92 0.82 0.878

2-layers
glove 0.92 0.86 0.891

wiki-pm-pmc 0.93 0.88 0.906

2-layers+feat
glove 0.94 0.87 0.903

wiki-pm-pmc 0.96 0.86 0.910

Random Forest + features wiki-pm-pmc 0.82 0.91 0.862

SVM + features wiki-pm-pmc 0.83 0.92 0.875

configurations are shown in Table 2.1.

For comparison with previous systems on this dataset, the strict tokenwise scheme

of evaluation (Tsai et al., 2006) was used, i.e. the predictions of the system were eval-

uated only on words in toponyms and words predicted as toponyms, words outside of

toponyms and correctly predicted with the value 0 (for O) were ignored. In standard

NER tasks where an entity can span across tokens, tokenwise evaluation may not be

a suitable evaluation scheme because partially extracted entities such as “Hong” in

“Hong Kong” may not be sufficient in disambiguating geographic locations. Hence,

the phrasal evaluation scores are used for measuring performance. In this evaluation,

a multi-token entity is counted as a true positive only when all tokens in the entity

exactly match the gold standard entity. We report the phrasal evaluation scores on

the best model in the following subsection for future comparisons.

We observe a significant improvement in performance when using pre-trained word

embeddings over randomly initialized word embeddings. We also observe that there
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is an increase in the performance of the deep (two layer) neural network over a simple

(one layer) feedforward network that demonstrates the need for non-linear classifica-

tion models for the task. The wiki-pm-pmc word embeddings performs consistently

better with its high coverage on vocabulary despite having low dimensionality. The

glove word embeddings perform equally well under all models despite being from a

generic domain and having less coverage on the vocabulary compared to wiki-pm-

pmc. We believe that its high dimensionality i.e. 300 as compared to wiki-pm-pmc’s

200 is the reason behind such good performance. This motivates the creation of pre-

trained word embeddings of higher dimensionality from the same domain for better

performance. The basic handcrafted features implemented in this model provided

a combined boost of 0.46% on the best model. The GeoNames lookup feature and

capitalization feature individually provided 0.32% and 0.25% increase in F1-score

respectively to the 2-layer feedforward model.

Both Random Forest and SVM classifiers trained on similar features on the wiki-

pm-pmc word embeddings achieve F1-scores marginally lower than the single layer

feedforward neural network. We find that repeated experiments with various combina-

tions of kernel functions may be necessary to draw strong conclusions when comparing

the performance of the SVM classifier and the single layer feedforward model. While

we only use binary features in this implementation for the sake of demonstration, ad-

vanced orthographic, semantic features and domain-specific pragmatic features can

be encoded in vector format both at the word and context level as described by

(Limsopatham and Collier, 2016a).

Error Analysis

To understand the nature of the errors, we analyze errors found in the predictions

in Dtest from the model built on the wiki-pm-pmc word embeddings with features.
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Table 2.2: Examples of Partial Match Errors Made by the NER Trained on Super-
vised Annotated Data. Underlined Tokens Indicate Entities Recognized by the NER.
Italicized Tokens are Human Annotated Gold Standard Entities.

No Category Examples

1 Tagged prefix Probable person to person transmission of novel avian influenza

A ( H7N9 ) virus in Eastern China, 2013 (Qi et al., 2013)

2 Tagged suffix Surveillance was conducted in live poultry markets in

Fujian , Guangdong , Guangxi , Guiyang , Hunan , and

Yunnan Provinces . (Smith et al., 2006)

3 Tagged suffix University of Ibadan , Oya State , Ibadan , Nigeria (Adeola

et al., 2009)

4 Unrecognized

token

the overwhelming majority (94.2%) of H9N2 influenza viruses

were isolated in Asia , with > 65 % coming from mainland and

Hong Kong of China (Bi et al., 2011)

Tables 2.2, 2.3 and 2.4 shows examples of some of these errors. In total, 255 out of 285

toponyms in the test data were fully matched and there were 32 false positives and

30 false negatives. A majority of the errors were associated with multi-token entities

where the entity was matched only partially. Such partial matches lead to both false

positives and false negatives in a strict evaluation. 16 such errors in false positives

and false negatives were associated with partial matches as shown in examples 1-4 in

the table. Among the remaining 16 false positives, 10 instances were names of places

that were used as part of names of organizations, group of countries, gene pools, or

strains as shown by examples 5-7. 3 among the false positives were toponyms that

seemed to be wrongly or partially annotated. As an example, example 8 in the table

may have added ‘BJ’ and ‘Bei’ as tokens. The remaining 3 errors were associated with

capitalized tokens confused as abbreviated toponyms. The 14 false negatives seemed

to belong in two categories. The first class are toponyms not recognized due to
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Table 2.3: Examples of False Positive Made by the NER Trained on Supervised An-
notated Data. Underlined Tokens Indicate Entities Recognized by the NER. Italicized
Tokens are Human Annotated Gold Standard Entities.

No Category Examples

5 Other entities phylogenetic analyses show that it is a recombinant virus

containing genome segments derived from the Eurasia and

North America gene pools . (Jiao et al., 2012)

6 Other entities Thus , current G1-like viruses in southern China might have

originally been introduced from Middle Eastern countries , or

it is also likely that the virus spread the other way around ,

similar to the transmission of FIG . (Xu et al., 2007)

7 Other entities This work was supported by a Natural Sciences and Engineer-

ing Research Council of Canada discovery grant . (Tremblay

et al., 2011)

8 Partial anno-

tation

Abbreviations : BJ and Bei , Beijing ; Ck , chicken ; Dk , duck

; (Ge et al., 2009)

their presence in tables which do not follow natural language syntaxes and semantics.

Example 9 in the table shows 3 out of 8 such errors. The remaining 6 toponyms

belonged to the second class where they seemed to stay unrecognized and untagged

because their contexts were not present in annotated training data. Examples 10, 11

show such examples.

Improving Supervised NER with Distant Supervision

The training on distant supervision data improved the recall by 3%. Table 2.5 shows

the performance comparison of the proposed NER system with previous NERs devel-

oped on the same dataset : 1) a rule-based approach (Weissenbacher et al., 2015b),

and 2) a CRF-based NER system (Weissenbacher et al., 2017) that used handcrafted
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Table 2.4: Examples of False Negative Made by the NER Trained on Supervised
Annotated Data. Underlined Tokens Indicate Entities Recognized by the NER. Ital-
icized Tokens are Human Annotated Gold Standard Entities.

No Category Examples

9 Table entries Virus Group State of isolation Date of isolation

A/chicken/Nigeria/1071-1/2007 EMA1/EMA2-2:6-R07

Plateau Jan 2 A/chicken/Nigeria/1071-3/2007 EMA2 Sokoto

Jan 5 (Monne et al., 2008)

10 Unrecognized

toponym

The characterization of the swH3N2 / pH1N1 reassortant vi-

ruses from swine in the province of Quebec indicates that re-

assortment of gene segments had occurred between the North

American swine H3N2 (Tremblay et al., 2011)

11 Unrecognized

toponym

Centers for Disease Control and Prevention , Atlanta , Ga .

(Matrosovich et al., 2003)

Table 2.5: Tokenwise Scores for Performance Comparison of NERs.

Implementation P R F1

Knowledge-based 0.58 0.88 0.70

CRF-All 0.85 0.76 0.80

TrainDtrain and TestDtest 0.96 0.86 0.910

TrainDdist+Dtrain and TestDtest 0.97 0.89 0.927

features, 3) the Stanford NER on the entire training set for comparison. While both

classifiers 2 (CRF-All) and 3 (Stanford-NER) are based on the CRF classifier that

looks for the best sequence of tokens given the input features for each word sequence,

there are significant differences between the number and type of features used in the

models. The ‘CRF-All’ model applied previously on this dataset combines features

such as N-grams (up to 4), capitalization, POS-tags, dictionary lookups, and k-means

clustered word vectors that total approximately 80,000 features per token. However,
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the ‘Stanford-NER’ combines features such as N-grams (upto 6), word shape features,

and a multitude of sequence features that total approximately 230,000 features per

token. The sequence features implemented in ‘Stanford-NER’ alone contributed to a

5 p.p. improvement out of the 7.2 p.p. total performance increase over ‘CRF-All’.

In comparison, the features used in the feedforward models used in this work are

merely around 1000 per token (i.e. 5 concatenated 200-dimensional word vectors

along with binary shape and knowledge features). The ‘CRF-All’ classifier uses simi-

lar word embeddings used in this work, hence we speculate that the factors affecting

the performance could be attributed to k-means clustered word vectors, the noisy or

redundant features, or a combination of both (Weissenbacher et al., 2015b).

All NERs proposed in this description (F1=0.88 to 0.927) outperform the previous

best system ‘CRF-All’ (F1=0.80) and the ‘Stanford-NER’ (F1=0.87). We confirm

the findings of previously proposed deep learning-based NER architectures (Lample

et al., 2016) that it is possible to obtain state-of-the-art results without the use of

handcrafted features.

Generalizability

Although our research specifically looks at geographic location extraction, we find

that the approach can be used for named entities across other domains where the

availability of human annotated data is very limited. In contrast to human annotated

data, the cost and manual effort involved in generating weakly supervised data is

significantly lower and the volume of data obtained is much higher. Although, this

data comes at the cost of quality, we find that it is possible to boost the performance

of a NER using such weakly supervised data.

Entities like geographic locations that have millions of entries in a database like

Geonames.org, can contain numerous words such as The and of that are part of a
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smaller but a widely used English vocabulary. These along with ambiguous proper

nouns like Turkey and May make it challenging for generating valid distant supervision

examples. In this work we demonstrate that it is possible to effectively improve

the NER’s performance by adopting distant supervision, even for such challenging

named entities. Other named entities such as organisms, genes, drugs and diseases

that contain comparatively fewer terms in common with the general domain English

vocabulary do not demand extensive disambiguation measures using blacklistPOS and

whitelistNEG. Hence, we believe that distant supervision can contribute to significant

improvements in NER tasks for recognizing such entities with minimal effort.

Limitations

In spite of the considerable performance improvement, there are a few limitations

to the NER and the distant supervision system proposed. Although the number of

errors are reduced in the system after the adoption of a deep neural network for NER

and additional training on distant supervision data, many errors remain when the

NER is tested on Dtest. Most of the errors were due to unrecognized tokens, many

of which were present in a table structure in the source literature. Text extraction

from such scientific articles flattens out the table entries into individual tokens that

lack the typical syntactic structure found in natural language. Since the majority

of training instances (including distant supervision instances) contain some syntactic

structure in the context windows, recognizing entities in tables often result in errors.

Such errors are consistent with similar statistical models where syntactic features are

used for NER or text classification tasks.

While the NER itself can be treated like a black-box for use in similar applications,

we find that there can be some challenges in adoption of distant supervision for im-

proving the NER’s performance. Firstly, distant supervision requires some amount of
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domain expertise to recognize named entities and contexts of interest. In our experi-

ments, we found that it is necessary to populate the blacklistPOS and whitelistNEG

based on training instances in the gold standard annotations and the accompanying

annotation guidelines. Secondly, the quality of the distant supervision examples and

its contribution to performance improvements may demand some manual modifica-

tions the blacklistPOS and whitelistNEG depending on the type of named entities.

One good approach would be to iteratively train on Ddist and test on Dtrain to rec-

ognize false positives and false negatives. And finally, training the NER on weakly

supervised data increases the training time, especially if the model hyperparameters

have to be tuned during the process. However, once the NER is trained and tuned

for performance, it’s execution time remains constant.
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2.3 Toponym Extraction using Recurrent Neural Networks and Resolution using

Population Heuristics

Since detection is the first step in the entity extraction pipeline, its impact on the

overall performance of the combined task is multiplied, as locations not detected can

never be disambiguated. We introduce the use of recurrent neural network (RNN)

architectures that use word embeddings, character embeddings and case features as

input for performing the detection task. In addition to these, we also experiment

with the use of conditional random fields (CRF) on the output layer as they have

known to improve performance. We perform ablation studies/leave-one-out analysis

with repetitive runs with different seed values for drawing strong conclusions about

the use of deep recurrent neural networks, their architectural variations and com-

mon features. We evaluate the impact of the results from the detection task on the

upstream disambiguation task, performed using the commonly assumed population

heuristic (Leidner, 2007) whereby the location with the greatest population is chosen

as the correct match.

Toponym detection and toponym disambiguation have been widely researched by

the NLP community, with numerous publications on both detection and disambigua-

tion tasks (Gritta et al., 2018; Leidner and Lieberman, 2011; Tobin et al., 2010).

Toponym detection is commonly tackled as a NER challenge where toponyms are

recognized among other named entities like organization names and people’s names.

Previous studies (Tahsin et al., 2016) have identified the performance of the NER

as an important source of errors in enhancing geospatial metadata in GenBank, mo-

tivating the development of tools for performing detection and resolution of named

entities such as infected hosts and geographical locations (Tahsin et al., 2017a,b).

The annotated dataset used in this work (Tahsin et al., 2016; Weissenbacher et al.,
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2015b) includes both span and normalized Geonames ID annotations. Since the per-

formance of the overall resolution task is deeply influenced by the NER, some of the

previous works using this dataset have looked specifically at improving the NER’s

performance.

Our previous research on toponym detection have used rule-based methods (Weis-

senbacher et al., 2015b), traditional machine learning sequence taggers using condi-

tional random fields (CRF) (Weissenbacher et al., 2017) and deep learning methods

using feed forward neural networks (Magge et al., 2018b). NER performance since the

introduction of the dataset has increased from an F1-score of 0.70 to 0.91 closing in on

the human-level annotation agreement of 0.97. In the previous baseline for toponym

resolution (Weissenbacher et al., 2015b) a rule-based extraction system was used to

detect toponyms. In subsequent work, traditional machine learning algorithms such

as conditional random fields (CRFs) (Weissenbacher et al., 2017) and feedforward

neural nets (Magge et al., 2018b) were introduced for improving the NER’s perfor-

mance. There exist some studies involving RNN experiments that explore the use

of RNN architectures for sequence tagging tasks in the generic domain (Jozefowicz

et al., 2015; Greff et al., 2017). While these tasks measure the performance on specific

tasks, the effect of optimal performances haven’t been measured in upstream tasks.

On the other hand, toponym disambiguation has been commonly tackled as an

information retrieval challenge by creating an inverted index of Geonames entries

(Overell and Rüger, 2008; Weissenbacher et al., 2015b). Given a toponym, candidate

locations are first retrieved based on words used in the toponym and then heuristics

are used to pick the most appropriate location. Popular techniques use metrics such

as entity co-occurrences, similarity measures, distance metrics, context features and

topic modeling (Spitz et al., 2016; Ju et al., 2016; Lieberman and Samet, 2012; Ka-

malloo and Rafiei, 2018; Leidner, 2007). This approach is largely adopted due the
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large number of Geonames entries (about 12 million) from which to choose. We also

find that the most common baseline used for measuring the disambiguation perfor-

mance is the population heuristic where the place with the most population is chosen

as the correct match.

Most research articles that focus specifically on the disambiguation problem use

Stanford-NER or the Apache-NER tool (Kamalloo and Rafiei, 2018; Lieberman and

Samet, 2011; Hoffart, 2013) for detection which has been trained on datasets like

CoNLL-2003, ACE-2005 and MUC. Some studies assume gold standard labels and

proceed with the task of disambiguation which makes it difficult to assess the strength

of the overall system. It is also important to note that a majority of efforts have been

focused on texts from a general domain like Wikipedia or news articles (Lieberman

and Samet, 2011; Hoffart, 2013; Kamalloo and Rafiei, 2018). Only a handful of pub-

lications deal with the problem in other domains like biomedical scientific articles

(Tamames and de Lorenzo, 2010; Weissenbacher et al., 2015b) which contain a differ-

ent and broader vocabulary. Similar to the previous disambiguation method devel-

oped for this dataset (Weissenbacher et al., 2015b), we build an inverted index using

Geonames entries but use term expansion techniques to improve the performance and

usability of the system in various contexts.

2.3.1 Recurrent Neural Network Architectures

Our approach for detection and disambiguation of geographic locations are tackled

independently, as described in the following subsections. For the purposes of training

and evaluation, we again use the publicly available human annotated corpus of 60

full-text PMC articles containing 1881 toponyms (Weissenbacher et al., 2015b). Of

the 60, the standard test set for the corpus includes only 12 articles containing a

total of 285 toponyms, a large majority of which are countries and major locations.
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The annotated dataset contains both span annotations and gazetteer ID annotations

linking ISO-3166-1 codes for countries and GeonamesIDs for the remaining toponyms.

For uniformity, we converted all ISO-3166-1 codes to equivalent GeonameIDs.

Toponym Detection

The task of toponym detection typically involves identifying the spans of toponyms

in an NER task where the sequence of actions is illustrated in Figure 2.5. As input

features, we use publicly available pre-trained word embeddings that were trained on

Wikipedia, PubMed abstracts and PubMed Central full text articles (Pyysalo et al.,

2013). In addition to word embeddings, we experiment with orthogonal features

such as (1) a case feature to explicitly distinguish all-uppercase, all-lowercase and

camel-case words encoded as one-hot vectors that are appended to the word, and (2)

fixed length character embeddings. Character embeddings have shown to improve

the performances of deep neural networks and are employed in few different ways.

One of the popular methods used involves the use of a CNN layer (Ma and Hovy,

2016) or an LSTM layer (Lample et al., 2016) on vectors from a randomly initialized

character embeddings that are fine tuned during training appended to the input word

embedding layer. During initial experiments we found that implementation of this

architecture added significantly to the training time and hence we employ the use

of a simpler model where character embeddings are pre-trained using word2vec and

appended directly to the input layer along with word embeddings and case features.

The proposed RNN units and their variations can be used on their own for NER

purposes. However, bidirectional architectures are popularly employed for NER as

they have the combined capability of processing input sentences in both directions

and making tagging decisions collectively using an output layer as illustrated in Figure

2.5. In this section, we specifically look at bi-directional recurrent architectures. It is
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Figure 2.5: A Schematic Representation of the Sequence of Actions Performed in
the NER Equipped with Bi-directional RNN Layers and an Output CRF Layer. RNN
Variants Discussed in this System Involve Replacing RNN Units with LSTM, LSTM-
Peepholes, GRU and UG-RNN Units.

also common to observe the use of a CRF output layer on top of the output layer of

bidirectional RNN architecture. CRF’s are known to add consistency in making final

tagging decisions using IOB or IOBES styled annotations. We experiment between

combinations of the RNN variants along with the optional features in an ablation

study to identify the impact of these additive layers on the NER’s performance as

well as its impact on the upstream resolution task.

Recurrent Neural Networks

RNN architectures have been widely used for auto-encoders and sequence labeling

tasks such as part-of-speech tagging, NER, chunking among others (Reimers and

Gurevych, 2017). RNNs are variants of feedforward neural networks that are equipped

with recurrent units to carry signals from the previous output yt−1 for making deci-
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sions at time yt as shown in equation 2.4.

yt = σ (W · xt + U · yt−1 + b) (2.4)

Here, W and U are the weight matrices and b is the bias term that are randomly

initialized and updated during training. σ represents the sigmoid activation function.

In practice other activation functions such as tanh and rectified linear units (ReLU)

are also used. This characteristic recurrent feature simulates a memory function

that makes it ideal for tasks involving sequential predictions dependent on previous

decisions. However, learning long term dependencies that are necessary have been

found to be difficult using RNN units alone. (Bengio et al., 1994)

2.3.2 Variants in Recurrent Neural Network Architectures

LSTM

LSTM networks(Hochreiter and Schmidhuber, 1997) are variants of RNN that have

proven to be fairly successful at learning long term dependencies. A candidate output

g is calculated using an equation similar to equation 2.4 and further manipulated

based on previous and current states of a cell that retains signals simulating long-

term memory. The LSTM cell’s state is controlled by forget (f), input (i) and output

(o) gates that control how much information flows from the input to the state and

from state to the output. The gates themselves depend of current input and previous

outputs.

g = tanh(W g · xt + U g · yt−1 + bg) (2.5)

f = σ(W f · xt + U f · yt−1 + bf ) (2.6)
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i = σ(W i · xt + U i · yt−1 + bi) (2.7)

o = σ(W o · xt + U o · yt−1 + bo) (2.8)

The future state of the cell ct is calculated as a combination of (1) signals from

forget gate g and the previous state of the cell ct−1 which determines the information to

forget (or retain) in the cell, and (2) signals from the input gate i and the candidate

output g that determines the information from the input to be stored in the cell.

Eventually the output yt is calculated using signals from the output gate o and the

current state of the cell ct.

ct = f � ct−1 + i� g (2.9)

yt = o� tanh(ct) (2.10)

In the above equations, � indicates pointwise multiplication operation. While

the above equations represent LSTM in its most basic form, many variations of the

architecture have been introduced to simulate retention of long-term signals a few of

which have been summarized in the following subsections and subsequently evaluated

in the results section. For reasons of brevity, we do not include the formulas used for

calculating the output yt but they can be inferred from the works cited.

Other Gated Recurrent Neural Network Architectures

We evaluate in our experiments one of the LSTM variations introduced for speech

processing (Sak et al., 2014) that introduced the notion of peepholes (LSTM-Peep)

where the idea is that the state of the cell influences the input, forget and output
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gates. Here, signals for the input and forget gates i and f depend not only on the

previous output yt−1 and current input xt but also on the previous state of the cell

ct−1 and the output gate o depends on the current state of the cell ct.

Gated Recurrent Unit (GRU) (Cho et al., 2014) also known as coupled input and

forget gate LSTM (CIFG-LSTM) (Greff et al., 2017) is a simpler variation of LSTM

with only two gates: update z and reset r. Their signals are determined based on the

current input x and previous output yt−1 similar to the gates in LSTMs. The update

gate z attempts to combine the functionality of input and forget gates of LSTMs i

and f and eliminates the need for an output gate as well as an explicit cell state.

A singular update gate signal z controls the information flow to the output value.

Although it appears far more simple, GRU has gained a lot of popularity in recent

years in a variety of NLP tasks.(Che et al., 2018; Luo, 2017)

Update gate RNN (UG-RNN) (Collins et al., 2017) is a much simpler variation of

LSTM and GRU architectures containing only an update gate z. The importance of

the update gate is often highlighted in RNN-based architectures.(Greff et al., 2017)

Hence, we include this model to perform a gate-based ablation study to understand

their contributions to the overall resolution task.

Hyperparameter search and optimization

The performance of deep neural networks relies greatly on optimization of its hyperpa-

rameters and the performance of the models have been found to be sensitive to changes

in seed values used for initializing the weight matrices (Reimers and Gurevych, 2017).

We first performed a grid search over the previously recommended optimal range of

hyperparameter space for NER tasks (Reimers and Gurevych, 2017) and to arrive at

potential candidates of optimal configurations. We then performed up to 5 repetitions

of experiments at the optimal setting for the model at different seed values to obtain
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the median performance scores. All models were developed using the TensorFlow

framework and trained on NVIDIA Titan Xp GPUs equipped with an Intel Xeon

CPU (E5-2687W v4).

Toponym Disambiguation

For toponym disambiguation, we use the Geonames gazetteer data to build an in-

verted index using Apache Lucene6 and search for the toponym terms extracted in

the toponym detection step in the index.

Building Geonames Index

Individual Geonames entries in the index are documents with common fields such as

GeonameID, LocationName, Latitude, Longitude, LocationClass, LocationCode, Pop-

ulation, Continent and AncestorNames. Here, LocationName contains the common

name of the place. For countries, we expand this field by using official names, ISO

and ISO3 abbreviations (e.g. United States of America, US and USA, respectively,

for United States). For ADM1 (Administrative Level 1) entries that have available

abbreviations (e.g. AZ for Arizona, and CA for California), we add such alternate

names to the LocationName field. In addition to the above fields we add the County,

State and Country fields depending on the type of Geonames entry. Fields such as

LocationName, County, State, Country and AncestorNames are chosen to be reverse-

indexed such that partial matches of names offers the possibility of being matched

with the right disambiguated toponym on a search.

6http://lucene.apache.org/ Accessed: 20 Oct 2019
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Searching Geonames Index

Most cities and locations commonly have their parent locations listed as comma sep-

arated values (e.g. Philadelphia, PA, USA). In such cases, the index provides the

capability to perform compound searches (e.g. LocationName:“Philadelphia” AND

AncestorNames:“PA, USA”). We find that this method offers the best scalable frame-

work for toponym disambiguation among approximately 12 million entries. Efficient

search capabilities aside, the solution internally provides documents to be sorted by

a particular field. In this case, we choose the Population field as the default sorting

heuristic such that search results are sorted by highest population first. An additional

motivation for the implementation of this solution is the flexibility of using external

information to narrow down search results. For example, when Country information

is available in the GenBank record, we can use queries like LocationName:“Paris”

AND Country:“France” to narrow down the location of infected hosts.

2.3.3 Results and Discussion

For the NER task, we use the standard metric scores of precision, recall, and

F1-scores for toponym entities across two modes of evaluation:(1) Strict where the

predicted spans of the toponym have to match exactly with the gold standard spans

to be counted as a true positive and (2) Overlapping where predicted spans are true

positives as long as one of its tokens overlap with gold standard annotations. For

toponym disambiguation, we compare the predicted and gold standard GeonameIDs

to measure precision, recall and F1-scores as long as the spans overlap. We compare

our scores with the previous systems that were trained and tested on the same dataset.
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Toponym Disambiguation

Our toponym disambiguation system is unsupervised, giving us the capability to test

its performance on the entire dataset assuming gold standard toponym terms to be

available. Under this assumption, we found the accuracy of the disambiguation sys-

tem was found to be 91.6% and 90.5% on training and test set respectively. Analyzing

the errors, we found that comparing ids directly is a very strict mode of evaluation for

the purposes of phylogeography as Geonames contains duplicate entries for many lo-

cations that belong to two or more classes of locations such as administrative division

(ADM) and populated area or city (PPLA, PPLC) but refer to the same geographical

location. For instance, when we look at the test set alone, which had 27 errors from a

total of 285 locations, 19 appeared to be roughly the same location. These included

locations like Auckland, Lagos, St. Louis, Cleveland, Shantou, Nanchang, Shanghai,

and Beijing which were assigned the ID of the administrative unit by the system,

while the annotated locations were assigned the ID of the populated area or city or

vice versa. Given these reasons, we find that the performance of the resolution step

exceeds the reported scores by 5% to arrive at an approximate accuracy of 95-96%.

However, for the purposes of comparison with previous systems we report the overall

resolution performance in Table 2.6 without making such approximations. We did

however observe 8 errors where the system assigned GeonamesIDs were drastically

different from their original locations due to the population heuristic. For example,

a toponym of Madison was incorrectly assigned the ID of Madison County, Alabama

which had a higher population than the gold standard annotation Madison, Dane

County, Wisconsin(WI).

Analyzing the errors across the architectures, we find that 80-90% of the erro-

neous instances to be repeating across the RNN architectures making it challenging
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Table 2.6: Median Precision (P), Recall (R) and F1 Scores NER and Resolu-
tion. Bold-styled Scores Indicate Highest Performance. All Recurrent Neural Net-
work Units were used in a Bidirectional Setup with Inputs Containing Pre-trained
Word Embeddings, Character Embeddings and Case Features, and an Output Layer
with an Additional CRF Layer.

Method NER-Strict NER-Overlapping Resolution

P R F1 P R F1 P R F1

Rule-based 0.58 0.876 0.698 0.599 0.904 0.72 0.547 0.897 0.697

CRF-All 0.85 0.76 0.80 0.86 0.77 0.81 - - -

FFNN + DS 0.90 0.93 0.91 - - - - - -

RNN 0.910 0.891 0.901 0.931 0.912 0.922 0.896 0.817 0.855

UG-RNN 0.948 0.902 0.924 0.959 0.912 0.935 0.903 0.824 0.862

GRU 0.952 0.919 0.935 0.967 0.930 0.948 0.888 0.835 0.860

LSTM 0.932 0.926 0.929 0.954 0.947 0.950 0.892 0.842 0.866

LSTM-Peep 0.934 0.944 0.939 0.951 0.961 0.956 0.907 0.863 0.884

to use ensemble methods for reducing errors. These included false negative toponyms

such as Plateau, Borno, Ga, Gurjev, Sokoto etc. which appear in tables and struc-

tured contexts making it difficult to recognize them. However, as discussed in our

previous work (Magge et al., 2018b), we plan to handle table structures differently by

employing alternative methods of conversions from pdf to text. Almost all false posi-

tives appeared to be geographic locations, however in the text they were found to be

referring to other named entities like virus strains and isolates rather than toponyms.

We found that the LSTM-Peep-based architecture appeared to have marginally
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Figure 2.6: (Left) Ablation/Leave-one-out Analysis Showing the Contribution of
Individual Features to the NER Performance Across the RNN Models. (Right) Impact
of Additive Layers on the Performance of the NER across the RNN Models. Here,
RNN Layers Refer to Respective Variants of RNN Architectures. Y-axis Shows Strict
F1 Scores.

better performance scores on the NER task and hence the overall resolution task.

Feature ablation analysis shown in Figure 2.6 indicate that inclusion of the charac-

ter embedding feature contributed to an increase in the overall performance of RNN

models. However, inclusion of case feature in combination with the character embed-

dings appeared to be redundant. Inclusion of the CRF output layer seemed to have a

positive impact on most models while additive layers seemed to have more effect on

GRU, LSTM and LSTM-Peep architectures.

2.4 End to End Pipelines for Enrichment of Geographic Information in GenBank

Metadata

Using the information extraction architecture presented above we developed an

end-to-end pipeline called ZoDo for GenBank metadata enrichment. We currently

host the ZooPhy application which allows a user to search and select a collection

of virus nucleotide sequences available in GenBank (or uploaded through the user

interface) that are retrieved from NCBI and stored in the ZooPhy database once ev-
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ery two months. Users can choose to run a Phylogeographic analysis on the selected

collection to reconstruct the virus spread using Bayesian phylogeography. The nec-

essary metadata fields for phylogeography such as date of collection, host taxonomy

id, geographic location of infected host are normalized using handwritten rules on

the metadata fields prior to storing them in the ZooPhy database. Our aim with the

ZoDo pipeline is to enrich the ZooPhy database for records where there are incom-

plete or missing information by using data mining techniques on associated PubMed

articles. We lay the foundation for such a framework and demonstrate the enrichment

process for geographic locations. We believe that the development of such as pipeline

helps both the phylogeography community and the larger molecular biology research

community that relies on GenBank nucleotide sequences. The ZoDo pipeline named

GeoBoost v2.0 improves over its predecessor (Tahsin et al., 2017b) in the following

areas:

Implementation of state-of-the-art deep learning-based natural language process-

ing (NLP) algorithms trained on manually annotated geographic locations in PubMed

Central Open Access articles (Magge et al., 2019, 2018c). All geographic locations

are disambiguated and resolved to a unique identifier in Geonames.org, a database

containing 12 million locations across the globe.

Migration of the complete implementation from a Java-based framework to a

deep learning and machine-learning friendly Python 3.7 framework. We foresee that

more semi-structured fields currently normalized using hand-written rules (that are

difficult to write and maintain over time) can be slowly replaced by parallelizable and

improved machine learning algorithms with better end-to-end accuracy.

Availability of a public web user interface that supports core functionalities of

GeoBoost which accept as input any GenBank accessions (not limited to virus), spec-

ification of sufficiency level by the administrative divisions within a country such
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as ADM1 and ADM2 which correspond to state and counties in the United States

respectively. Users can also choose the number of possible locations to extract for

a GenBank record along with their individual probabilities, and features to export

results. In addition to accepting GenBank accession IDs, the tool can also accept

PubMed IDs or raw text captured from an article to summarize the text extracted

by locations mentioned in them as we show in Figure 2.7.

A map view for visualizing the geographic locations normalized from the meta-

data fields and possible locations extracted from associated PubMed articles. The

user interface also displays the article text summarized by the geographic locations

mentioned in it; highlighted for manual analysis (see Figure 2.7).

Availability of an application programming interface (API) for GeoBoost’s core

functionality for direct use of the results in other applications (such as BEAST

(Suchard et al., 2018) for discrete phylogeography).

In addition to mining PubMed articles directly linked in the GenBank accessions,

we also mine geographic locations from PubMed articles that have cited the GenBank

accessions in their studies. All data retrieval functionalities in the tool rely on APIs

provided by NCBI ensuring latest available information.

The source code containing the implementation is publicly available with the

option of using the tool in standalone mode which supports additional functionality

such as extraction of geographic locations in texts extracted from a wide variety of

documents that can be the main text of an article or supplementary information.

This feature is beneficial for PubMed articles not available in in the PubMed Central

Open Access subset.

Availability of results from GeoBoost v2.0 for Bayesian phylogeography in zoonotic

viruses by automatic integration in the ZooPhy database available at www.zodo.asu.

edu/zoophy. Here, the probabilities for potential locations generated by GeoBoost
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Figure 2.7: Screenshots from the ZoDo GeoBoost v2 Website. Here, Any Required
GenBank Accession Ids can be Entered in the Text Box and Preferred Sufficiently
Level and Maximum Number of Locations can be Chosen As Required for the Study.
Upon Submission of the Request, the GenBank Accessions are Retrieved in Real Time
and the Metadata Fields are Normalized to Extract Locations at the Preferred Level.
If Levels are not Satisfied Associated Pubmed Abstracts / Open Access Articles
Are Mined for Geographic Locations and the Article is Summarized. All Possible
Locations are Displayed in the Map View with Details Available on Hover.

v2.0 can be used as uncertainties (Scotch et al., 2019) for the taxa in phylogeographic

studies implemented using BEAST (Suchard et al., 2018).

We tested the information extraction performance of GeoBoost v2.0 on a corpus

of 7,459 virus accession IDs that were annotated by expert human annotators. We

perform separate evaluation for influenza and non-influenza records as locations in

influenza records can often be inferred from locations mentioned in the strain informa-

tion while other virus metadata typically are not as likely to contain such metadata

information. We measure the accuracy of GeoBoost’s LOIH extraction system across

three metrics:
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Table 2.7: Accuracy of GeoBoost v2 on an Annotated Set of Virus 7459 Accessions.

Method ID 50 miles 100 miles

Influenza (N=7021) 78 89 91

Other Viruses (N=438) 63 73 76

(1) ID, where the extracted Geonames ID matches exactly with the annotated

geonames ID. However, we find that this evaluation metric is very strict for more

phylogeographic studies due to redundancies in Geonames database among adminis-

trative divisions and populated places. e.g. San Diego, California, USA has multiple

Geonames ids 5391832 (ADM1) and 5391811 (PPLA2) with their respective coordi-

nates being only 30 miles from each other.

(2) 50 miles : where the coordinates of the extracted location is within 50 miles

of the annotated location. This metric is valuable when the study requires locations

to be correct at the county level.

(3) 100 miles : where the coordinates of the extracted location is within 100 miles

of the annotated location. This is a standard metric in toponym resolution tasks

in text documents, especially among other domains such as Wikipedia texts (Santos

et al., 2015; Leidner, 2007).

Analyzing the results (Table 2.7), we observed that GeoBoost v2.0 achieves an

accuracy of 78% at the id level and 91% at the 100 miles. On a computer equipped

with Intel Xeon Processor E5-1620 v2 with 8 cores, we found that after the load time

of 35 seconds for the deep learning models and word representations, the average

speed for downloading and extracting metadata fields was found to be less than 0.1s

per record operating under batch mode of 1,200 records per batch. Availability of

PubMed linked articles increase the processing time by an average of 0.2s per PubMed

abstract and 0.5s for PMC Open Access article.
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We plan to expand the efforts to extend our information extraction and normal-

ization efforts to other databases containing nucleotide sequences such as the Joint

Genome Institute (JGI) (Chen et al., 2017). We also intend to validate the per-

formance of the tool on other popular pathogens that are available in the GenBank

repository such as bacteria where similar information extraction methods are required.

We believe that GeoBoost v2.0 offers a publicly available free-to-use tool to extract

geographic locations for applications and studies in phylogeography, population ge-

netics, molecular epidemiology and other biomedical research fields which rely on the

availability of enriched metadata from nucleotide sequence repositories like GenBank.
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Chapter 3

ADVERSE DRUG REACTION EXTRACTION FOR PHARMACOVIGILANCE

The previous chapter discusses the extraction of geographic locations from biomed-

ical scientific articles for its applications in phylogeography and epidemiology. The

information extraction pipeline described earlier can be characterized as extraction of

a general domain entity i.e. geographic location which is typically found in almost all

domains and not biomedical in nature by itself. On the other end of the spectrum, we

demonstrate information extraction where the entity is biomedical in nature in texts

of both generic and biomedical nature. Identifying biomedical named entities such

as diseases, disorders, medications and drug events from texts such electronic health

record notes and extracting relations between the entities is an important task for

many applications in medicine and public health. In this chapter, we use deep learn-

ing architectures for extracting drug and condition related entities from clinical notes

and social media posts. The first section of the chapter for extracting adverse drug

reactions from clinical notes has been published in Proceedings of Machine Learning

Research (Magge et al., 2018a). The second section of the chapter which presents

a pipeline for extracting adverse drug reactions from social media posts is currently

unpublished.

3.1 Adverse Drug Reaction Extraction in Clinical Notes

Processing the unstructured portions (free text) from electronic health records

(EHRs) to extract medical entities and relationships has many applications in EHR

phenotyping (Hong et al., 2019; Coquet et al., 2019; Zeng et al., 2019), EHR summa-

rization (Van Vleck and Elhadad, 2010; Cohen and Demner-Fushman, 2014), Pharma-
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Figure 3.1: An Illustration of the Contents in a Patient’s EHR. Entities of Interest
are Highlighted as Shown in the Screenshot Above. The NER Task Involves Extract-
ing these Entities and Assigning them with the Correct Entity Type.

covigilance (Lependu et al., 2013), Drug-drug interaction (DDI) studies (Natarajan

et al., 2017), Detecting adverse drug events (ADE) (Harpaz et al., 2014) and many

more.

In this section, we present a natural language processing pipeline consisting of a

named entity recognizer for identifying 9 medical named entities in clinical notes and

a random forests classifier for extracting 7 types of relations between the extracted

entities. The entities are broadly categorized into two groups: (1) condition related

entities (Indication, ADE i.e. Adverse Drug Effect, Severity and Other signs symp-

toms or disease), and (2) medication related entities (Drug, Dosage, Route, Frequency,

and Duration). This is illustrated in Figure 3.1.

As discussed in the previous chapter, recognizing spans of entities of interest is

a task that is formally known as named entity recognition and is one of the first

steps in natural language processing pipelines. It is also one of the most crucial

steps in the NLP pipeline as the success of subsequent steps such as entity relation

extraction and entity resolution depends on its performance. In this section, we

present an NLP pipeline for processing clinical notes and performing the NER and

entity relation extraction tasks. For the NER component, we use bidirectional long
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Figure 3.2: An Illustration of the Relation Extraction Task where Given the Entity
Spans and Types, the Task is to Extract the Entity Relationships from the Pairs of
Entities in the Text.

short-term memory (LSTM) units coupled with a conditional random field classifier

(CRF) at the output layer. This model has been found to be very efficient for a

variety of sequence tagging and chunking tasks (Reimers and Gurevych, 2017) and

has been widely used in recent years across many variations (Lample et al., 2016;

Ma and Hovy, 2016) including work in the biomedical domain (Jagannatha and Yu,

2016a,b; Habibi et al., 2017).

Once the entities have been recognized, we extract entity relationships in two

stages. Firstly, we use a binary classifier to filter out entity pairs based on their types

such that only entity pairs with possible relations between them are selected. We then

use features extracted from the two entities and their contexts as inputs to a random

forests classifier to determine the type of relationship between them. An example of

the relation extraction task once entities have been recognized is shown in Figure 3.2.

Since relations can exist between any two entities in a document i.e. that span across

sentences and paragraphs, there are a large number relation decisions to make in a

given document across all entities which makes it an interesting challenge.
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Figure 3.3: The Overall Architecture of the Pipeline for the NER and Relation
Extraction Tasks in Clinical Notes.

The main components of the NER and entity relationship extraction systems are

illustrated in Figure 3.3. The methods subsection describes the overall architecture,

system components and hyperparameters for reproducibility. The results subsection

reports the performance of the NER and RE tasks. The final subsection discusses the

limitations of the system and planned future work.

3.1.1 Methods

The gold-standard annotations for the supervised training were provided by the

University of Massachusetts and contains 1092 medical notes from 21 cancer patients

as part of the MADE1.0 challenge (Jagannatha and Yu, 2016a,b). We used 800 notes

as the training set, and 76 as a validation set, and the remaining as the test set.
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Training

During preprocessing, the clinical notes are tokenized to determine sentence and

token-spans. We then used the word and character embeddings of each token as

inputs to train the NER as illustrated in Figure 3.4 We use the word embeddings

developed by (Jagannatha and Yu, 2016a) along with character embeddings and case

features. Unlike char-LSTM (Lample et al., 2016) and char-CNN (Ma and Hovy,

2016) architectures, we use a simplistic fixed size model for character embeddings.

For this, we create character embeddings using the word2vec toolkit (Mikolov et al.,

2013) from the training dataset with number of dimensions set to 5 and maximum

number of characters set to 10. We restrict the model to use a single layer of bidirec-

tional LSTMs, and set the number of hidden units to 75. For optimization, we use

the Adam optimizer with a learning rate of 0.005 to optimize the output layer and

LSTM layer variables using mean cross entropy at the output layer as loss, and CRF

layer using the mean negative log likelihood. During training we use a dropout of 0.5

to prevent model overfitting.

For entity relationship extraction, since relationships between entities can exist

across sentences we end up with
(
n
2

)
possible relations where n is the number of

named entities in the document. Hence, we first used a simple rule-based binary

classifier to eliminate entity pairs that cannot have any relation. We accomplish this

by creating from the training set a binary distribution for the entity pairs where each

value indicates if there can exist a relation or not. We then use a Random Forests

classifier with 15 estimators, gini criterion, and minimum samples split set to 2 to

classify a given input across 8 classes that includes the 7 relationship classes and 1

class for no relations as illustrated in Figure 3.5.

For a given pair of entities, we extract the following handcrafted features to train
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Figure 3.4: Steps 1 Through 8 Showing the Training Procedure of the Bidirectional
LSTM-CRF Used for the NER Task. After Training has been Completed only Steps
1 Through 7 are Used to Determine the Labels during Production.

the classifier:

• Entity 1 type

• No. of words in Entity 1

• Avg. of entity 1 word embeddings

• Entity 2 type

• No. of words in Entity 2

• Avg. of entity 2 word embeddings

• No. of words in between entities

• Are both entities in the same sentence?
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Figure 3.5: An Illustration of the Training Procedure in a Random Forests Al-
gorithm where the Training Set is Divided Into Multiple Subsets for Training the
Estimators. The Final Decision of the Tree is Taken Based on an Average or Major-
ity Decision Obtained from the Individual Estimators.

3.1.2 Results and Discussion

We created the above models using the Tensorflow and Scikit-learn libraries and

used batch training to train the models. The NER presented achieved a micro-

averaged F1-score of 0.825 during validation and the classifier for the relation extrac-

tion task achieved an F1-score of 0.853 during validation and 0.815 during testing

when gold-standard annotations were provided. In the integrated task, the system

presented achieved an F1-score of 0.552 on the validation set.

The NER’s performance was found to be substantially better on medication re-

lated entities i.e. Drug, Route, Frequency and Duration compared to disorder related
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Figure 3.6: Named Entity Recognition Performance on Validation Set.

entities i.e. Indication, OtherSSD, Severity, and ADE. This difference could be at-

tributed due to the higher number of tokens per entity in the disorder related entities.

The models seemed to achieve better precision than recall for almost all entities sug-

gesting that gazetteer features might be beneficial in improving the performance of

the NER and the overall system.

Similar observations could be made in the entity relationship extraction task where

relation classes that involved medication entities in the same sentence were easier to

classify correctly. Dosage, Frequency Manner/Route relationship classes obtained

better performance than Duration relation where the Duration entity can reside on

other sentences. Among disorder relation classes, Severity relation had significantly

better classification on an average compared to Reason and Adverse relations where

the entity pairs often reside across sentences.
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Figure 3.7: Relation Extraction Performance on Validation Set.

3.2 Adverse Drug Reaction Extraction in Social Media

Increasing technology adoption across the globe and the increasing social media

usage in its various forms has provided the data mining research community, and the

text mining community in particular an opportunity to mine information of interest

that is otherwise challenging through traditional channels of information such as news

articles or knowledge sources like Wikipedia and scientific articles. However, mining

social media presents its own sets of challenges due to the casual nature of conver-

sations in contrast to news or scientific articles that are generally reviewed by peers

or editors before being published. While the sheer volume of information can be a

challenge when the event or information of interest is very rare, many more challenges
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are introduced due to misspellings, lack of punctuation and traditional language syn-

taxes that most computational linguistics tools are trained or curated from (Paul and

Dredze, 2017). This has encouraged researchers to annotate task specific corpora and

specialized language resources for social media research to support efforts in social

media mining research (Sarker et al., 2015; O’Connor et al., 2014; Paul and Dredze,

2017; Akhtar et al., 2015).

Our work is motivated by an interest in mining health related information on

social media for pharmacovigilance applications in public health, particularly dis-

covering adverse drug reactions (ADRs) on social media texts such as Twitter1 and

DailyStrength2. ADRs are negative side effects i.e. harmful and undesired reac-

tions due to the intake of a drug/medication (Edwards et al., 2000). In this work,

we present an end-to-end system for extracting ADRs, i.e. Drug and ADR pairs

from social media texts. In addition to ADRs, we also extract Indications which in

contrast to ADRs are reasons to consume a drug. Previous studies on social media

mining, particularly for public health have included analyzing user search queries for

influenza tracking (Broniatowski et al., 2015), disease detection (Brownstein et al.,

2009), disaster management (Buscaldi and Hernandez-Farias, 2015) and many more.

For purposes of brevity, we encourage readers to refer to larger works which summa-

rize the field and document the use of social media for research in various areas of

Public Health (Paul and Dredze, 2017).

Based on previous work on this topic, ADR mentions among tweets containing

drug mentions are found to be very rare (Nikfarjam et al., 2015; Sarker et al., 2015).

Among tweets containing drug names, it has been estimated that about 89-98% of the

tweets do not contain any ADR mentions (Nikfarjam et al., 2015). We believe that the

1https://twitter.com/ Accessed: 20th Oct 2019 Accessed: 20 Oct 2019
2https://dailystrength.com/ Accessed: 20th Oct 2019
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reasons for this phenomenon are multifold: (1) Many drug names are often ambiguous

e.g. searching tweets for the drug Lyrica can yield results for the musician with the

same name, (2) A large proportion of drug names are mentioned in advertisements or

posts by bots, (3) The number of known side effects and adverse effects can often vary

based on the type/class of drugs. For effective extraction of such rare events from

social media, previous works on this topic have often focused on the independent

tasks of tweet level ADR classification so that tweets classified as ADRs can be

analyzed by experts. However, if additional automated extractions are desired, for

example the spans of the expressed ADRs, then ADR span detection using NERs on

the ADR positive posts can be adopted, and subsequent downstream tasks of ADR

normalization operating under the architecture shown in Figure 3.8.

Methods for ADR tweet level classification have been studied extensively in the

past in various studies and shared tasks with imbalanced Twitter datasets where the

ADR class is a minority that are closer to the distribution of ADR positive posts

among all posts containing a certain drug names. However, the precision of ADR

classification systems developed have stayed in the range of 0.45-0.60 reaching a score

of 0.60 in the recent shared tasks (Weissenbacher et al., 2019c, 2018). The datasets

for the NER and normalization tasks hence have assumed an availability of tweets

containing 50% tweets that are positive for ADRs.

Some recent works on the task of NER have assumed the availability of ADR

positive tweets at 0.95 precision thereby training and testing their methods on a very

skewed dataset containing mostly positive tweets only despite availability of tweets

found to be negative for the presence of ADRs (Cocos et al., 2017; Gupta et al.,

2018b,a; Chowdhury et al., 2018). In this work we show that training on modified

datasets under such unrealistic assumptions of ADR classification performance merely

gives an illusion of the individual component’s high performance but will invariably
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Figure 3.8: An ADR Extraction Pipeline for Pharmacovigilance in Social Media
where Tweets are Retrieved by Either Using a Streaming API Filtered by Drug Names
or Searching a Previously Indexed Database by Drug Names. Downstream Tasks of
Span Detection Using NERs and Entity Normalization are Performed in the Subse-
quent Steps as Required.

result in a large drop in performance in the end-to-end ADR extraction and span

detection task.

3.2.1 Objectives and Contributions

The objective of this work is to evaluate the performance of ADR extraction

components using off-the-shelf deep learning classifiers and NER tools to answer key

questions on the design of the ADR extraction pipeline on texts from social media

and health forums. Following are the contributions of the work presented:
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• We test the impact of training the NER or varying ratios of ADR positive

(ADR) to ADR negative (NoADR) tweets on the end-to-end ADR extraction

performance. Based on the results we recommend modifications to the ADR

extraction pipeline for better performance.

• Quantitative analysis of ADR mention annotations in the Twitter dataset and

establish the need for additional ADR annotations. Following this, we establish

a new state-of-the-art performance using a system built from off-the-shelf deep

learning tools for NER multi-corpus training in an ADR extraction pipeline.

• We also present an ADR normalizer for converting the extracted spans to Med-

DRA Preferred Term identifiers using the expanded vocabulary from UMLS.

We make this end-to-end extraction pipeline available to be public as the DRIP

(DRug Insights for Pharmacovigilance) toolkit.

The rest of the section is structured in the following manner. We describe the cor-

pora used for the experiments and the individual components of the ADR extraction

system and experiments performed in the materials and methods section. We report

the results for the experiments performed in the Results section and discuss the results

of the experiments for the objectives in the Discussion section of the document.

3.2.2 Materials and Methods

Data collection and annotation

In this work, we use datasets from two social media sources: Twitter and Dai-

lyStrength used in our previous work on social media pharmacovigilance and shared

tasks (Nikfarjam et al., 2015; Weissenbacher et al., 2019c). For purposes of brevity,

we refer the readers to the original papers for details regarding data collection and
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Table 3.1: Summary of the Datasets Used for the Experiments Presented. For the
NER Datasets, we Extract the ADR and Indication Spans Only.

Corpus Annotation

Type

Total

posts

Training

set

Test

set

ADR

positive

DailyStrength (DS-NER)

(Nikfarjam et al., 2015)

NER spans

(ADR,

Indication)

6279 4720 1559 32%

Twitter (Tw-NER-v1)

(Nikfarjam et al., 2015)

NER spans

(ADR,

Indication)

1784 1340 443 50%

Twitter (Tw-Resolve)

(Weissenbacher et al.,

2019c)

NER spans

+ MedDRA

(ADR)

3849 2276 3 1573 50%

Twitter (Tw-NER-v2) NER spans

(ADR)

29284 18300 10984 7%

annotation guidelines, and present a summary of the datasets used for experiments

in this work in Table 3.1.

Experiments

Using the datasets specified in Table 3.1, we design the following experiments:

Task 1: Effect of training on multiple ADR/NoADR ratios on extrac-

tion performance.

For this experiment we consider the Tw-NER-v1 dataset and create multiple ver-

sions based on the number of negative tweets (NoADR) in the collection in comparison

to the number of positive tweets. We test the models created on both the balanced

test set of Tw-NER-v1 and imbalanced test set of Tw-NER-v2 to record performances

when using the model on filtered or unfiltered tweets.
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Task 2: Impact of multi-corpus training on the NER performance.

We train the NER on Tw-NER-v1 and DS-NER datasets to find the effect of

multi-corpus training on the performance of NER for both ADR and Indication span

extraction. We test the models built using test sets of both corpus Tw-NER-v1 and

DS-NER. We also test the model on the imbalanced test set of Tw-NER-v2 to know

its performance when used on unfiltered tweets.

Task 3: ADR Extraction and Normalization

We train the concept/entity normalization classifier for normalizing the ADR

spans extracted from the NER model. We train the NER and concept normalization

classifier on the Tw-Resolve dataset to obtain end-to-end evaluation performance.

Named Entity Recognition

For the NER tasks, we use the off-the-shelf deep learning-based Flair framework (Ak-

bik et al., 2018) to perform the experiments. Using the framework we tested employ-

ing three forms of embeddings (1) traditional Glove embeddings trained on Twitter

data (Pennington et al., 2014), (2) FastText embeddings with enriched subword infor-

mation trained on webcrawl data (Bojanowski et al., 2017),(3) BERT-base language

representation trained on Wikipedia data (Devlin et al., 2018) and (4) XLNet-base

language representations trained on Wikipedia and webcrawl data (Yang et al., 2019).

We tested all four embeddings and found that the performance of the Glove twitter

embeddings to be 4 percent points lower than average compared to FastText, BERT

and XLNet embeddings. We found that FastText embeddings performed at par with

BERT and XLNet embeddings in spite of having fewer parameters in the model.

For the experiments proposed in the previous subsection, we report scores from the

BERT embeddings as the performance of the NER was found to be the best under

that configuration.
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As preprocessing steps, we use segtok to tokenize the tweet and encode the text

in the standard IOB2 (or BIO) format for training. From the training set, 5% of the

examples were held out as development set for hyperparameter tuning. The training

was performed on a workstation equipped with an Intel Xeon Processor E5-1620 v2

with 8 cores and NVIDIA Titan Xp GPU for faster training time. As described in the

previous chapters, we use the Bi-directional RNN-based architecture with GRU units

and 1 hidden layer with a CRF on the output layer with hidden layer dimensions

set to 256. We used the optimal settings to be training at 0.1 learning rate with the

default optimizer based on stochastic gradient descent (SGD). The model was trained

for 50 epochs and the model with the best performance on the development set was

saved for testing its performance on the test sets.

ADR Normalization

For normalization, we train a semi-supervised classifier for normalizing the extracted

spans to their respective medical concepts. The original dataset contains normalized

identifiers from the MedDRA database 4. We extract the annotated spans and their

respective MedDRA lower level terms (LLTs). We train on the 2289 annotations

available in the supervised training set in addition to the 79,507 MedDRA LLT terms.

Some previous implementation have often limited their target classes to the ones

available only in the dataset (Limsopatham and Collier, 2016b). We find that training

on only the common identifiers or limited number of identifiers may yield better

accuracy but do not allow discovery of new ADRs as target classes outside those in the

training data are not considered. We expand these LLT terms to their synonyms using

the UMLS thesaurus (Bodenreider, 2004) by linking their concept unique identifiers

with identifiers in other databases which expanded the number of training instances

4www.meddra.org Accessed: 20 Oct 2019
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to 265,255. We mapped all LLT terms to their 23,389 preferred terms (PTs) reducing

the number of target classes. For normalization we use the off-the-shelf FastText

classifier (Joulin et al., 2017) which uses computes the average of word embeddings

based on presence of subwords and uses a multinomial logistic regression model with

softmax layer at the output. Since the objective of normalization is to train on all

available PT classes in MedDRA, we use the hierarchical softmax loss available in the

FastTest package for faster training.

3.2.3 Results and Discussion

Task 1: Effect of training on multiple ADR/NoADR ratios on extrac-

tion performance

We trained the NER on 10 ratios of ADR/NoADR distribution beginning with

training on only positive instances (0*n) and proceeding to training on equal propor-

tions (1*n) and ending with 10 times the number of negative tweets as ADR positive

instances (10*n). All configurations are evaluated against both the balanced dataset

and the imbalanced dataset as shown in Figures 3.9 and 3.10.

As we can see that for evaluating on a balanced set, the ideal training set for max-

imizing the F1 score appears to be around the balanced set i.e. 50-50- ADR-NoADR.

However training on large number of negatives as shown for 10*n is detrimental to

the model. Hence, it is ideal to train on a balanced dataset without removing the

negative tweets when the objective is to evaluate on a similar balanced dataset.

In the case of evaluation on the unfiltered dataset, we see that the performance

reaches the highest when trained on about 5 times the amount of positive tweets i.e.

5*n. Subsequent training on additional tweets that are negative for ADR results in

lower performance of the model.
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Figure 3.9: Performance of the NER on Training Across Various Ratios of
ADR/NoADR and Evaluated on the Balanced 50-50 ADR/NoADR Test Set.

Figure 3.10: Performance of the NER on Training Across Various Ratios of
ADR/NoADR and Evaluated on the Unfiltered 7-93 ADR/NoADR Test Set.
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Table 3.2: Results of Multi-corpus Training on the Twitter and Dailystrength
Datasets.

Test Set Twitter

(ADR)

DailyStrength

(ADR)

Twitter

(Indication)

DailyStrength

(Indication)

Training Set P/R/F1 P/R/F1 P/R/F1 P/R/F1

Twitter 0.82/0.72/0.77 0.72/0.69/0.71 0.50/0.21/0.30 0.80/0.21/0.33

DailyStrength 0.77/0.57/0.66 0.90/0.82/0.86 0.19/0.54/0.28 0.84/0.76/0.80

Twitter +

DailyStrength

0.87/0.73/0.79 0.89/0.84/0.87 0.59/0.46/0.52 0.89/0.71/0.79

Task 2: Impact of multi-corpus training on the NER performance.

The results for task 2 is shown in Table 3.2. Here we see that multi-corpus training

is highly beneficial for both datasets. Training on DailyStrength data increased the

Twitter model’s performance by 13 percentage points for ADRs and 23 percentage

points for Indication extraction. Training on Twitter dataset had a beneficial effect

for DailyStrenth model only in case of ADRs. This establishes a new state-of-the-art

performance over the previous DeepHealthMiner system which achieved F1= 0.837

on DailyStrength and F1 = 0.734 on Twitter datasets for ADR extraction.

Task 3: ADR Extraction and Normalization

For Task3, our DRIP model was evaluated on the Tw-Resolve dataset used in

the SMM4H 2019 shared task (Weissenbacher et al., 2019b). It achieved an end to

end performance of F1-score 0.49 on the NER task and 0.35 on the end-to-end task

beating the previous best systems at 0.46 and 0.34 to set a new state-of-the-art on

the end-to-end entity extraction and normalization tasks. Based on submissions in

the shared task we believe that incorporating other corpora might further benefit the

extraction performance on both the NER and end-to-end ADR extraction task. The

first version of DRug Insights for Pharmacovigilance (DRIP) is publicly available to
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Figure 3.11: Screenshot of the DRIP System Demonstrating the Extraction of ADR
and Indications from Social Media Texts.

users over a web interface which performs NER and ADR normalization tasks on user

submitted content as shown in the following screenshot.

76



Chapter 4

WHAT MAKES NER DIFFICULT? AN EMPIRICAL ANALYSIS OF DOMAIN

COMPLEXITY

In the previous chapters we show that the emergence of deep learning in the field of

information extraction has been highly influential in the disappearing trend of fea-

ture selection and feature engineering-based models for information extraction. In

this chapter that is currently unpublished, we analyze corpus-based features for pre-

dicting entity extraction performance. Here, the features are similar to features that

are selected for the purposes of extraction. We’ve observed that although language

features extracted by experts do not necessarily increase extraction performance, com-

puting features for the purposes of classification or named entity recognition offered

insights into the domain complexity, identified areas for improvement, and are gener-

ally regarded to be more interpretable by virtue of the presence of features themselves

(Miotto et al., 2018; Xiao et al., 2018; Ching et al., 2018). In addition to their use

in the tasks themselves, they attempted to explain the failures and successes of in-

dividual features in the task at hand. The number of publicly available datasets are

increasing with tremendous growth in areas of applications and increasing number

of shared tasks are being organized to foster research participation (Chapman et al.,

2011). However, as part of the dataset, the resources accompanying the data report

statistics that are limited to average number of tokens by entity or number of entities

annotated by type in the dataset (Jagannatha and Yu, 2016a,b; Lee et al., 2019).

We believe that furnishing additional statistics about the corpus and the entities of

interest can explain variation in extraction performance and provide insights into

possible ways to improve entity extraction performance. In the following section, we
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evaluate two previously used statistical measures for estimating domain complexity

and propose an additional measure at the entity level that can collectively explain

the variation in entity extraction performance.

4.1 Background

Compared to the information extraction research presented in the earlier chapters,

the area of estimating performance of NLP methods based on corpus characteristics

has received very little attention. Most research in the area of domain complexity has

been motivated by applications in NLP domain adaptation (Kilgarriff, 2001; Remus,

2012). Domain adaptation refers to approaches where the aim is to efficiently learn

a model to perform a task from one domain with the intention of using the model on

a different target domain (Redko et al., 2019). An example in domain adaptation in

the context of this dissertation would be training a NER for identifying geographical

locations in news articles with the intention of using it to extract geographical loca-

tions in the biomedical domain, or training a NER to extract ADRs in clinical texts

for use in a different target domain such as social media. This is primarily motivated

by limited human annotated data in the target domain.

Related work in this area was done by Remus et. al. where textual characteristics

that were affected by different sized corpora was recorded to establish the impact of

training corpus on classification performance (Robert Remus, 2012). Across works

on performance estimation using textual characteristics (Ponomareva and Thelwall,

2012; Vincent Van Asch, 2010; Remus, 2012) the authors introduce many linguistic

measures as indicators of domain complexity for the task of text classification. We

consider the following two measures in our work for their simplicity:

Percentage of rare words (PRW): which is defined as the ratio of number

of rare words/tokens (i.e. with only 2 or fewer counts in the corpus) to the size of
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the vocabulary in the corpus. Often, the size of the vocabulary is also expressed as

number of types.

Word richness or Type to Token Ratio (TTR): which is defined as the ratio

of the vocabulary size to the total number of tokens in the corpus.

In the Method section we describe the datasets used in this work and estimate the

proposed measures for evaluating domain complexity and the assumptions. In the

Results and Discussion section we analyze the results and propose optimal indicators

for predicting entity extraction performance. We use the proposed statistics and

analyze them for the datasets used previously in this work for phylogeography and

pharmacovigilance.

4.2 Method

For this work, we consider the previously discussed datasets such as the annota-

tions of geographical locations in biomedical scientific articles (Magge et al., 2018c),

biomedical entities in patient clinical notes (Jagannatha and Yu, 2016a,b) and social

media texts (Nikfarjam et al., 2015). In addition to these we collected preprocessed

NER datasets from other sources such as news articles i.e. CoNLL-2003 (Sang et al.,

2003), and other Biomedical datasets (Lee et al., 2019) as summarized in Table 4.1

along with respective annotated entity types. For the above corpora, we also analyze

the Type to Token Ratio (TTR) and Presence of Rare Words (PRW) by grouping

them into categories of sources they were extracted from. For instance, we grouped

all datasets from scientific articles such as the NCBI Disease corpus (Doğan et al.,

2014), BC5CDR (Li et al., 2016), BC4CHEMD (Krallinger et al., 2015), BC2GM

(Smith et al., 2008), JNLPBA (Kim et al., 2004), LINNAEUS (Gerner et al., 2010),

Species-800 (Pafilis et al., 2013) and the Zodo corpus (Weissenbacher et al., 2015a,

2019a). We included statistics of both corpus from ZoDo, one containing 60 arti-
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cles (Zodo-60) and another containing 150 articles (Zodo-150). The MADE corpus

was categorized as Clinical dataset, Twitter dataset was categorized as Social Media,

and DailyStrength was categorized as health forums. The statistics computed were

purely based on the training set after excluding the development set that is set aside

typically for validation.

4.2.1 Assumptions

In this work, we are suggesting simple measures that could be an estimate of

domain complexity. Since we are suggesting simple measures, we are making strong

assumptions regarding the corpus and the factors that influence the entity extraction

performance especially since most extraction methods including ours use linguistic

knowledge resources like word embeddings external to the corpus that carry infor-

mation of the word or embedded subwords. In this work we are also using measures

based on unigram features when tagging decisions are often made with respect to the

context of the word either by using the context neighbors or using models like CRF

or RNN architectures that are capable of making tagging decisions incorporating pre-

viously encountered words and tagging decisions. In one of our earlier work (Magge

et al., 2018b) we found that using a window size of 5 i.e. incorporating a context of

5 words was optimal for tagging decisions.

4.2.2 Corpora

In the following section we present the corpus statistics for the aforementioned

corpora and describe the domain complexities that are indicative of the NER extrac-

tion performance. We collected state-or-the-art results from the corpora considered

and the data from 29 entities across 12 corpora that were trained on deep learning

frameworks. We run a multiple linear regression model to understand reliable indi-
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Table 4.1: Corpus statistics from IOB2 formatted training sets of Biomedical NER
datasets analyzed in this work. TTR indicates Type to Token ratios and PRW indi-
cates percentage of rare words (counts < 2).

cators of the entity extraction performance. Here, for these analyses we consider the

three measures discussed earlier as independent variables to estimate the performance

of the NER models i.e. predict the F1-score.

For entities spans, in addition to the above two measures, we also analyze the

relative term frequency (RTF) that is defined as the average of term frequencies

within the entity to that of the corpus. For example, if the word “pain” appears a
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Table 4.2: Corpus statistics for the CoNLL 2003 dataset for news articles. State-of-
the-art (SOTA) results were taken from (Devlin et al., 2018).

total of 5 times in the ADE entity spans and a total of 8 times in the corpus i.e. 3

times without being inside an ADE span then the RTF for “pain” is 0.625. We take

the average RTF measure of all tokens/types occurring in an entity type.

4.2.3 Entity statistics

Statistics for the entities discussed in this work are presented in Table 4.2 for the

news domain, Table 4.3 for scientific articles, Table 4.4 for clinical entities and in

Table 4.5 for social media and health related forums.

Analyzing the news corpora, we observe that the lowest performance is obtained

for the Misc. category of entity which had comparatively low number of annotations

and low RTF.

Analyzing the biomedical scientific datasets, we observe that although JNLPBA

has one of the highest number of annotations for Gene/Protein, it has one of the

lowest performances. One possible explanation for this is the low RTF at 0.72 and a

very low TTR measure at 0.05.

Analyzing the clinical notes dataset we observe that the lowest scoring entity was

ADE with a low RTF value and a very high percentage of rare words. Although ADE

has one of the highest TTR values, it is possible due to the fact that most ADEs were

overlapping since the records were taken from a Cancer patient cohort.
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Table 4.3: Corpus statistics for the biomedical scientific datasets. State-of-the-art
results for the various datasets were taken from (Lou et al., 2017; Lee et al., 2019;
Giorgi and Bader, 2018).

Table 4.4: Corpus Statistics for the Clinical Notes Dataset MADE. State-of-the-art
Results for the Dataset was Taken from (Li and Yu, 2019).
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Table 4.5: Corpus Statistics for the Social Media Datasets. State-of-the-art Results
for the Various Datasets were Taken from Chapter 2.

Among social media texts, Indication spans in Twitter had the lowest performance

scores which can probably be explained by the low number of annotations. Compared

to the DailyStrength, Twitter data had a higher percentage of rare words and higher

Type to Token ratio. As we observed in Chapter 2, training on multi-corpus data

improves the performance on Twitter ADR and Indication extraction.

4.3 Results and Discussion

To understand the domain complexity and entity extraction complexity we ana-

lyzed the results individually establish the common differences among the domains

followed by an attempt to assess the indicators of entity extraction performance.

4.3.1 Corpus Statistics

We grouped the corpus-based on the domain of the texts. We analyze the dis-

parities in the sentence lengths as shown in Figure 4.1. Data in the News (CoNLL-

2003), DailyStrength, and Scientific (ZoDo, NCBI, BC5DR, BC4CHEMD, BC2GM,

JNLPBA, LINNAEUS, Species-800) datasets used preprocessed IOB2 formatted files

from previous work. From the graph, we can observe that news articles have on

average the low sentence lengths compared to clinical texts and scientific articles.
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Figure 4.1: Graph Showing Disparities in Average Sentence Length Across Domains.
*For Social Media, Twitter Data was not Split by Sentences into Individual Sentences
as ADR Spans Extended Across Sentences.

Figure 4.2 shows the Type-Token Ratio and Percent of Rare Words for various

categories of corpora used.

From the graph we can observe that social media texts tend to have the highest

type to token ratio and percent of rare words compared to other domains indicating

higher complexity at the corpus level.

4.3.2 Entity Extraction Performance Predictors

Results from the multiple linear regression model reveal that one of the better

indicators or entity extraction performance is the Avg. Relative Term Frequency

(RTF) as shown in Figure 4.3. With an R2 as high as 0.916, we see that more

than 91% of the variation could be explained by the linear regression model for the

RTF measure. With an R2 around 0.892, PRW also emerges as a reliable indicator.

Multiple linear regression on all three dependent variables shows the model explaining
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Figure 4.2: Graph Showing Disparities in Type-Token Ratio and Percent of Rare
Words Across Domains.

over 97.6 of the variation in the performance. Both proportions of rare words (PRW)

and entity type token ratio (TTR) are difficult to decrease/increase as such variation

can be inherent to the entity and/or the corpus itself. Relative term frequency (RTF)

on the other hand can be increased to improve the entity extraction task by increasing

the dataset size artificially to add more positive examples.

One of the methods to increase dataset size is to incorporate annotated data from

other sources and domains that have higher number of annotations for the entity of

interest. To illustrate this with an example, we noticed previously in chapter 2 that

by slowly increasing the number of annotations for the Twitter training module, the

extraction performance for ADR reaches a curve as shown in Figure 4.5.
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Figure 4.3: Graph Showing Disparities in Type-Token Ratio and Percent of Rare
Words Across Domains.
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Figure 4.4: Plot of Entity Percent of Rare Words (PRW) and Entity Type Token
Ratio (TTR) Against F-scores. For PRW, R2 = 0.892 and for TTR R2 = 0.57.
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Figure 4.5: Effect of Training on Smaller Percentage of Tweets. Last Column Shows
that Multi-corpus Training is Beneficial.
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Chapter 5

CONCLUSIONS AND FUTURE PERSPECTIVES

In this work, we presented two pipelines for information extraction in public health

applications. The first pipeline discussed in Chapter 1 was focused on enrichment

of GenBank metadata by mining the location of infected hosts in PubMed articles

of records that do not have sufficient information required for phylogeography. We

built deep learning architectures with state-of-the-art performance for extracting ge-

ographic locations from scientific articles. We developed and evaluated the pipeline

and built a web user interface for the tool to be used by researchers. We also used

the tool to enrich the GenBank records stored in the ZooPhy zoonotic virus database

so that the uncertainties generated by the Geoboost v2 tool can be used directly in

Bayesian Phylogeography studies.

For the second pipeline for pharmacovigilance on social media, we use state of the

art NER architectures to extract ADRs and Indications followed by normalization of

the extracted ADR spans. We use the NER architecture to demonstrate the advan-

tages and disadvantages of training only on texts positive for ADRs. We leverage

multi-corpus training to show that when faced with limited data for training, extrac-

tion performance can possibly be increased by leveraging annotations of similar type

in other datasets. We use the models built for ADR and Indication extraction along

with the ADR normalization component to construct the (DRug Insights for Pharma-

covigilance) DRIP pipeline. The DRIP system is currently the state-of-the-art when

it comes to extraction of ADRs on social media texts.

We believe that analyzing the datasets can offer valuable insight into the methods

to be employed for increasing extraction performance, especially for rare events and
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entities. We proposed simple linguistic measures for NER datasets that are capable of

explaining the amount of variation in the extraction performance across datasets. In

the future, expanding on these measures may be helpful in suggesting more effective

techniques and training strategies to maximize the performance of the NER.

5.1 The Future for Information Pipelines in Phylogeography and Epidemiology

Although we used the state-of-the-art NER architectures for extracting location of

infected hosts, there appear to be false negative toponyms (discussed in the previous

section) that could possibly be the location of infected hosts (LOIH). While there are

chances that toponyms that are LOIH appear repeatedly in the scientific article in

varying contexts thus increasing the chances of them being detected, following work

should evaluate the impact of these false negatives on the overall task of identifying the

LOIH by assuming unavailability of metadata information. To reduce false positives

where locations could in fact refer to other named entities like virus strains and

isolates than toponyms themselves, approaches from metonymy resolution (Gritta

et al., 2017) for filtering out false positives may need to be explored in the future.

The Geoboost v2 implementation provides a machine learning friendly framework

for determining the LOIH. We believe it opens up the possibility of using the frame-

work for normalizing other metadata information such as collection date, infected

host taxonomy, gene etc. While normalizing genes and collection date can be best

performed with the help of expert rules, infected host taxonomy resolution can be

improved by a machine learning classifier to normalize entries not found in NCBI’s

taxonomy database. The challenges of normalizing semi-structured data or enriching

data for missing fields exists in other nucleotide databases like GenBank. Efforts in

the future can focus on how the methods presented here can be extended to other

databases and pathogens that may be accompanied by their own set of constraints.
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5.2 The Future for Information Pipelines in Pharmacovigilance

Although, the idea of pharmacovigilance on social media has been around for a

while, the increasing adoption of these forums of expression offer an opportunity to

explore possible avenues for post-market surveillance. With publicly available tools

like DRIP, it will be possible to employ such tools to mine health related information

from users of a cohort that would normally be excluded from clinical trials such

as elderly patients, immunocompromised individuals, and pregnant women. While

such potential applications provide great opportunities, there exist challenges when it

comes to rare events such as ADRs. To encourage efforts in this area, we are expanding

annotations to create datasets that contain NER and Normalization identifiers for

upto 30000 tweets so that we can evaluate all pipelines in robust manner. Our work

in the area of pipeline structure evaluation opens up more questions when it comes to

possible enhancements and modifications to the pipeline that may boost performance.

For instance, the value of classifier before the use of NER as shown in Figure 5.1 may

need to be evaluated again.

An ideal ADR extraction will involve the necessary relationship of ADR between

a drug and a condition. Hence, rather than identifying ADRs and Indications during

the NER step, a generic condition extraction system may be more valuable to the

bigger community. If necessary, a Relation Extraction step can be used post NER to

assign relations as shown in Figure 5.2. We are currently expanding annotations to

support this architecture in the following year.

5.3 Estimation of Corpus Complexity

In this work, we presented linguistic measures for estimating domain complexity

and evaluated them on a collection of 29 named entities across various corpora. We
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Figure 5.1: Social Media Pharmacovigilance Pipeline Equipped with a Classifier at
the First Step.

believe that stronger conclusions can be made by expanding the study to include more

corpus and entities. In addition to NER, developing such measures for more datasets

from other tasks such as Classification and Relation Extraction may be invaluable for

end-to-end complementary tasks in information extraction.

5.4 Deep Learning in Public Health

Over the past decade there has been significant interest to develop better infor-

mation extraction tools in the biomedical domain. This interest has led to curation

of multiple biomedical datasets many of which we have discussed in this work. We
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Figure 5.2: Pharmacovigilance Pipeline with a Generic Condition Span Detector
Followed by the Relation Extraction Step.

evaluated many such datasets in this work. To foster further research in the NLP and

Data Mining community, we have annotated datasets to create standardized methods

of measurement to invite the bigger research community to pursue research in this

area. We held the first shared task for Toponym Resolution in Scientific Articles

in 2018-2019 (Weissenbacher et al., 2019a) where more than 20 teams participated

and subsequently one of teams achieved a new state-of-the-art performance for the

task. Similarly, annual Social Media Mining for Health (SMM4H) shared tasks have

attracted research teams across the world to participate and drive research in this

area.
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We have observed the common theme of using deep learning tools across these

shared tasks with yearly improvements in performance on standardized datasets. This

brings great value in extracting meaningful information from the gigantic amount of

data generated everyday. We believe that the best way to make significant progress

in pursuing data driven goals in public health is to follow the FAIR data principles

to make such data findable, accessible, interoperable and reusable through active

community engagement and rigorous evaluation.

95



REFERENCES

Adeola, O. A., J. A. Adeniji and B. O. Olugasa, “Isolation of influenza a viruses from
pigs in ibadan, nigeria”, Vet. Ital. 45, 3, 383–390 (2009).

Akbik, A., D. Blythe and R. Vollgraf, “Contextual string embeddings for sequence
labeling”, in “Proceedings of the 27th International Conference on Computational
Linguistics”, pp. 1638–1649 (2018).

Akhtar, M. S., U. K. Sikdar and A. Ekbal, “IITP: Multiobjective differential evolution
based twitter named entity recognition”, (2015).

Amodei, D., S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, Q. Cheng, G. Chen and Others, “Deep speech 2: End-to-
end speech recognition in english and mandarin”, in “International Conference on
Machine Learning”, pp. 173–182 (2016).

Barbosa-Silva, A., J.-F. Fontaine, E. R. Donnard, F. Stussi, J. M. Ortega and M. A.
Andrade-Navarro, “Pescador, a web-based tool to assist text-mining of biointerac-
tions extracted from pubmed queries”, BMC bioinformatics 12, 1, 435 (2011).

Barrero, P. R., M. Viegas, L. E. Valinotto and A. S. Mistchenko, “Genetic and phylo-
genetic analyses of influenza a H1N1pdm virus in buenos aires, argentina”, vol. 85,
pp. 1058–1066 (Am Soc Microbiol, 2011).

Bengio, Y., P. Simard and P. Frasconi, “Learning long-term dependencies with gra-
dient descent is difficult”, vol. 5, pp. 157–166 (1994).

Benson, D. A., M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, J. Ostell, K. D. Pruitt
and E. W. Sayers, “GenBank”, Nucleic Acids Res. 46, D1, D41–D47 (2018).

Benson, D. A., K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell and E. W.
Sayers, “GenBank”, Nucleic Acids Res. 43, Database issue, D30–5 (2015).

Bi, Y., L. Lu, J. Li, Y. Yin, Y. Zhang, H. Gao, Z. Qin, B. Zeshan, J. Liu, L. Sun and
W. Liu, “Novel genetic reassortants in H9N2 influenza a viruses and their diverse
pathogenicity to mice”, Virol. J. 8, 505 (2011).

Bodenreider, O., “The unified medical language system (UMLS): integrating biomed-
ical terminology”, (2004).

Bojanowski, P., E. Grave, A. Joulin and T. Mikolov, “Enriching word vectors with
subword information”, Transactions of the Association for Computational Linguis-
tics 5, 135–146 (2017).

Bottou, L., “Stochastic gradient learning in neural networks”, Proceedings of Neuro-
Nımes 91, 8 (1991).

Breiman, L., “Random forests”, Mach. Learn. 45, 1, 5–32 (2001).

96



Broniatowski, D. A., M. Dredze, M. J. Paul and A. Dugas, “Using social media
to perform local influenza surveillance in an Inner-City hospital: A retrospective
observational study”, JMIR Public Health Surveill 1, 1, e5 (2015).

Brownstein, J. S., C. C. Freifeld and L. C. Madoff, “Digital disease detection —
harnessing the web for public health surveillance”, (2009).

Buscaldi, D. and I. Hernandez-Farias, “Sentiment analysis on microblogs for natural
disasters management”, (2015).

Chapman, W. W., P. M. Nadkarni, L. Hirschman, L. W. D’Avolio, G. K. Savova and
O. Uzuner, “Overcoming barriers to NLP for clinical text: the role of shared tasks
and the need for additional creative solutions”, (2011).

Che, Z., S. Purushotham, K. Cho, D. Sontag and Y. Liu, “Recurrent neural networks
for multivariate time series with missing values”, vol. 8, p. 6085 (Nature Publishing
Group, 2018).

Chen, I.-M. A., V. M. Markowitz, K. Chu, K. Palaniappan, E. Szeto, M. Pillay,
A. Ratner, J. Huang, E. Andersen, M. Huntemann, N. Varghese, M. Hadjithomas,
K. Tennessen, T. Nielsen, N. N. Ivanova and N. C. Kyrpides, “IMG/M: integrated
genome and metagenome comparative data analysis system”, Nucleic Acids Res.
45, D1, D507–D516 (2017).

Chilimbi, T. M., Y. Suzue, J. Apacible and K. Kalyanaraman, “Project adam: Build-
ing an efficient and scalable deep learning training system”, in “OSDI”, vol. 14, pp.
571–582 (2014).

Ching, T., D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do,
G. P. Way, E. Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman, W. Xie, G. L.
Rosen, B. J. Lengerich, J. Israeli, J. Lanchantin, S. Woloszynek, A. E. Carpenter,
A. Shrikumar, J. Xu, E. M. Cofer, C. A. Lavender, S. C. Turaga, A. M. Alexan-
dari, Z. Lu, D. J. Harris, D. DeCaprio, Y. Qi, A. Kundaje, Y. Peng, L. K. Wiley,
M. H. S. Segler, S. M. Boca, S. J. Swamidass, A. Huang, A. Gitter and C. S.
Greene, “Opportunities and obstacles for deep learning in biology and medicine”,
J. R. Soc. Interface 15, 141 (2018).

Cho, K., B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk
and Y. Bengio, “Learning phrase representations using RNN Encoder–Decoder
for statistical machine translation”, in “Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP)”, pp. 1724–1734
(2014).

Chorianopoulos, K. and K. Talvis, “Flutrack.org: Open-source and linked data for
epidemiology”, Health Informatics J. 22, 4, 962–974 (2016).

Chowdhury, S., C. Zhang and P. S. Yu, “Multi-Task pharmacovigilance mining from
social media posts”, (2018).

97



Cocos, A., A. G. Fiks and A. J. Masino, “Deep learning for pharmacovigilance: re-
current neural network architectures for labeling adverse drug reactions in twitter
posts”, J. Am. Med. Inform. Assoc. 24, 4, 813–821 (2017).

Cohen, K. B. and D. Demner-Fushman, Biomedical Natural Language Processing
(John Benjamins Publishing Company, 2014).

Collins, J., J. Sohl-Dickstein and D. Sussillo, “Capacity and trainability in recur-
rent neural networks”, in “Profeedings of the International Conference on Learning
Representations (ICLR)”, (2017).

Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and P. Kuksa,
“Natural language processing (almost) from scratch”, J. Mach. Learn. Res. 12,
Aug, 2493–2537 (2011).

Coquet, J., S. Bozkurt, K. M. Kan, M. K. Ferrari, D. W. Blayney, J. D. Brooks and
T. Hernandez-Boussard, “Comparison of orthogonal NLP methods for clinical phe-
notyping and assessment of bone scan utilization among prostate cancer patients”,
J. Biomed. Inform. 94, 103184 (2019).

Culotta, A., “Towards detecting influenza epidemics by analyzing twitter messages”,
(2010).

Curran, J. W., H. W. Jaffe and Centers for Disease Control and Prevention (CDC),
“AIDS: the early years and CDC’s response”, MMWR Suppl 60, 4, 64–69 (2011).

Dalianis, H., Clinical Text Mining: Secondary Use of Electronic Patient Records
(Springer, 2018).

Dellicour, S., G. Baele, G. Dudas, N. R. Faria, O. G. Pybus, M. A. Suchard, A. Ram-
baut and P. Lemey, “Phylodynamic assessment of intervention strategies for the
west african ebola virus outbreak”, Nat. Commun. 9, 1, 2222 (2018).

Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding”, (2018).
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M. A. Suchard, P. Lemey and A. Rambaut, “Virus genomes reveal factors that
spread and sustained the ebola epidemic”, Nature 544, 7650, 309–315 (2017a).

Dudas, G., L. M. Carvalho, T. Bedford, A. J. Tatem, G. Baele, N. R. Faria, D. J.
Park, J. T. Ladner, A. Arias, D. Asogun, F. Bielejec, S. L. Caddy, M. Cotten,
J. D’Ambrozio, S. Dellicour, A. Di Caro, J. W. Diclaro, S. Duraffour, M. J. El-
more, L. S. Fakoli, O. Faye, M. L. Gilbert, S. M. Gevao, S. Gire, A. Gladden-
Young, A. Gnirke, A. Goba, D. S. Grant, B. L. Haagmans, J. A. Hiscox, U. Jah,
J. R. Kugelman, D. Liu, J. Lu, C. M. Malboeuf, S. Mate, D. A. Matthews, C. B.
Matranga, L. W. Meredith, J. Qu, J. Quick, S. D. Pas, M. V. T. Phan, G. Pol-
lakis, C. B. Reusken, M. Sanchez-Lockhart, S. F. Schaffner, J. S. Schieffelin, R. S.
Sealfon, E. Simon-Loriere, S. L. Smits, K. Stoecker, L. Thorne, E. A. Tobin, M. A.
Vandi, S. J. Watson, K. West, S. Whitmer, M. R. Wiley, S. M. Winnicki, S. Wohl,
R. Wölfel, N. L. Yozwiak, K. G. Andersen, S. O. Blyden, F. Bolay, M. W. Carroll,
B. Dahn, B. Diallo, P. Formenty, C. Fraser, G. F. Gao, R. F. Garry, I. Goodfellow,
S. Günther, C. T. Happi, E. C. Holmes, B. Kargbo, S. Këıta, P. Kellam, M. P. G.
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