659 research outputs found

    Wide-Area Control Schemes to Improve Small Signal Stability in Power Systems

    Get PDF
    One of the main concerns for the secure and reliable operation of power systems is the small signal stability problem. In the complex and highly interconnected structure of future power systems, relying solely on operator responses and conventional controls cannot assure reliability. Therefore, there is a need for advanced Wide-Area Control Schemes (WACS) that can automatically respond to degradation of reliability in the system. The main objective of this dissertation is to address two key challenges regarding the design and implementation of wide-area control schemes for damping inter-area oscillations. First is the high communication cost associated with optimal centralized control approaches. As power networks are large-scale systems, both the synthesis and the implementation of centralized controllers suggested by most of the previous studies are often impossible in practice. Second is the difficulty of obtaining accurate system-wide dynamic models for initiating and updating the control design. In this research, we introduced wide-area damping control strategies that not only ensure the small signal stability with the desired performance but also consider communication and model information limitations in the design. A state feedback formulation is proposed that aims to simultaneously optimize a standard Linear Quadratic Regulator (LQR) cost criterion and induce a pre-defined communication structure. We solved the proposed problem with three different objectives to target a specific wide-area damping control design challenge in each setting. First, the communication structure is enforced as a constraint in the optimization and solved for a large idealized power network with information symmetry. Second, to make the method suitable for systems with arbitrary structures and information patterns, we proposed a group-sparse regularization to be added to the optimization cost function. Applications of the method for inducing the desired communication network and finding effective measurement and control signal combinations were also investigated. Third, we paired the proposed optimal control with a real-time model identification approach, to create a wide-area control framework that is capable of dealing with model information limitations and inaccuracies in online implementation. The performances of the proposed wide-area damping control architectures are validated through nonlinear simulations on different test systems

    System Level Synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty -- such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies.Comment: To appear in Annual Reviews in Contro

    Co-Adaptive Control of Bionic Limbs via Unsupervised Adaptation of Muscle Synergies

    Get PDF
    Objective: In this work, we present a myoelectric interface that extracts natural motor synergies from multi-muscle signals and adapts in real-time with new user inputs. With this unsupervised adaptive myocontrol (UAM) system, optimal synergies for control are continuously co-adapted with changes in user motor control, or as a function of perturbed conditions via online non-negative matrix factorization guided by physiologically informed sparseness constraints in lieu of explicit data labelling. Methods: UAM was tested in a set of virtual target reaching tasks completed by able-bodied and amputee subjects. Tests were conducted under normative and electrode perturbed conditions to gauge control robustness with comparisons to non-adaptive and supervised adaptive myocontrol schemes. Furthermore, UAM was used to interface an amputee with a multi-functional powered hand prosthesis during standardized Clothespin Relocation Tests, also conducted in normative and perturbed conditions. Results: In virtual tests, UAM effectively mitigated performance degradation caused by electrode displacement, affording greater resilience over an existing supervised adaptive system for amputee subjects. Induced electrode shifts also had negligible effect on the real world control performance of UAM with consistent completion times (23.91 +/- 1.33 s) achieved across Clothespin Relocation Tests in the normative and electrode perturbed conditions. Conclusion: UAM affords comparable robustness improvements to existing supervised adaptive myocontrol interfaces whilst providing additional practical advantages for clinical deployment. Significance: The proposed system uniquely incorporates neuromuscular control principles with unsupervised online learning methods and presents a working example of a freely co-adaptive bionic interface.Peer reviewe

    Adaptive Knobs for Resource Efficient Computing

    Get PDF
    Performance demands of emerging domains such as artificial intelligence, machine learning and vision, Internet-of-things etc., continue to grow. Meeting such requirements on modern multi/many core systems with higher power densities, fixed power and energy budgets, and thermal constraints exacerbates the run-time management challenge. This leaves an open problem on extracting the required performance within the power and energy limits, while also ensuring thermal safety. Existing architectural solutions including asymmetric and heterogeneous cores and custom acceleration improve performance-per-watt in specific design time and static scenarios. However, satisfying applications’ performance requirements under dynamic and unknown workload scenarios subject to varying system dynamics of power, temperature and energy requires intelligent run-time management. Adaptive strategies are necessary for maximizing resource efficiency, considering i) diverse requirements and characteristics of concurrent applications, ii) dynamic workload variation, iii) core-level heterogeneity and iv) power, thermal and energy constraints. This dissertation proposes such adaptive techniques for efficient run-time resource management to maximize performance within fixed budgets under unknown and dynamic workload scenarios. Resource management strategies proposed in this dissertation comprehensively consider application and workload characteristics and variable effect of power actuation on performance for pro-active and appropriate allocation decisions. Specific contributions include i) run-time mapping approach to improve power budgets for higher throughput, ii) thermal aware performance boosting for efficient utilization of power budget and higher performance, iii) approximation as a run-time knob exploiting accuracy performance trade-offs for maximizing performance under power caps at minimal loss of accuracy and iv) co-ordinated approximation for heterogeneous systems through joint actuation of dynamic approximation and power knobs for performance guarantees with minimal power consumption. The approaches presented in this dissertation focus on adapting existing mapping techniques, performance boosting strategies, software and dynamic approximations to meet the performance requirements, simultaneously considering system constraints. The proposed strategies are compared against relevant state-of-the-art run-time management frameworks to qualitatively evaluate their efficacy

    Contributions to distributed MPC: coalitional and learning approaches

    Get PDF
    A growing number of works and applications are consolidating the research area of distributed control with partial and varying communication topologies. In this context, many of the works included in this thesis focus on the so-called coalitional MPC. This approach is characterized by the dynamic formation of groups of cooperative MPC agents (referred to as coalitions) and seeks to provide a performance close to the centralized one with lighter computations and communication demands. The thesis includes a literature review of existing distributed control methods that boost scalability and flexibility by exploiting the degree of interaction between local controllers. Likewise, we present a hierarchical coalitional MPC for traffic freeways and new methods to address the agents' clustering problem, which, given its combinatoria! nature, becomes a key issue for the real-time implementation of this type of controller. Additionally, new theoretical results to provide this clustering strategy with robust and stability guarantees to track changing targets are included. Further works of this thesis focus on the application of learning techniques in distributed and decentralized MPC schemes, thus paving the way for a future extension to the coalitional framework. In this regard, we have focused on the use of neural networks to aid distributed negotiations, and on the development of a multi­ agent learning MPC based on a collaborative data collection

    System level synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty – such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies
    • …
    corecore