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José Marı́a Maestre Torreblanca
Eduardo Fernández Camacho

Septiembre 2022





Tesis Doctoral: Contributions to distributed MPC: coalitional and learning approaches

Autora: Paula Chanfreut Palacio
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1 Introduction

In the last decades, the advances in information and communication technologies, together
with the sheer size and complexity of control applications, have boosted the development
of non-centralized control methods [1–6]. In contrast to the classic centralized approach,
where a single controller has full decision-making power and complete knowledge of the
system, non-centralized strategies rely on a decentralization of the overall control problem.

Generally, the concentration of information and actuation capacity in a global control
unit allows for a perfect coordination of all the system’s inputs, thus leading to optimal over-
all performance. However, in many large-scale systems (LSS), the centralized approach
reaches a point of diminishing returns due to the increasing computation and commu-
nication demands, which can make it result impractical and/or inefficient for real-time
control. In addition, the lack of redundancy and the difficulty to adapt the controller to
the structure of the system and its changes are further drawbacks that foster the study
and development of non-centralized architectures. Moreover, as stated in [7], while LSS
may involve a great number of variables, they can also be modeled as an interconnec-
tion of geographically-dispersed subsystems with coupled dynamics, which make them
a natural field of application for distributed approaches. Also, the LSS framework in-
cludes systems of special relevance within the engineering community such as smart
grids [3, 4, 8], water networks [9], traffic systems [6], large manufacturing processes [10],
and intelligent buildings [11].

The underlying idea of non-centralized strategies is to divide the global control problem
into a set of smaller subproblems that are managed by different control units, the so-called
agents [12,13]. This approach has been reported to provide increased scalability, flexibility,
and redundancy of the control architecture [14–16], at the expense of a more sophisticated
design. As it is illustrated in Fig. 1.1, each agent can access the local output variables and
manipulates the inputs of its corresponding subsystem. The extent to which the agents
exchange data and coordinate their local actions gives rise to various non-centralized
control schemes. As described in [1] within the well-known framework of model predictive
control (MPC) [17, 18], we can distinguish between distributed approaches, where the set
of agents uses a communication network to share local data [19, 20]; and decentralized
approaches, when there is no data exchange between local controllers [21, 22].

1
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Figure 1.1 Scheme of a distributed system composed of 5 subsystems that are assigned to a
set of networked agents. The solid red arrows represent the dynamical coupling,
and the black dashed lines indicate the control communication network.

The increased availability of neighboring information in distributed schemes usually
translates into improvements of the global performance against decentralized approaches.
Indeed, it is well-known that fully coordinated distributed systems can attain centralized-
like performance [13,23]. Nonetheless, coordination demands increased communication
and algorithm complexity, and the need to deal with additional constraints, e.g., due to
the connectivity and capacity of the network. In this regard, the information exchange
in distributed control schemes can range from tens of bytes to megabytes per time step,
depending on the control problem and the algorithm employed [24], and increases with
the number of controllers involved in the negotiation. Conversely, decentralized strategies
avoid any reliance on the communication infrastructure and allow a fully independent actu-
ation of the local agents, which translates into greater simplicity of the control architecture
and minimum coordination efforts.

Within the distributed and decentralized control framework, this thesis is specially
interested in MPC-based methods. In this context, the control policy is based on reiterative
computations of the sequence of control actions that optimizes the system performance
during a future time horizon [17, 18], thus providing an unique anticipation capacity. This
optimization relies on both the use of a prediction model and the measurement, at each time
instant, of the system’s variables that define its initial conditions for the prediction. MPC
has gained increasing acceptance in both industrial and academic fields, and is nowadays
established as a major advanced control methodology for dealing with multivariate and
constrained systems [17, 25]. Moreover, the last years have witnessed a significant growth
of its distributed variant, hereafter distributed MPC (DMPC), due to its capacity to retain
the benefits of the MPC formulation, while increasing the controller scalability.

The basic idea behind DMPC is to tackle the overall control problem by using multiple
local MPC controllers that, in turn, may exchange information. Indeed, the local MPC
problems typically depend not only on local variables but also on some of their neighbors
due to the dynamical interactions. As reviewed in [1, 9, 26], a wide set of distributed
MPC algorithms can be found in the literature. Although they share a common underlying
perspective, there are differentiating features with a strong influence on their performance
and required resources. For example, a key issue is whether the agents’ objective function
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is a local index, which may lead them to a Nash equilibrium, or they adopt a cooperative
attitude and optimize a system-wide function, which allows a Pareto optimal solution [27].
Another relevant characteristic is whether the agents perform or not iterative negotiations
to compute their inputs, and if full information sharing is required at each time step [1].

As will be seen, many of the works of this thesis focus on the so-called coalitional
control [28], and particularly on coalitional MPC [29]. This approach incorporates ideas
developed within cooperative games and emerged in the field of DMPC as a halfway
solution between fully coordinated and complete decentralized schemes. It is characterized
by the dynamic formation of groups of cooperative agents, referred to as coalitions. In this
regard, the use of communication resources is penalized to deter distributed agents from
exchanging unnecessary information, thus leading to a time-varying degree of coordination.

That being said, this thesis is mainly built upon distributed control and considers two
main research directions:

• First, as mentioned above, most of the works included in this thesis contribute to
coalitional control. This research line has given rise to [30–37], where [34–37]
focus on coalitional MPC.

• Secondly, the advances in data-based control methods have prompted us to study the
application of learning techniques in distributed and decentralized MPC schemes,
which has led to [37–39]. Note that, whereas [37] is in turn framed in the coalitional
framework, [38, 39] move away from this clustering approach.

In addition, some of the application fields for the proposed methods are given in the tutorial
presented in [40], which focuses on the application of MPC in cyber-physical systems.

The rest of this chapter provides a deeper introduction to the mentioned coalitional
control strategy by describing its fundamentals and previous contributions. Moreover,
we provide a brief review of data-based methods for MPC-based systems, with special
emphasis on those approaches that are relevant within this thesis.

1.1 Coalitional Control

Recently, a number of research works have studied distributed control structures with
partial, and occasionally dynamic, inter-agent communication, which therefore avoid
the need for full information sharing. This approach is becoming increasingly relevant
to boost the scalability of distributed architectures by focusing the communication and
computational resources on coordinating only highly coupling agents. Although under
different names and from varying prospects, a relatively wide range of control methods
that fit in this context can be found in the literature. Indeed, [41–52] design state feedback
controllers considering both performance and a sparsity-promoting penalty that incentives
the generation of null elements in the feedback gain. The latter allows identifying com-
munication links not leading to significant performance improvements and eliminating
them if this sparse gain is statically used. Moreover, [53–59] use community-detection
methods to find groups of systems variables that are strongly coupled. This information is
later used to design the controller structure, as shown in the DMPC-based proposal [56].
Other works, such as [60], introduces a DMPC based on density-dependent population
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games that is combined with a dynamic partitioning algorithm, and [61] use a measure
of the inter-agents coupling strength to dynamically determine which of them should
communicate. Also, [62–65] present applications of dynamic partitioning methods in
traffic, water distributions systems, and power networks.

From a static viewpoint, the problem shares some of the characteristics of system parti-
tioning, which searches for suitable decompositions of the global system into subsystems
and assigns variables to different control agents [66, 67]. Nonetheless, this thesis is inter-
ested in dynamic methods that allow acting on the degree of interaction between local
control in real time. Some illustrative examples are given in [29, 67, 68], where agents can
be (re)arranged into operational units or clusters whose control actions are determined
using internal information, that is, without communication with agents outside the cluster.
This clustering problem is closely related to the machine learning framework [69], where
large volumes of data need to be classified into subsets based on properties of interest. In
the context of multi-agent systems, the goal is to find sets of strongly coupled variables so
as to reduce the coordination effort with minimal impact on the overall performance. The
extra flexibility provided by the latter allows adapting the controller structure to the system
needs while bringing new challenges, e.g., deciding which variables need to be shared and
among which agents; dealing with restricted and varying neighboring information; and
studying properties such as overall system stability in such setting.

Furthermore, distributed control systems are prone to suffer unpredicted malfunctions,
such as communication links failures and communication time delays, which lead to
intermittent communication and loss of information. Moreover, changes in the systems
may involve the inclusion of additional agents or the removal of existing ones, which
also affects the structure of the inter-agent communication network. Some examples are
given in [70] and [71], which consider vehicle systems where the vehicle-to-vehicle links
form and break due to cars joining or leaving the system and to communication failures;
also, [72] provides robust stability guarantees in a power network system that may suffer
from links failures and packet losses; and [73] proposes a plug-and-play architecture able
to detect and isolate faulty subsystems not to compromise overall stability and constraints
satisfaction. All these events demand increased flexibility to efficiently handle time-varying
communication structures, thus sharing some characteristics with the above-mentioned
clustering approaches.

 Agent 1

Agent 2 Agent 4

Agent 5Agent 3

Coalition 2

Coalition 1
Agent 2 Agent 4

Agent 5Agent 3

Coalition 2

Coalition 3
Coalition 1

 Agent 1

Figure 1.2 Examples of topologies and coalitions for a network with 5 agents.
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This thesis places special emphasis on the coalitional control method presented in [28,
29]. In this regard, the strategy was first proposed within the field of state feedback
controllers [28], and later extended to distributed MPC schemes [29]. In the last years, it has
given rise to a significant number of research articles [30,34,37,74–80], PhD thesis [81,82],
and also plays a major part within the European research project OCONTSOLAR (SI-
1838/24/2018) [83]. Below, we introduce the fundamental ideas of this strategy while
relating them to the previous works.

1.1.1 Underlying objective

The family of coalitional controllers [28–30,34, 37, 74–80] consider multi-agent systems,
similar to that in Fig. 1.1, and assume that the communication network can be dynamically
configured by enabling/disabling its links. The latter partitions the agents into a set of
disjoint groups whose members coordinate their actions but operate independently from
the rest of the system, i.e., coalitions or clusters (see Fig. 1.2 for an illustration of these
concepts based on the system of Fig. 1.1). In general, the underlying goal is to minimize
the following two-fold function:

∞

∑
k=0

∑
i∈N

ℓi(k)︸ ︷︷ ︸
Performance

cost

+
∞

∑
k=0

f (Λ(k))︸ ︷︷ ︸
Coordination

costs

, (1.1)

which depends on both the sequence of control inputs and the sequence of communication
topologies or, equivalently, of partitions into coalitions. In this regard, ℓi(·) represents
the stage performance index of subsystem i, symbol Λ represents the topology of the data
network, and N is the set of subsystems. Also, f (Λ(k)) is a function that penalizes the
coordination costs associated with the topology imposed at instant k. This function is
usually defined as the sum of enabled links scaled by a tuning parameter that allows us to
regulate its weight. In essence, coalitional control seeks to dynamically find non-centralized
structures that allow reducing the coordination costs, and hence the computational and
communicational burden, without incurring significant performance losses.

1.1.2 Previous works

The literature on coalitional control can be broadly classified according to whether they
employ a state feedback control law [28,74–76], or an MPC controller [29, 77–80].

Similarly to the sparsity-promoting controllers in [42, 43], in [28, 74–76] a set of agents
implement a linear state feedback law whose gain is adapted to the topology of the commu-
nication network. In particular, the authors design offline a global feedback matrix for each
possible partition into coalitions (see Fig. 1.3), and switch between them during the online
system operation. These matrices are designed by solving an optimization problem subject
to structural constraints and linear matrix inequalities (LMI) based on [84]. As illustrated
in Fig. 1.3, the sub-blocks of these feedback gains associated with disabled links are forced
to be null. By changing the number and composition of the coalitions, we can select
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Figure 1.3 Structure of sparse feedback gains in the coalitional approaches [28, 74–76].
Note that each sub-block (i, j) of these matrices represents the feedback of the
state of subsystem j (i.e., x j) to the inputs of subsystem i (i.e., ui), hence, if it
is null, then there is no need for agent j to send data to agent i. The colored
sub-blocks indicate the feedback elements that can be different from zero.

sparser and denser feedback matrices, and thus avoid the constant need for communication
between all agents. This switching scheme has interesting connections with cooperative
game theory as shown in [74–76]. In particular, [75] formulates a links-based game where
the communication links between agents are treated as players, which provide benefits from
a control perspective when they are enabled. LMI constraints on the Shapley value of the
communication links are introduced, which allows promoting the use of certain topologies
and setting limits on the players’ payoff. These results are extended in [76] by using the
Banzhaf value, and, also, [74] introduces Harsanyi power solutions in a similar framework.

Additionally, [29, 77–80] focus on coalitional MPC. This strategy is presented in [29],
where its main concepts and challenges are discussed, and an illustrative application in
smart grid systems is provided. In the coalitional MPC context, the controllers grouped
together share data to solve cooperatively an MPC optimization problem whose objective
function weights their collective performance. In this regard, let C denote a certain coalition,
then, the set of agents in C typically solve a problem of the following form

min
[UUU i]i∈C

∑
i∈C

Np−1

∑
n=0

ℓi(n)

s.t. Initial conditions, (1.2a)
Aggregated dynamics of all i ∈ C, (1.2b)
Constraints on the coalitions’ variables. (1.2c)

where Np is the prediction horizon, UUU i is the sequence of inputs of agent i, and ℓi(·) is its
stage cost (see (1.1)). Moreover, the coupling effect between agents in the same coalition is
accounted for in their inputs’ optimization as indicated in (1.2b), and ceases to be uncertain
due to communication. Nevertheless, note that (1.2b) may still involve a certain degree of
uncertainty due to the coupling with agents outside the coalition, which may undermine
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the accuracy of each cluster’s predictions. Therefore, the decentralization of the overall
problem into coalitional ones has two main consequences: first, instead of working towards
enhancing the overall performance as in the centralized approach, the agents focus on
their coalitions’ goals; and, secondly, the neighboring uncertainty in the prediction models
becomes dependent on the composition of the coalitions.

As examples of applications of coalitional MPC, see [77, 78, 80], which deal with
irrigation canals, power networks, and solar plants, respectively. In particular, [77] proposes
a hierarchical coalitional MPC to control the water levels of a 13-reaches canal, where each
reach is assigned to a local agent and a supervisory layer decides which coalitions should
be formed. The authors show that the mean number of variables optimized by the resulting
clusters is reduced to one-sixth with respect to the centralized problem, thus reducing the
optimization complexity. Also, it is illustrated that these coalitions tend to arise when
some stretch deviates from the desired setpoint, reflecting how the coordination burden is
adjusted to the system needs. Likewise, [80] opts for a similar hierarchical architecture,
but, in this case, the agents at the bottom layer control the valves of different loops of a
solar parabolic trough plant. Simulations for two solar direct normal irradiance profiles
are provided, reporting improvements in the thermal power obtained in comparison with
the decentralized MPC results, while also reducing the computation times required by the
centralized MPC approach. Conversely, the work of [78], which extends [85], presents
a bottom-up protocol for the formation of coalitions based on cooperative game theory.
This protocol is tested in a power network model, which comprises five connected areas,
and where the goal is to dampen inter-area oscillations. The authors define a transferable
coalitional utility that weights the benefits that coordination brings to the merged areas.
The redistribution of this utility is used as the key for the agents to aggregate or disaggregate
into clusters, thus guiding the formation of coalitions. From a more theoretical perspective,
and by using the results of [86], in [79] a robust coalitional MPC to deal with coupling
uncertainties is presented. This controller is based on the combination of a primary and a
secondary MPC and avoids the need to explicitly characterize the robust control invariant
set that is required for implementing the classic tube-based approach [87, 88]. In this
regard, see [89] for a study on the impact of different partitions, and their associated
coupling structure, on the feasible regions and robust positive invariant sets that come into
play in tube-based MPC problems.

1.1.3 Clustering problem

One of the main challenges of coalitional control is to efficiently predict which coalitions
provide the best trade-off between performance optimality and coordination burden. For
the sake of convenience, throughout this thesis the latter is labeled as the clustering
problem. The performance provided by the different partitions varies as the coupling
conditions between the subsystems change, thus making the optimal solution of this
problem time-varying. It also depends on the weight given to the coordination costs
against the performance index (see (1.1)), which allows us to foster the choice of sparser
or denser structures. Moreover, notice that the integration into a single optimization of
input variables, which are typically continuous, and network topologies of discrete nature,
leads to an NP-complete problem [90], which may be difficult to solve in real-time.
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A common approach to deal with this issue is to separate the decisions on the commu-
nication topology from the optimization of the control inputs. For example, in [77, 80],
the topology can only be periodically switched, whereas the system inputs are computed
at each time step according to the chosen coordination structures. Nevertheless, at the
switching instants, a method able to optimize the coalitions is still needed. In [28], by
using an LMI procedure, the authors compute offline a state-dependent function that pro-
vides an upper bound on the cost-to-go for each possible partition. Considering this, the
coalitions are changed online through a comparative assessment that, besides weighting
the latter, considers the associated communication costs. A similar procedure is used
in [75,77,91,92], and [80] considers heuristic criteria based on the application at issue.
Furthermore, recent advances in this regard are given in [78,79, 85], where, as mentioned
above, the clustering problem is modeled as a game. Nevertheless, the difficulty of this
problem increases with the size of the system, since the number of possible partitions ex-
periences a combinatorial explosion with the number of links. For example, for a network
with 5 links, there are 32 different network topologies, while for a network with 20 links,
there are 1048576 alternatives. For these reasons, new results in this line are stepping
stones toward an increased practical impact of coalitional control.

1.2 Data-based methods in MPC

The increased capability of sensing, computing, and storing data, along with the powerful
advances in machine learning techniques, have promoted the application of data-driven
methods within the field of MPC [93–96]. These methods are reported to be successful
solutions to aid the design of MPC controllers, which in turn allows preventing perfor-
mance losses.

In particular, the review in [93] distinguishes three main directions for the integration
of learning-based techniques in the MPC context. First, they have been widely employed
to identify accurate prediction models and adjust them to the possible changes in time [97–
100]. The latter intends to minimize the model mismatch and increases the controller
adaptability to changes in the system dynamics, thus allowing for more reliable predictions.
The second research direction focuses on the rest of components that, similarly to the
prediction model, influence the MPC problem, such as the terminal set, terminal cost,
and the constraints. These components can also be designed from data to attain a desired
goal, e.g., to counteract the inherent finite-horizon nature of MPC controllers [101], and to
robustify the system against uncertainties [102]. Finally, the third research direction focuses
on the use of MPC to guarantee constraint satisfaction [103–105]. In this context, an MPC-
based filter receives an input obtained by a learning-based method, e.g., reinceforment
learning [106,107], and checks if its implementation would keep the system within the
constraints bounds, or if it has to be modified otherwise. As stated in [105], this line of
research is motivated by the fact that many of the available learning techniques, such as
reinforcement learning, may provide non-admissible inputs during the learning process,
which limits their application in safety-critical systems.

This thesis makes use of the learning model predictive control (LMPC) formulation pre-
sented in [101], which is framed within the second research direction reviewed in [93]. The
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LMPC strategy focuses on systems with a strong repetitive behavior, such as autonomous
racing vehicles [108], and is based on the systematic design of the terminal components of
the MPC problem. In particular, the data collected each time the system repeats the same
task allows the controller to recursively construct a safe set, which has control invariant
properties, and to accurately define the cost-to-go in the MPC objective function. Under
the assumption that the model is perfectly known, the LMPC approach [101] is proved
to converge to the optimal solution of the associated infinite-horizon control problem,
i.e., it attains optimal performance for the given task. Recent efforts have been made to
extend the results in [101] to distributed and decentralized systems [109, 110] and to a
more flexible paradigm where the repeated tasks are more varied [111,112]. For exam-
ple, [112] presents a task decomposition method where they are defined as aggregations
of subtasks in different orders. In particular, this work leverages data to define the safe
set and to lower the costs when executing tasks composed of the same sets of subtasks.
Additionally, [111] considers the case in which the dynamics, constraints, or stage cost
are periodically time-varying. Finally, see also [110], where a decentralized LMPC for
nonlinear multi-agent systems with coupled state constraints is introduced. In this case, the
agents recursively improve their performance by synthesizing their terminal components
using only locally collected data.

Furthermore, the opportunities offered by learning techniques within the MPC frame-
work go beyond the three directions of research mentioned above. For example, [113–115]
directly approximate the MPC control law by using neural networks (NN) [116], which al-
lows a fast computation of the inputs without resorting to the explicit MPC approach [117].
As stated in [115], the range of application of explicit MPC is limited to low-order systems
and small prediction horizons due to the inherent demand of memory and the complex-
ity of the point location problem. Conversely, NN-based models allow a direct map of
systems’ variables into control actions, while also offering a potential ability to accom-
modate nonlinear dynamics as in [113]. Moreover, recent research results on NN-based
controllers also attain theoretical properties of special relevance within the control com-
munity [114, 115]. See for example [114], where a NN is trained offline using samples of
a robust MPC controller, and statistical guarantees on recursive feasibility, closed-loop
stability, and constraint satisfaction are given based on the error between the learned
control law and that provided by the robust MPC controller. Sharing similar goals, the
authors of [118] also introduce a support vector machine-based method to build explicit
MPC controllers for nonlinear systems with feasibility and stability guarantees. Further
uses of learning techniques in the MPC context can be found in [119–121], where the goal
is to aid the resolution of MPC problems of high complexity. As an illustrative application,
see the mixed-integer vehicles’ platoon problem in [119], where the goal is to optimize
lane-change decisions, and integer variables are introduced to select the best timing and
spacing conditions.

Although the last years have witnessed a huge growth of data-based and learning-
based control methods, to the best of our knowledge, the contributions to distributed
and decentralized control are still scarce. Nevertheless, many of the methods developed
for centralized systems can be similarly extended to the distributed framework. Some
examples are given in [122], which uses recurrent NN to identify the prediction model
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for DMPC controllers; in the previously mentioned [109, 110], which apply the LMPC
formulation in a decentralized and distributed context; and in [123], which introduces
a distributed predictive safety certification based on [103] and on the robust DMPC
in [124]. Also, distributed architectures open up new possibilities for the application
of data-based methods, e.g., to aid the inputs coordination [125], to detect and isolate
local faults [126], and to learn neighboring behaviors [127]. Additionally, following the
approaches of [128,129], data could also be exploited to determine when the agents should
or not communicate, aiming to avoid unnecessary information transmission and achieve
better resources allocation.

In this regard, within the particular framework of coalitional control, artificial intelligence-
based solutions could provide benefits and new prospects to address the clustering problem.
The suitability of different partitions may be characterized as a function of relevant system
variables and evaluated by reward or loss functions. The latter paves the way for the
application of reinforcement learning techniques to progressively improve the selection of
coalitions by using previous observations. Finally, supervised approaches may be also of
interest when it is possible to generate a training data set relating system variables to the
corresponding optimal topology.
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3. H. Degachi, P. Chanfreut and J. M. Maestre, “A nonlinear distributed model predictive
scheme for systems based on Hammerstein model,” 21st IFAC World Congress,
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1.4 Outline of the rest of this thesis

This dissertation is formatted as a collection of articles based on the publications listed in
Section 1.3, i.e., [30–40]. In particular, the content of the following chapters is outlined
below.

• Chapter 2 introduces the main goals pursued in this thesis. The latter has been
structured in six different blocks, which will be defined as Objectives 1 to 6, and
which can be briefly described as follows:

– Objectives 1 to 4 are framed within the field of coalitional control and include
the development of supervised coalitional MPC algorithms and methods to
address the associated clustering problem (see Section 1.1.3). Likewise, a
further goal has been to provide a review of the state-of-the-art on distributed
control schemes sharing, at least partially, the approach and fundamentals of
coalitional control, such as the use of partial communication topologies.

– Objective 5 includes the development of a cloud-based LMPC for multi-agent
repetitive systems, and the use of NNs to aid the control inputs coordination
in DMPC schemes.

– Objective 6 considers the presentation of a tutorial with applications of MPC
in cyber-physical systems.

• Chapter 3 summarizes the contributions of this thesis and discusses the results
presented in the corresponding articles. This chapter is divided into six sections as
described below.

– Section 3.1 focuses on the work of [30], which presents a literature review of
existing control approaches based on sparse, and possibly varying, commu-
nication topologies. Special emphasis is placed on those methods providing
increased scalability, flexibility, and/or modularity of distributed control ar-
chitectures. We present taxonomies and discuss relevant commonalities and
differences between the surveyed articles, as well as providing a review of ap-
plications in LSSs.

– Section 3.2.1 describes the works of [31,32], which present LMI-based design
procedures for coalitional linear feedback controllers based on [28]. In par-
ticular, [31,32] focus on the index used to dynamically select the coalitional
structure and define the so-called topologies boundaries, which characterize

https://doi.org/10.1016/j.ifacol.2020.12.1500
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the regions of the state space where some communication topology is more
suitable than others. Additional LMI constraints to make these boundaries
satisfy convexity, invariance, and submodularity properties are provided.

– Section 3.3 presents the supervised coalitional MPC algorithms introduced
in [34] (Subsection 3.3.1) and [35] (Subsection 3.3.2). In this regard, [34]
presents a hierarchical coalitional MPC for freeways traffic systems, where a
set of local MPC controllers dynamically adjust the variable speed limits (VSL)
and on-ramp metering rates to reduce the time spent by the drivers traveling a
given road. On the other hand, [35] introduces a coalitional robust MPC for
tracking target sets based on the methodologies in [130–132]. The subsystems
are robustified against neighboring and external uncertainties by using a tube-
based control law, whose computation depends on the agents’ configuration.

– Section 3.4 focuses on [36] (Subsection 3.4.1) and [37] (Subsection 3.4.2),
which address the problem of dynamically optimizing the partition into coali-
tions. In particular, [36] formulates the clustering problem for a class of linear
input-coupled systems as a binary quadratic program (BQP) where each vari-
able represents the state (enabled/disabled) of a communication link, thus
avoiding combinatorial explosion issues. Additionally, [37] uses a different ap-
proach based on multi-armed bandit (MAB) games [133, 134], where the goal
is to leverage real-time observations to progressively optimize the selection of
the coalitional structures.

– Section 3.5 discusses the works of [38] (Subsection 3.5.1) and [39] (Subsec-
tion 3.5.2), which apply learning techniques in non-centralized schemes. In
this regard, [38] proposes the use of a NN-based warm start in cooperative
DMPC schemes based on dual-decomposition. Particularly, the goal is to
provide at each time step the Lagrange multipliers that directly leads to fully
coordinated control inputs. Additionally, [39] presents a cloud-based LMPC
based on [101], where a set of agents repeatedly perform a finite set of tasks sub-
ject to varying state constraints. The data collected by each agent is uploaded
to a common cloud to help minimize its own and its peers’ incurred costs.

– Section 3.6 focuses on the work of [40], where the authors review a series
of examples of applications of MPC to cyber-physical systems. In particular,
this paper describes applications in solar plants, irrigation canals, inventory
systems, and energy management systems.

• Chapter 4 provides a copy of the articles published within this thesis, which are
in turn listed in Section 1.3. This chapter is further divided into two sections:
the first one focusing on journal articles (Section 4.1), and the second one on
conferences (Section 4.2).

• Chapter 5 presents our conclusions and future research directions.





2 Objectives

This chapter describes the objectives pursued in this thesis. In particular, the first four
objectives introduced below are framed within the field of coalitional control, and are
associated with most of the journal publications of this thesis. In addition, the fifth objective
focuses on the use of data-based methods in MPC-based schemes; and, finally, the sixth
considers applications of MPC in cyber-physical systems.

• Objective 1: Review the state-of-the-art on distributed control schemes based
on sparse, and possibly varying, communication topologies.
Given the strong focus of this thesis on the coalitional approach [28, 29], one of our
goals has been to thoroughly review the literature on control methods that share,
at least partially, the objectives and fundamentals of this type of controllers. This
review should include methods that allow boosting the scalability of distributed
architectures through an efficient management of the communication and computa-
tion resources. Special emphasis has been placed on those strategies based on the
formation of clusters or operational areas where the control actions are set with
minimal communication and coordination with the rest of the system. A relevant
issue here is the blurry difference from the controller design standpoint between
those methods where communication constraints are deliberately imposed, and those
where they result from limitations or failures of the data network. For this reason,
this objective also includes the review of control approaches dealing with event-
based and unpredictable communication structures. The main goal is to provide
a unifying framework gathering the main research directions in this regard while
drawing out their main commonalities and differences.

• Objective 2: Development of methods for characterizing the switching between
topologies in coalitional linear feedback controllers.
The first works of this thesis within the coalitional control framework followed the
formulation proposed in [28], which is also used in [74–76]. In this context, we aim
at characterizing the transitions between partitions into coalitions while exploring
the concept of boundaries and coordination effort zones. In particular, the goal is to
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propose LMI-based design procedures that make the criterion for switching satisfy
certain properties of interest. First, the latter is designed to obtain ellipsoidal regions
in the state space where certain topologies are preferred over others. By exploiting
the convex property of these ellipsoidal regions, a second goal has been to derive
the mentioned coordination effort zones to characterize the need for coordination at
different system states. Additionally, by considering invariance, we aim at providing
new ellipsoids that confine the system state between topologies transitions. Finally,
an additional goal has been to attain submodularity in the pursuit of facilitating the
selection of the coalitions.

• Objective 3: Development of supervised coalitional MPC algorithms.
This objective is divided into two subgoals. Indeed, we have considered two distinct
research directions to contribute to the framework of coalitional MPC algorithms:
on the one hand, we have focused on simulating and analyzing the performance of
this strategy on a large-scale application; and, on the other hand, we have adopted a
more theoretical perspective, aiming at developing novel coalitional MPC methods
with robust and stability guarantees. These subgoals are further described below:

– Objective 3.1: Development of a coalitional MPC algorithm for a large-scale
application.
This subgoal is in line with the works of [29] and [77], which propose a
coalitional MPC for smart grids and irrigation canals, respectively. By contrast,
and considering the positive results of MPC in traffic systems reported in
previous works [135], [136], [137], this thesis takes freeways as a case study.
We assume that there are variable speed limits (VSL) and controllable on-ramp
entries along the road under study, which are managed by a set of local MPC
agents. Our aim has been to implement a hierarchical structure similar to
that in [77], where a supervisory layer dynamically arranges these agents into
cooperative coalitions, and hence fosters the coordination of the traffic signals
between different sections of the freeway. The control goal is to reduce the
time spent by the drives on the road, and thus to reduce traffic jams, while
efficiently managing the computational and communication resources.

– Objective 3.2: Development of robust coalitional MPC controllers for tracking.
The lack of previous studies on tracking approaches within the field of coali-
tional MPC has motivated this subgoal. In particular, we have focused on
extending the MPC for tracking formulation presented in [131, 132], which in
turn follow [130], to the coalitional framework. In this context, one of the main
goals is retaining their robust and convergence guarantees for tracking chang-
ing targets regardless of the switching between topologies that characterize
the coalitional approach.

• Objective 4: Development of fast clustering methods for multi-agent MPC.
This objective focuses on the clustering problem described in Section 1.1.3, which
is inherent to the implementation of the coalitional strategy. In particular, the aim is
to introduce an efficient method for updating the number and composition of the
coalitions in real time. We consider coalitional schemes where the network topology
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is selected as a function of the system state and updated at a lower frequency than
the system inputs. That is, once certain agents join in a coalition, they remain
together coordinating their inputs during a certain number of time steps, which in
turn drives the system to new states. The underlying goal is therefore to find a fast
approach to estimate which clusters provide the best trade-off between performance
and coordination costs at a given system state, while dealing with the combinatorial
explosion of possibilities. We adopt two different perspectives for tackling this
objective: first, the clustering problem is formulated as a MAB game [133, 134],
where the most promising partition according to previous observations is selected;
and, secondly, we opt for a more analytical perspective that seeks to assess how the
breaking up into coalitions affects the MPC optimization problem in comparison
with the centralized formulation.

• Objective 5: Application of learning techniques in non-centralized MPC-based
control schemes.
Within this objective, which may include a wide range of possibilities, we have
particularly focused on two ideas. The underlying goal is to aid the MPC agents coor-
dination and/or boost their performance by using data. Nevertheless, the mentioned
ideas follow very distinct perspectives as it is described below.

– Objective 5.1: Use of NNs to aid the inputs coordination in DMPC schemes
based on dual decomposition.
The goal here is to speed up the iterative negotiations that local controllers
perform in dual-decomposition-based DMPC algorithms. To this end, our
proposal aims at incorporating pre-trained NN models to provide a close to
optimal warm-start of the Lagrange prices that guide the iterative negotia-
tions at each time instant. In this way, we aim at reducing or, if possible,
avoiding, the need to iterate to obtain coordinated inputs, and thus reducing
the computation and communication demands in the online operation of the
agents. This objective is also related to the coalitional framework, since a
long-term goal is to exploit this approach to determine when control agents
should negotiate their actions and when it does not translate into significant
performance improvements in comparison with a decentralized operation.

– Objective 5.2: Development of a multi-agent LMPC with collaborative learn-
ing to optimize repetitive tasks.
Here we consider a set of MPC agents that must execute a finite set of tasks
at their minimum possible cost. Our goal is to use the LMPC strategy to
progressively optimize their performance, while using a data cloud as a means
to enable collaboration (by data sharing) and keeping the computation of the
inputs decentralized. In this context, we must also deal with changes in the
constraints for executing these tasks and exploit similarities between them to
accelerate the learning process. A key issue is retaining the theoretical guaran-
tees of the LMPC formulation, particularly recursive feasibility, asymptotic
stability, and a non-increasing evolution of the tasks’ costs.
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• Objective 6: Applications in cyber-physical systems.
One of the last objectives of this thesis has been to elaborate a tutorial presenting
applications where MPC controllers interact with heterogeneous entities. The idea
is to present examples based on controller-to-controller interactions, as in the case
of distributed and coalitional MPC, e.g., [80]; also, examples where robots are
employed to improve the information used by controllers [138,139]; applications
where controllers and humans interact [140–143]; and, finally, examples were
humans are modeled by using the MPC methodology [144–146].



3 Summary of results and
discussion

This chapter describes the contributions made in this thesis. In particular, the subsections
below briefly present the articles listed in Section 1.3 and discuss their results. Addition-
ally, Fig. 3.1 provides an overview of the control methodologies used in these articles,
distinguishing between linear feedback and MPC-based coalitional controllers, data-based
methods for non-centralized MPC, and others that do not fit into one of these categories.
Likewise, Table 3.1 relates the objectives described in Chapter 2 with the works where
they are addressed. Recall that the articles in Section 1.3 correspond to [30–40].

Coalitional MPC
[34–37]Linear feedback

coalitional control
[31–33]

Data-based methods in
non-centralized MPC

[38,39]

Miscellaneous
[30, 40]

Figure 3.1 Pie chart with the methodologies considered in [30–40].

Table 3.1 Objectives addressed in [30–40].

Objective 1 Objective 2 Objective 3 Objective 4 Objective 5 Objective 63.1 3.2 5.1 5.2
[30] [31, 32] [34] [35] [36, 37] [38] [39] [40]

19
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3.1 Survey on clustering methods for control systems

Following Chapter 2 (Objective 1), [30] provides a survey on control approaches that,
under different names, share the common objective of increasing the scalability, flexibil-
ity, and/or modularity of distributed control architectures. More than a hundred works
where the communication topology between control units becomes sparse and, in some
cases, time-varying have been reviewed. Special emphasis has been placed on those that
focus the communication resources and coordination efforts on clusters of highly coupled
agents or areas, thus similarly sharing the perspective of the coalitional strategy [28,29].
Nonetheless, [30] also reviews control methods able to deal with network constraints
and failures, and manage structural changes such as the plugging-in or plugging-out of
subsystems. As mentioned in Chapter 2 (Objective 1), the latter translates into partial and
dynamic communication topologies, which, although not being deliberately chosen, lead
to a situation similar to that of the coalitional controllers.

The survey [30] discusses relevant features regarding the controller design and the
management of the underlying communication network in the reviewed articles, while
pointing out their main commonalities and differences. Likewise, a review of potential
applications is provided. The text is complemented with taxonomies to provide a better
overall picture of the current literature. In particular, these taxonomies focus on the
following features:

• Design approach [30, Section 3]: most of the surveyed works can be classified
according to whether they follow the sparsity-promoting formulation in [41–52,147];
consider a clusters-based approach, such as community-detection methods [53–59]
or coalitional control [28, 29, 74–80]; exploit the concept of plug-and-play [73, 148–
155]; or deal with limitations of the communication network due for example to
temporary links losses [70–72,156].

• Control law employed [30, Section 3]: here we have distinguished between MPC-
based, state feedback, and consensus-based controllers.

• Criterion for selecting the network topology [30, Section 4.1]: among the methods
seeking a trade-off between global performance and coordination efforts, several
approaches use a two-fold index that balances the system behavior and the cost of
communication to induce an efficient partition [28,29, 42, 43, 79, 147], and others
consider a measure of the coupling strength [61, 157, 158]. Moreover, the selection
of the controller structure may be formulated as a cooperative game [159,160], be
based on particular characteristics of the system under control [46,161–163], and
result from the occurrence of communication failures [70–72] and plug-and-play
events [73, 148–151].

• Static/dynamical partitioning [30, Section 4.2]: while some approaches use a
static sparse configuration of the control agents, which allows eliminating those
communication links that are non-critical [42, 43, 49], others propose time-varying
structures where the topology of the communication network varies for miscella-

Different parts of the text of this chapter have been extracted from [30–40].
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neous reasons or can be adjusted online to the system conditions [28,29,46,79,149],
thus offering an extra degree of flexibility.

• Control architecture [30, Section 4.3]: here we focus on the perspective for
adjusting the network configuration in the case of the dynamic approaches, distin-
guishing between top/down architectures, when the decisions require a supervisory
layer or complete information sharing [77, 80, 147, 163, 164]; and bottom/up ar-
chitectures, where local agents autonomously reconfigure their communication
topology [61, 64, 79].

• Theoretical properties [30, Section 4.4]: due to the theoretical issues raised by the
fact of dealing with switching and limited data sharing, we have highlighted those
works reporting stability and/or constraints satisfaction guarantees, e.g., [71, 72,
165, 166]. Additionally, given the strong connection between some of the reviewed
articles and cooperative game theory, those providing game-theoretical properties
have also been remarked, e.g., [50, 167, 168].

• Applications [30, Section 5]: here we provide an overview of applications in power
networks [43,49,78,161,169], water systems [63,67,77,170], vehicle and traffic
systems [71, 171, 172], renewable energy systems [68, 173–175], and chemical
processes [53, 56, 58, 176].

Finally, a brief discussion of possible future research directions is also provided.

3.2 Linear Feedback Coalitional Controllers

As it was mentioned in Chapter 1, the coalitional strategy studied in this thesis was first
introduced in [28], where a linear feedback controller for linear networked agents is
proposed. In particular, the authors compute offline a block-structured stabilizing feedback
gain for each possible partition by solving an optimization problem subject to linear matrix
inequalities (LMIs). In the online operation of the system, the controller feedback gain
is dynamically switched between the pre-computed matrices based on a comparative
evaluation that, given the state of the system, aims at selecting the coalitions that provide
the best trade-off between system performance and communication burden. This approach
is considered in the first work of this thesis [31], which was later extended in [32]. Also, it
is used in [33], where a coalitional control and observation scheme is presented.

3.2.1 Switching regions

The works of [31,32] focus on the index that evaluates the topologies (or, equivalently, the
induced partitions), which guides the evolution of the coalitional structure. Following the
notation of [32], let us denote KΛi

as the feedback gain associated with the i-th possible
topology that we can impose in a certain inter-agent communication network, i.e., Λi (see
Fig. 1.3). Additionally, consider that in [28, 31, 32], the partitions are evaluated by an
index of the form

r(x(k),Λi) = x(k)TPΛi
x(k)+ f (Λi), (3.1)
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where the first term provides an upper bound on the performance cost-to-go and the second
weights the communication costs. In this regard, PΛi

is a positive definite matrix associated
with topology Λi that is designed, together with KΛi

, using the mentioned LMI-based
design procedure. Likewise, x(k) is the system state at time instant k, and f (Λi) is a penalty
on the communication costs.

Considering the above, [31, 32] defines the so-called topologies boundaries, that is, the
hypersurface in the state space that separates the region where some topology Λi prevails
over a different one Λ j, from that where Λ j is preferred over Λi. In particular, these works
present design procedures to make these boundaries satisfy the following properties:

• Convexity: considering (3.1), [31,32] make the boundary between two topologies Λi
and Λ j become an ellipsoid by constraining the difference of matrices PΛi

and PΛ j
to be positive (or negative) definite. Accordingly, there would exist a convex set
containing the states where one of these topologies is preferred over the other one.

• Invariance: as it is shown in [32], matrices PΛi
and PΛ j

can also be designed to
provide an invariant set confining the system state after switchings from Λi to Λ j.
Additionally, new Lyapunov functions are obtained.

• Submodularity: the interest in this property lies in the fact that for submodular
functions optimization, greedy algorithms provide nearly optimal solutions while
notably reducing the space of possible alternatives to evaluate [177]. As it is also
described in [32], we can design the switching criterion to satisfy this property by
imposing linear inequalities on matrices PΛi

for the set of possible topologies.
Additionally, by using the convexity property, [32] introduces in the coalitional frame-

work of [28] the concept of coordination effort zones, i.e., regions in the state space where
topologies with a given number of enabled links dominate those involving a higher/lower
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Figure 3.2 Boundaries between the topologies selected in two simulation examples in [32].
The figure shows the plane given by the state components of subsystem 3, i.e., its
position r3 and velocity v3. In the left one, the switching criterion was designed
to satisfy convexity and invariance, whereas the right one considers convexity
and submodularity. Finally, the circle marked line represents the state evolution
of subsystem 3 and the dashed lines are level curves of functions xTPΛi
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level of coordination. These zones can be defined offline and allow us to determine subsets
of states where topologies with a given number of links can be discarded from being the
most suitable ones. Therefore, this information can be of interest to accelerate the topology
selection in the online system operation.

The simulation section in [32] considers a modified version of the 4-truck system
in [178], and provides results for different combinations of the properties mentioned above.
As it is shown in Fig. 3.2, the topologies’ boundaries are graphically illustrated considering
a slice plane in the state space. In this regard, we use symbol ϒ

Λ j
Λi

to denote the subset
of the state space where topology Λ j dominates Λi, which is therefore characterized by
the difference of matrices PΛ j

and PΛi
. Additionally, we assess the system performance

and the incurred communication costs in different simulations, showing that adding these
new constraints on the switching criterion did not significantly impact the overall behavior
in comparison with the original controller design procedure [28] (see [32, Table III]).
Finally, we also illustrate the ellipsoids characterizing the coordination effort zones for
two different definitions of the communication penalty in (3.1) ([32, Fig.7]).

We leave as future work the evaluation of these properties to help the switching deci-
sions in larger networks. In particular, we should compare in terms of computation and
performance the switching procedure in [28] with a greedy-based approach where (3.1) is
designed to be submodular. Likewise, future work should illustrate the potential of the
coordination effort zones to discard non-optimal partitions at different system states.

3.2.2 Combination with an observer

As mentioned above, [33] presents a coalitional control and observation scheme based on
the controller design procedure in [28]. The main difference with [28,31,32] is that the state
is no longer assumed to be exactly known by the agents, and is instead estimated from local
measurements. In this regard, we incorporate an observer whose gain switches according
to the changes in the communication topology. This observer is designed following the
LMI-based procedure in [179], which provides an ellipsoidal set centered at the estimated
state containing its real value. Similarly to the controller design, a block-structured observer
gain is computed for each possible topology considering the corresponding communication
constraints (see Fig. 1.3). In addition, the switching criterion is defined to consider the
state estimation error, as well as the system performance and communication costs as
in (3.1). Finally, overall stability guarantees are provided following [28].

To illustrate the proposed method, we use an example of a vehicle platoon consisting of
four cars. The vehicles’ state is formed by their error with respect to a reference relative
distance, relative velocity, and acceleration, and should be regulated to the origin from a
certain initial state. In this regard, [33, Figs. 2 to 4] show the state evolution over time,
together with the corresponding results when the centralized and decentralized topologies
are statically imposed. It can be seen that in the coalitional case the vehicles successfully
reach the origin and switch to a decentralized operation once they are close to the steady
state. Finally, in terms of performance and estimation error, the proposed switching method
provides a balance between the static centralized and decentralized approaches as expected.
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3.3 Supervised coalitional MPC schemes

This section summarizes the works of [34, 35]. Following Objective 3 in Chapter 2, [34]
focuses on the application of coalitional MPC to traffic freeways, whereas [35] adopts a
more theoretical perspective and aims at developing a coalitional MPC for tracking.

3.3.1 Coalitional MPC in traffic freeways

During the past decades, traffic jams have become a daily hassle in many towns and
cities worldwide. The latter has prompted research into optimal control methods to
alleviate this problem and its consequences, which includes MPC-based approaches such
as [135–137]. Following this line of research, and also motivated by the positive results
of coalitional control in [77], the work of [34] focuses on the application of coalitional
MPC to traffic freeways. It is assumed that the freeway under study counts with variable
speed limits (VSL) and controllable on-ramp entries, which allow acting dynamically on
the traffic flows to relieve traffic jams. Model METANET, which provides a fluid-like
macroscopic description of the traffic behavior, is used to predict the density of vehicles
and mean speed at different segments of the freeway. The main control goal is to minimize
the total time spent by the drivers (TTS) on the road while reducing coordination efforts
required to compute the VSL and ramp-metering rates.

The nonlinearity of the traffic behavior and the mixed-integer nature of the control
actions hinder the implementation of a centralized MPC approach for real time control. To
deal with this issue, [34] proposes a top-down architecture (see Fig. 3.3) where the overall
problem is dynamically broken into smaller pieces, which accordingly involve a reduced
number of optimization variables in comparison with the centralized formulation. Indeed,
the freeway is partitioned into stretches that are assigned to a set of distributed MPC
agents. These agents constitute the bottom layer and are in charge of managing the VSL
and ramp-metering signals that are located in their corresponding stretches. On the other
hand, the top layer decides periodically which of them should merge into coalitions, thus
fostering coordination in certain parts of the system. In this regard, each coalition can be
seen as an independent entity where the involved agents solve cooperatively a constrained
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Figure 3.3 Scheme of the top-down approach for traffic freeways implemented in [34].
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Table 3.2 Summary of the simulation results in [34].

Decent. c FC-MPC5.5 4.5 1
TTS (veh·h) 2682 2647 2632 2608 2588

%
TT

S
Re

d. Links 1-3 8.90 10.60 10.77 10.49 9.71
Links 4-6 2.09 2.91 5.40 7.94 10.23

Global 4.01 5.27 5.80 6.63 7.38

TW
T

(v
eh
·h

) On-ramp 1 31.78 38.02 42.51 42.85 44.55
On-ramp 2 0.52 0 18.79 34.77 34.66
On-ramp 3 21.26 21.50 26.66 21.19 23.72

Comp. Time (min) 5.38 6.53 9.94 13.07 25.75

Figure 3.4 Evolution of the density of vehicles in veh/km along the road simulated in [34].
The left plot shows the results obtained in the no control case, and the right one
refers to the coalitional MPC controller with c = 4.5.

MPC problem aiming at improving the aggregated traffic performance along their freeway
stretches. A genetic algorithm is used to optimize the sequences of VSL and ramp-metering,
and a heuristic criterion is proposed to decide the partitions into coalitions at the top layer.
This heuristic criterion is designed so as to foster coordination between those controllers
associated with stretches of road where the traffic situation is more critical.

Our simulation results in [34] consider an example of a 15km freeway with three metered
on-ramps, three speed limits, and one off-ramp. Likewise, the system is partitioned into
six locally managed stretches, and it was possible to impose 13 different communication
topologies between the corresponding agents. Two traffic jams were intentionally induced
at different parts of the freeway through a proper setting of the mainstream traffic flow and
the number of cars arriving at the on-ramps. As indicated in Table 3.2 ([34, Table III]),
the proposed coalitional approach is shown to provide a balance between performance
optimality and efficiency. In particular, the TTS and the computation times required for
the simulations were in-between those obtained when imposing statically the decentralized
topology and when using a fully cooperative MPC strategy. The results reported in Table 3.2
also show the total waiting times at the on-ramp queues (TWT), and consider different
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values of parameter c, which penalizes the formation of coalitions. That is, the higher c
is, the sparser the topologies chosen. In this regard, for c = 1 the TTS global reduction
was 6.63%, and for c = 5.5 it was 5.27%, while the decentralized case led to 4.01% and
full cooperation to 7.38%. For the case of c = 4.5, we also provide color maps illustrating
the evolution of the density of vehicles in the no-control case, i.e., assuming that the
VSL are always set at their maximum possible value and that the on-ramp accesses are
not regulated, and when using the presented coalitional MPC controller (see Fig. 3.4,
which corresponds with [34, Fig. 6 and 7]). Additionally, [34] includes graphical results
illustrating the evolution of the vehicles’ mean speed in each stretch over time, the waiting
queues at each on-ramp, the implemented control actions, and the chosen coalitions for
two different values of c.

3.3.2 Coalitional MPC for tracking

The main result of [35] is the introduction of a tracking strategy with theoretical guarantees
into the field of coalitional control. In particular, [35] focuses on the tube-based MPC
for tracking in [131], which presents a robust version of the controller proposed in [130].
Additionally, we adopt the approach in [132], where the goal is to admissibly drive the
system state to a given target set rather than to a point. The chosen tracking formulation
is characterized by the introduction of an artificial setpoint as optimization variable in
the MPC problem, the use of an invariant set for tracking as terminal set, and the use of an
offset cost function that penalizes the deviation between the artificial and the real setpoints.
As presented in [130] for centralized systems, this type of controller allows enlarging the
domain of attraction in comparison to that of the regulation problem to a certain setpoint,
while providing persistent feasibility and convergence guarantees.

In [35], we consider linear multi-agent systems with coupled dynamics that can be
periodically organized into coalitions. In particular, each subsystem’s state is coupled to its
neighbors’ states and inputs, and is also influenced by an external perturbation. Both the
neighboring and external disturbances are assumed to be uncertain from a local standpoint,
but confined within convex compact polytopes. The system is robustified against the latter
by using the tube-based [87,88] approach proposed in [131]. In this context, the agents
solve a nominal MPC problem formulated according to [131,132], where the constraint sets
are shrunken as a function of the size of the uncertainty. Likewise, the resulting nominal
input is corrected by an ancillary feedback law that keeps the real system evolution in a
neighborhood of the nominal predictions.

The selection of the agents partition is based on a quadratic function that is designed
similarly to the upper bound on the cost-to-go used in [28,31,32]. Once a certain partition
is imposed, within each resulting coalition the agents solve cooperatively a nominal
MPC problem where the objective function is the sum of that of their local problems,
and the constraints sets are adjusted to only consider as coupling uncertainty the effect
from outsider subsystems. Likewise, the ancillary feedback gain is switched to match
the communication constraints of the chosen topologies. Therefore, the formation of
coalitions has three main effects: first, it allows the agents to use less restrictive constraints
in their nominal MPC problem; secondly, the resulting nominal inputs seek to maximize
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the coalitional nominal performance, instead of the local one, which usually translates into
global benefits; and, thirdly, the agents can use local and neighboring variables to define
their ancillary feedback law. Finally, under certain conditions on the switching process,
recursive feasibility, stability of the closed-loop system, and constraints satisfaction are
guaranteed, and from these convergence to the target sets is also proven.

We provide simulations results on a trucks system connected by spring and dampers
similar to the one in [32]. However, here we have 12 trucks and it is possible to impose 1450
different communication topologies. The simulations considered a time period of 18s,
with a change of the target set at 9s. Fig. 3.5 ([35, Fig.3]) shows the state trajectory of
each subsystem i ∈ [1,2,...,12] on the plane given by its state components, which here
are denoted as si (position) and vi (velocity). Also, Fig. 3.6 ([35, Fig.4]) illustrates the
evolution of the coalitions over time. It can be seen how the agents are able to drive their
states to their corresponding target sets while progressively disabling the communication
links. Indeed, when all subsystems are in the vicinity of their target sets, the system uses
the decentralized configuration. Additionally, [35] shows that the increased coupling
uncertainty and lack of cooperation involved by the decentralized configuration leads to
reduced constraints sets and greater losses of performance. In this regard, the proposed
coalitional scheme is shown to achieve a reduction of 11.6% of the cumulative performance
costs resulting from a static use of the decentralized topology ([35, Fig.6]). Finally, we
also include graphical results to illustrate that the nominal and real states remain within
the invariant tube ([35, Fig.7]).
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Figure 3.5 State evolution of a 12-trucks system with the coalitional MPC for tracking
presented in [35]. The figure illustrates the evolution of the system to two target
sets. The first ones are shown in light blue and red, whereas the green and
orange regions represent the second target sets. The subsystems states at the
switching instants are indicated by star marks, and the initial and final states
are marked respectively with a circle and a diamond.
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Figure 3.6 Evolution of the network topology in the simulation example of [35].

3.4 Methods for the coalitions selection

The works of [36, 37] are also framed within the supervised coalitional MPC framework.
However, unlike [34, 35], they focus on the problem of selecting the agents partition, i.e.,
finding which coalitions should be formed to provide the best trade-off between global
performance and coordination effort. Both works consider the double sample rate strategy
implemented in [31–35], where the system control inputs are updated by the coalitions at
each time instant, whereas the agents partitions can only be changed periodically.

3.4.1 Binary quadratic program

In [36], the clustering problem is formulated as a binary quadratic program (BQP) where
the optimization variables are directly the state (enabled/disabled) of the communication
links. The solution of this BQP establishes therefore a certain network topology, and thus
partitions the agents into the corresponding coalitions (see Fig. 1.2). This approach avoids
combinatorial explosion issues, since for a network with L links, we would have L binary
variables, whereas if we formulate a decision problem directly on the agents’ partition,
then we may have to deal with 2L decision variables.

The BQP problem is derived for a class of linear input-coupled systems by analyzing
how the decentralization of the local agents, i.e., the use of any topology different from the
fully connected case, alters the overall MPC optimization problem. This MPC problem is
built by aggregating all coalitions’ optimizations into a single formulation, which allows us
to assess the global behavior. In this regard, the key to render the clustering problem as a
BQP lies in the decomposition of the gradient vector of this overall MPC problem as a sum
of a vector associated with the fully decentralized topology, and others terms that depend
on the enabled links. By using the latter, we then assess how far the optimal centralized
input sequence is from satisfying its optimality conditions. The underlying idea is that if it
is close to being optimal, then the inputs obtained by decentralized coalitions will be close
to that of the centralized case, thus leading to small performance losses. Also, we should
remark that [36] first derives the proposed BQP considering the unconstrained case, and
later introduces a heuristic approach to include decoupled input constraints. Moreover,
theorems relating the performance cost function to the BQP problem are included.
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Figure 3.7 Comparison in terms of computation time between different methods for se-
lecting coalitions [36]. This figure was obtained considering a linear network
with an increasing number of agents (see [36, Section V.A]).

We provide numerical results comparing the proposed BQP approach in terms of
computation time and performance with the solutions obtained by exhaustive search,
following a greedy-based procedure, and implementing the genetic algorithm (GA). In
this regard, [36] considers two cases of study: first, we use a linear network with a variable
number of agents, where no constraints are considered; and secondly, an urban traffic
network modeled as in [180], where decoupled input constraints are introduced. To evaluate
the results, [36] uses the following indexes:

%Loss of opt.(Λ) = 100
J(x,UUU∗

Λ)− J(x,UUU∗
cen)

|J(x,UUU∗
cen)|

, and %Coord.(Λ) = 100
|Λ|
L

, (3.2)

where J(·) denotes the global performance cost function, UUU∗
Λ and UUU∗

cen are respectively
the optimal input sequences obtained with topology Λ and the centralized one, |Λ| is the
number of enabled links in Λ, and L is the total number of links as mentioned before. Note
that the first index in (3.2) assesses the loss of performance optimality in comparison with
the centralized approach for a given system state x, whereas the second index evaluates
the percentage of enabled links and thus the coordination burden.

In the linear network example, we progressively build larger systems by increasing the
number of agents, and, for each of them, we solve the clustering problem for 200 different
states. Fig. 3.7 ([36, Fig. 6]) illustrates the total time spent on the latter using the mentioned
methods. It can be seen how the exponential growth of the number of topologies impacts
the time required by the exhaustive search method and the GA, whereas the BQP scales
gracefully for larger systems. This also reflects that, from a certain number of agents,
the time required for implementing the proposed BQP is still lower than that to evaluate
and compare all possible topologies. Nevertheless, faster decisions can be made by the
greedy-based approach if the matrices involved in the MPC control law of each possible
topology can be precomputed and stored offline. However, the latter increases the memory
requirements and offline computation costs, which is why this approach is only simulated
until 25 agents. Likewise, Table 3.3 provides the values of (3.2) incurred by the partitions
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Table 3.3 Comparison of the BQP approach in [36] with other clustering methods in terms
of performance optimality and coordination costs.

Ex. search GA BQP Greedy
Li

ne
ar

ne
t. Av. loss of opt. [%] 0.11 0.23 0.12 0.15

Av. coord. [%] 69.80 67.72 69.85 67.34

U
TN

Av. loss of opt. [%] 0.016 0.024 0.025 0.033
Av. coord. [%] 54.55 54.55 54.55 54.55

selected for systems with 7 to 15 agents, showing that the BQP approach practically attains
the optimal clustering and thus finds a balance between the centralized and decentralized
topologies. In this regard, note that the optimal clustering is found by exhaustive search,
and that the centralized configuration leads respectively to 0% of performance optimality
losses and 100% of coordination burden. Also, the values associated with the decentralized
case were in this example respectively 3.5% and 0%.

In the second example, we simulate an UTN with 8 controllable junctions and 17 streets.
It is assumed that there is a control agent assigned to each junction that should manage the
traffic flows by acting on the corresponding traffic lights. Additionally, by using the pro-
posed BQP, the communication topology between these agents can be periodically switched.
At each switching instant, we compare the coalitions provided by the BQP with the meth-
ods used in the previous example as shown in Table 3.3. Likewise, the average required
times required to make the topologies decisions were respectively 0.13s (BQP), 11.45s
(exhaustive search), 84.06s (GA), and 0.29s (greedy). In this example, all methods led to
very small losses of optimality and the GA slightly outperformed the BQP in this sense.
However, note that the fact of dealing with constraints notably increased the time needed
to optimize the input sequences, and hence to try out all topologies and to implement
the GA, in comparison with that of the BPQ approach. Finally, it should be mentioned that
the parameters set for the GA differed between the first and second examples. Whereas in
the first case they were set to obtain comparable computation times to the other methods,
in the second one we increased the maximum number of generations to show that it can
attain close to optimal clustering at expense of increasing the computation times.

3.4.2 Multi-armed bandit problem

On the other hand, [37] addresses the clustering problem using a contextual multi-armed
bandit game approach [134,181]. Broadly speaking, multi-armed bandit (MAB) games
are a kind of sequential games, where a decision entity, often referred to as player, selects
one arm (i.e., one action) from a finite set of possibilities, and subsequently receives a loss
that weights the suitability of its choice. The term contextual implies that the player counts
with some relevant information in the form of a context vector for taking its decision.

Based on this philosophy, the main result of [37] is a heuristic learning algorithm that
leverages real-time observations to progressively learn the coalitional structure that best
suits the needs of the system at a certain state. In particular, we define the set of arms
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as the set of possible agents partitions and the player performs as a supervisory entity
that can periodically select one of them, and thus change the number and composition of
the coalitions. Likewise, the loss is defined as a bi-criteria function weighting the overall
system performance and coordination efforts provided by the selected partition, and the
context vector is given by the current system state. The player progressively builds a
database that stores a set of historic system states, its selected topologies, and the observed
losses. This information is then used as the basis to improve the coalitions selection over
time by considering that the loss inflicted by a given topology at a certain state remains
similar in its vicinity. The player’s goal is therefore to balance exploration and exploitation
so as to optimize its decisions. To evaluate its performance, we use a regret function that
weights the difference between the player’s cumulative loss and the loss of playing the best
in hindsight. Additionally, we propose the use of multi-class classification techniques to
build in real-time a model that matches the system states to suitable partitions by exploiting
the collected data.

To illustrate the proposed MAB approach, we use an academic example similar to the
ones in [32, 35], where 5 coupled trucks should admissibly regulate their displacement
and speed to the origin, and 16 communication topologies may be imposed in the data
network. For simplicity, [37] repeatedly simulates the system’s behavior from the same
set of initial states, which increases the utility of the collected data to improve future
decisions. Each of these simulations is called a cycle and involves the selection of a set of
topologies for different states. In particular, in each cycle, once the system reaches the
origin, the coalitional control scheme based on MAB is again simulated from a different
initial point, until we finish with all in the mentioned set of initial states. As it is shown in
Fig. 3.8, the proposed heuristic algorithm allows for progressively improving the selected
coalitions, thus reducing regret over time. Note that the percentage of optimal decisions
remains below 30% at the beginning of the simulations due to the lack of data, and
progressively increases until reaching around 80%. Additionally, Fig. 3.9 illustrates how
the multi-class classification allows deriving regions in the state space where one topology
is expected to be optimal. To allow for a bi-dimensional representation, we show the
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Figure 3.8 Learning regret and percentage of optimal decisions per cycle with the MAB
method described in [37].
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Figure 3.9 Regions derived from the multi-class classification of the states in [37]. Letter C
is used to denote the coalitions proposed by the classifier.

plane given by the state components of truck 1, considering that the rest subsystems states
are equal to zero. It should be remarked that around the origin, the classifier selects
the decentralized configuration (yellow region in Fig. 3.9), whereas topologies involving
denser communication are preferred further from the origin.

3.5 Data-based methods in non-centralized MPC

This section introduces the conference papers [38, 39], which propose respectively the use
of NNs in DMPC schemes and a cloud-based LMPC for multi-agent repetitive systems.
Note that although [37] also uses a data-based approach, it has been introduced in the
previous section due to its focus on the coalitional framework and the problem addressed.

3.5.1 Dual decomposition-based DMPC with NNs

Dual decomposition allows attaining coordination between distributed MPC controllers by
introducing in their optimization problems a set of Lagrange multipliers that seek to enforce
an agreement on the coupled variables [23]. In this context, the MPC agents implement at
each time step an iterative negotiation where their control inputs and Lagrange multipliers
are repeatedly updated until convergence is attained. This procedure can provide centralized
performance but demands increased computation and communication resources when the
convergence rate is low.

Considering the above, [38] proposes the use of NNs to accelerate the inputs computation
in cooperative DMPC schemes based on dual-decomposition. In particular, the goal is to
provide a NN-based warm start for the distributed negotiation that directly leads to the
solution at convergence, and therefore to fully coordinated control inputs. The proposal is
tailored for linear input-coupled systems where the performance function only depends on
the current system state and the sequence of implemented inputs. The NN-based model is
trained offline by using a pre-computed data set where the input variables are different
system states and the target variables are given by the Lagrange multipliers obtained at
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Figure 3.10 Comparison between the DMPC based on dual decomposition with NN-based
warm start proposed in [38] and the corresponding centralized MPC. The
figure illustrates the cumulative performance costs in 20 simulations starting
from different random states.

convergence when implementing accordingly the distributed negotiation. Simulations
on a 16-tanks benchmark are provided, which assess the performance of the proposed
approach from two standpoints: first, we assume that the MPC agents directly implement
the inputs obtained with the NN-based initialization of the Lagrange prices at each time
step, i.e., they do not iterate; and, secondly, we consider that these Lagrange prices can
be used as an initialization of the negotiation, but thereupon, the agents should proceed
iterating until satisfying a convergence condition. In this regard, the proposal also suggests
switching to a warm start based on the Lagrange prices obtained at the previous time
instant when the system state remains approximately constant, since in this case, these
values may be more accurate than the ones provided by the NN.

Fig. 3.10 compares the first of the approaches above with the corresponding centralized
MPC results. In particular, it shows the cumulative performance costs in 20 different
simulations that start from random initial states. As can be seen, the resulting costs barely
differ from the centralized outcome although no iterations are performed, which also
reflects that the Lagrange prices provided by the NN are close to being optimal. Regarding
the second approach, Table 3.4 ([38, Table II]) provides the cumulative costs obtained in
a given simulation when considering different values of parameter p̄, which denotes the
maximum number of allowed iterations. In this regard, the step size in the Lagrange prices’

Table 3.4 Cumulative performance cost for different values of the maximum number of
iterations ( p̄).

Cumulative cost
p̄ = 1 30.9123
p̄ = 5 30.2270
p̄ = 10 30.0063
Centralized MPC 29.9156
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update equation is set as a constant parameter and the convergence condition is defined
as a function of the difference between the inputs obtained in two consecutive iterations.
Table 3.4 shows that even using p̄ = 1, the loss of performance is just a 3.33% with respect
to the centralized controller. In addition, a few iterations allowed for further improvements,
e.g., for p̄ = 10, the performance loss decreases to 0.3%. The state and inputs evolution
over time when p̄ = 1 are also illustrated in [38], together with the corresponding results
in the centralized case. Likewise, [38] evaluates the number of iterations at each time step
that was performed when no limitation in p̄ is considered, i.e., when the agents iterate until
they satisfy the convergence condition. In this respect, the proposed algorithm speeds up
the negotiation by using the NN when the system is in the transient period, and tends to
perform as a previous instant-based warm start when the system reaches the steady state.

3.5.2 Multi-agent LMPC

As mentioned in Section 1.2, LMPC controllers learn the optimal design of the terminal
constraints and the terminal cost that should be used in the MPC problem to admissibly
perform a task. The latter is attained by using data collected in previous trajectories and
allows counteracting the inherent finite-horizon nature of MPC controllers. In particular,
the cost of executing a given task is progressively reduced until converging to that of
the associated infinite-horizon control problem. Considering this formulation, the work
of [39] presents a LMPC for multi-agent repetitive systems that comprises three main
interacting components (see Fig. 3.11): the set of agents, which aim at performing a finite
set of tasks at the minimum possible local cost; a coordinator, which assigns the tasks to
the agents; and a storage cloud, which stores data to build up the terminal constraints and
costs as described in [101]. The agents are assumed to have linear, time-invariant, and
identical dynamics, and, without loss of generality, are considered to represent mobile
agents navigating in a two-dimensional space. Additionally, the tasks consist in traveling
admissibly between a set of target points distributed in a network of connected roads.

The main novelty of the paper is the introduction of the storage cloud to facilitate
the agents’ collaboration while keeping the computation of the inputs decentralized. In

Figure 3.11 Sketch of the approach proposed in [39]. The green square marks represent
the target points, and the dark grey zones indicate the forbidden areas, which
modify the state constraints and determine the mode in which each task should
be executed.
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Figure 3.12 Position trajectories obtained with the LMPC controller in [39] in each repeti-
tion of five different tasks.

particular, the agents share information by downloading/uploading data from/to a common
cloud, but there is no agent-to-agent communication. Additionally, we consider that the
tasks’ conditions can change with time modifying the state constraints, e.g., a mobile
robot traveling iteratively on the same road with or without the presence of obstacles. We
differentiate between static obstacles, which introduce forbidden zones in each road (see
Fig. 3.11), and moving obstacles, which can model for example humans walking. To deal
with the former, different modes of operation are defined for each task, which shrink the set
of admissible positions in the corresponding road. These modes are assumed to be known
by the agents at the beginning of the tasks, whereas moving obstacles can be encountered
during their executions. To avoid collisions with the latter, we include a reactive strategy
based on a temporal switch of the control problem that seeks to slow or stop the agents
until the moving obstacle disappears. Moreover, the collected data are analyzed to check
if some trajectories can be concurrently exploited to learn more than one task, e.g., when
a shifted trajectory results in a feasible solution to accomplish a different one. Under
mild assumptions, the proposed approach guarantees recursive feasibility of the agents’
problems, asymptotic stability of the target states, and a non-increasing evolution of the
cost of executing the same task without moving obstacles.

To illustrate the proposed approach, [39] considers a system where 3 agents travel
between 9 target locations interconnected by straight roads. In particular, the system
layout is as shown in [39, Fig. 2], and we consider that the conditions in each road can
vary between two modes of operation, i.e., m = {0,1}. It is also assumed that there exist
some crosswalks where the agents detect pedestrians, handled as moving obstacles, with a
probability of 10%. Additionally, the simulations in [39] exploited the parallelism between
the possible tasks to accelerate the learning process.

Fig. 3.12 shows the evolution of the agents’ position for five different tasks, where p → q
indicates the task of traveling from p to target point q. As the number of repetitions in-
creases, the agents learn to take more cost-efficient decisions and their position trajectories
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Figure 3.13 Evolution of the costs of performing different tasks in [39] with the number
of repetitions.

are progressively shifted from that of the initial feasible solution towards the optimal
one. The effect of using data from parallel tasks can particularly be seen in the case of
tasks 2 → 3 and 6 → 9, which show significant differences between solutions obtained in
consecutive repetitions. This happens because, in the meantime between two executions
of the same task, the agents may perform other trajectories providing useful data for the
task at issue. In this regard, the coordinator used in these simulations assigned the tasks
randomly, but avoiding sending two agents simultaneously to the same target. In addition,
Fig. 3.13 illustrates the evolution of the costs of executing a set of tasks in the two possible
modes without moving obstacles. In particular, Fig. 3.13 compares the proposed cloud-
based approach (denoted as CB-LMPC) with the results obtained using the same LMPC
formulation [101] but without considering the storage cloud and the exploitation of the
similarity between tasks. For the sake of convenience, we use simply LMPC to refer to
the latter case. As can be seen, the costs follow a decreasing trend and tend to stabilize
at the same value for a given task and mode. Nevertheless, the CB-LMPC allowed us to
obtain lower costs during the learning process, and to reach close to optimal solutions in a
reduced number of repetitions. Further results are given in [39], which illustrate the loss
of optimality incurred by the agents in each of their performed tasks [39, Fig. 5], and the
effect of detecting pedestrians on the agents’ position and executions’ costs [39, Fig. 6].

3.6 Applications of MPC in cyber-physical systems

Finally, [40] presents a review on the application of MPC in a series of practical examples
with a growing cyber-physical character. This work has been jointly developed by all
the authors of the article and gathers some of the most recent results of the research
group. In particular, [40] starts introducing distributed and coalitional MPC approaches
as examples of control architectures based on controller-to-controller interactions. In
this context, special emphasis is placed on the application of MPC in parabolic trough
plants, and particularly, on the coalitional approach proposed by Masero et al. in [80].
Similar to [175, 182], the work of [80] proposes an MPC-based strategy that manipulates
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the loops valves, and hence the heat transfer fluid flow rates, to attain certain control
goals. Subsequently, [40] focuses on systems where controllers interact with robots, and
discusses the works of Martı́n et al. [138,139]. These articles also consider solar plants
applications and are, as [80], framed within the framework of project OCONTSOLAR [83].
In particular, [138,139] deal with the problems of assigning a fleet of mobile robots the
tasks of taking measurements at different locations of a solar field, and then building
an estimated map of the direct normal irradiance. This map would be later used by an
MPC controller to optimize the control decisions in the plant. Next, [40] discusses MPC
applications where humans intervene in the control loop. In this respect, three different
approaches are differentiated: in the first one, a human operator behaves like a mobile
sensor and/or actuator that sends/receives data from an MPC controller, as is the case of
the irrigation canal example in [140, 141]; in the second approach, humans act in synergy
with the controller; and the third one focuses on works where the behavior of humans
is modeled by using the MPC methodology, that is, it is assumed that human actions
result from solving unconsciously an optimization problem. Regarding the second of the
mentioned approaches, [40] describes the data-based decision support system for inventory
management in hospital pharmacies proposed in [142], and the energy management system
presented in [143].





4 Publications

The content of this chapter has been omitted for copyright reasons. Instead, we indicate
the publications included in this thesis, together with their DOI and a summary of their
content. These summaries are in the different sections of Chapter 3.

4.1 Journal articles

The journal articles that meet the requirements for the presentation of this doctoral thesis
as a compilation of articles are the following:

1. P. Chanfreut, J. M. Maestre and E. F. Camacho, “A Survey on Clustering Methods
for Distributed and Networked Control Systems,” in Annual Reviews in Control, vol.
52, pp. 75-90, 2021.
https://doi.org/10.1016/j.arcontrol.2021.08.002
Summary: Section 3.1

2. P. Chanfreut, J. M. Maestre, F. J. Muros and E. F. Camacho, “Clustering Switching
Regions for Feedback Controllers: A Convex Approach,” in IEEE Transactions on
Control of Network Systems, vol. 8, no. 4, pp. 1730-1742, 2021.
https://doi.org/10.1109/TCNS.2021.3084049
Summary: Section 3.2.1

3. P. Chanfreut, J. M. Maestre and E. F. Camacho, “Coalitional Model Predictive Control
on Freeways Traffic Networks,” in IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 11, pp. 6772-6783, 2021.
https://doi.org/10.1109/TITS.2020.2994772
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Summary: Section 3.6

4.2 Conference articles

The articles that have been accepted for their presentation at conferences, and which have
also resulted from this thesis are given below. Likewise, we include a further contribution
that has not been published yet but is under revision for the 61st Conference on Decision
and Control (CDC 2022).
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5 Conclusions and future research
directions

As it has been seen in [30], a growing number of works and applications are consolidating
the research area of distributed control with partial and varying communication topologies.
In this context, this thesis reaffirms the potential that coalitional control has shown in
previous works to provide a balance between global performance and coordination efforts,
e.g., [29, 77]. In particular, it has been seen that by focusing the communication and
computation resources only on clusters of highly coupled control agents, it is possible to
obtain a performance close to the centralized approach with lighter computations.

This thesis contributes to the development of these methods by addressing the agents’
clustering problem, which, given its combinatorial nature, becomes a key issue for the
real-time implementation of coalitional controllers [36, 37]. Our simulation results on
traffic applications, which include freeways and urban networks, provide illustrations of
this strategy [34,36]. Additionally, by merging the results in [130,131] with the coalitional
methodology, we have developed new theoretical results to provide this clustering strategy
with robust and stability guarantees to track changing targets [35].

We have also started to pave the way to merge the coalitional strategy with machine
learning techniques by developing different research efforts in this direction. In this
regard, machine learning techniques offer potential solutions to enhance distributed control
schemes by using data, and can also be exploited for this dynamic clustering approach.
This thesis has focused on the use of NN to aid distributed negotiations [38], and on the
development of a multi-agent LMPC based on a collaborative data collection [39].

The coalitional control strategy studied in this thesis, which in essence is a distributed
strategy that allows a varying degree of coordination, presents significant challenges that
are likely to persist, thus providing interesting research opportunities for future works.
Some of the possible future research directions are briefly discussed below:

• Integration of heterogeneous dynamics and plug-and-play events: Besides allowing
dynamical changes of the control communication network, future coalitional control
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schemes should increase their flexibility to accommodate changes in the number and
structure of the agents, and in their local dynamics. An illustrative application where
this is interesting is that of vehicles’ platoons, which is the case study considered
in [33]. In this context, new vehicles may unpredictably join and then leave the
system, thus modifying the neighboring structure that the remaining vehicles should
consider, and also their communication connections. Furthermore, the design of
each vehicle determines its dynamic behavior, and therefore any change should be
reflected in the prediction model employed to optimize the inputs. In addition, future
work should extend the LMPC-based proposal in [39] to a more general framework
where the agents’ dynamics and constraints are not identical, and therefore the data
collected by some of them may not be directly exploited by the rest of the agents.

• Switching instants: As mentioned in Section 1.1, most existing works on coali-
tional control use a double sample rate strategy where the network topology is
changed periodically, whereas the control actions are computed at each time step
according to the imposed partition. The latter intends to approximate the solu-
tion obtained by minimizing (1.1) while avoiding mixing in the same optimization
problem variables associated with the network configuration and with the system
control inputs. Nonetheless, further benefits could be obtained if the switching
instants are optimized rather than predefined. For this reason, future work should
also study whether there is possible to predict the optimal switching timing without
incurring in computationally-expensive solutions. It could be of special interest
to generate offline a model mapping system variables (e.g., the system state) with
suitable topologies in the line of the multi-class classifier in [37] or the dominance
regions described in [32]. If such a model is available, one could estimate the
amounts of instants until the topology should be switched by using predictions of the
system trajectory. Likewise, as proposed in [183], it is also interesting to integrate
the switching of topologies in the prediction horizon so as to facilitate a gradual
transition between communication configurations.

• Clustering decisions: Artificial intelligence-based solutions could provide further
benefits and new prospects to tackle the clustering problem in coalitional MPC. As
proposed in [37], one can exploit data collected online to improve the decisions on the
agents’ partition by using a reinforcement learning approach. For systems showing
a repetitive behavior and involving a small number of topologies, this approach
can find optimal partitions after a few repetitions. Nevertheless, the combinatorial
growth of the number of partitions with the number of communication links enlarges
the range of decisions that can be made and thus complicates the learning process.
New heuristics and more sophisticated proposals are of interest to alleviate the latter
issue. Moreover, it is interesting to study how supervised learning techniques can
aid to address this problem. If it is possible to generate offline a database relating
system variables to optimal partitions, neural networks can be a promising solution
to precompute a model that approximates the optimal clustering. The latter can be
subsequently integrated into the online operation as a decision-maker that selects a
network topology by using real-time measurements of the corresponding system
variables. Moreover, it may be worth exploring new reformulations of the clustering
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problem, which, although not directly dealing with objective function (1.1), can
provide efficient agents’ partition while alleviating the inherent difficulty of this
problem as intended in [36]. Finally, besides focusing on the trade-off between
performance and coordination costs, coalitional schemes can incorporate further
criteria to take the clustering decisions, such as the local benefits that merging into
coalitions provides to each of the aggregated entities.

• Theoretical properties: Although recent research efforts have provided coalitional
controllers with theoretical guarantees [35, 78, 79], the lack of full information shar-
ing and the switching nature of the control communication network complicates the
derivation of basic properties such as recursive feasibility, stability, and robustness.
Indeed, an inherent feature of coalitional schemes is that each cluster has to deal
with uncertainty regarding the behavior of the rest of the system, which undermines
the accuracy of their predictions and endangers the satisfaction of the constraints.
Future work should study methods able to handle efficiently coupling uncertainties
without resorting to overconservative approaches. Recent advances in this regard
are reported in [79], which proposes a coalitional controller built upon tube-based
MPC ideas [87, 88], but which only relies on the implicit existence of the required
control invariant sets. Given the difficulty to compute high-dimensional invariant
sets, this approach can bring significant implementation benefits when dealing with
large clusters. In particular, it may help to reduce the implementation complexity
of the coalitional MPC for tracking presented in [35]. Additionally, the coalitional
framework goes hand-in-hand with cooperative game theory, especially when the
merger of local control units generates a certain utility that can be distributed in
the form of local benefits. Therefore, the study of the properties of this game and
the development of fair profit allocation mechanisms are also of interest in this
field [75, 78].

• Data-based solutions in coalitional schemes: To the best of the authors’ knowledge,
in the coalitional schemes proposed so far the agents rely on the resolution of
an optimization problem or on the evaluation of a precomputed law to find their
control inputs. However, the use of learning-based local agents is yet to be explored.
Different formulations can be tested in this regard. For example, we may consider a
reinceforment learning approach [106] where the agents’ observations depend on
the clusters they join, thus allowing them to gather or not neighboring information
to optimize their actions. In addition, a similar idea to the safe sets in [101] may
be useful to define terminal constraints aiming at providing persistent feasibility
and stability properties in the coalitional switching framework. In this regard, we
could collect points from which convergence to the target can be guaranteed even if
the control communication network switches to a complete decentralized topology.
Finally, the loss of overall performance caused by the decentralization of the control
structure may be alleviated if the local controllers count with accurate predictions on
the neighboring influence. As used in [184–187] for vehicles systems, data-based
methods offer a potential ability to predict and find patterns in data, which can be
exploited to estimate neighboring behaviours.
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• Cyber-security and fault tolerance: The networked architecture of distributed sys-
tems and the need for reliable information sharing introduce further security con-
cerns [188–190]. In this regard, faulty subsystems and attackers can distort the
measurements and actuation signals that are transmitted between the physical system
and the controllers, as well as the data that are communicated between agents. The
latter threatens not only the level of performance obtained but can also bring stability
issues [191, 192]. Moreover, as mentioned in [193] for micro-grid applications,
cyber-attackers can even exploit vulnerabilities enabling the introduction of mali-
cious information to gain economic benefits. For these reasons, future works should
also include the study of methods able to detect and mitigate the effect of faults
and cyber-attacks in distributed and coalitional MPC schemes. A possibility to be
explored in this regard is the formation of coalitions of healthy controllers to deal
with these issues.
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BQP Binary Quadratic Program.

DMPC Distributed Model Predictive Control.

GA Genetic Algorithm.

LMI Linear Matrix Inequality.
LMPC Learning Model Predictive Control.
LSS Large-Scale System.

MAB Multi-Armed Bandit.
MPC Model Predictive Control.

NN Neural Network.

TTS Total Time Spent.
TWT Total Waiting Time.

UTN Urban Traffic Network.

VSL Variable Speed Limit.
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