38,202 research outputs found

    Probabilistic approaches to the design of wireless ad hoc and sensor networks

    Get PDF
    The emerging wireless technologies has made ubiquitous wireless access a reality and enabled wireless systems to support a large variety of applications. Since the wireless self-configuring networks do not require infrastructure and promise greater flexibility and better coverage, wireless ad hoc and sensor networks have been under intensive research. It is believed that wireless ad hoc and sensor networks can become as important as the Internet. Just as the Internet allows access to digital information anywhere, ad hoc and sensor networks will provide remote interaction with the physical world. Dynamics of the object distribution is one of the most important features of the wireless ad hoc and sensor networks. This dissertation deals with several interesting estimation and optimization problems on the dynamical features of ad hoc and sensor networks. Many demands in application, such as reliability, power efficiency and sensor deployment, of wireless ad hoc and sensor network can be improved by mobility estimation and/or prediction. In this dissertation, we study several random mobility models, present a mobility prediction methodology, which relies on the analysis of the moving patterns of the mobile objects. Through estimating the future movement of objects and analyzing the tradeoff between the estimation cost and the quality of reliability, the optimization of tracking interval for sensor networks is presented. Based on the observation on the location and movement of objects, an optimal sensor placement algorithm is proposed by adaptively learn the dynamical object distribution. Moreover, dynamical boundary of mass objects monitored in a sensor network can be estimated based on the unsupervised learning of the distribution density of objects. In order to provide an accurate estimation of mobile objects, we first study several popular mobility models. Based on these models, we present some mobility prediction algorithms accordingly, which are capable of predicting the moving trajectory of objects in the future. In wireless self-configuring networks, an accurate estimation algorithm allows for improving the link reliability, power efficiency, reducing the traffic delay and optimizing the sensor deployment. The effects of estimation accuracy on the reliability and the power consumption have been studied and analyzed. A new methodology is proposed to optimize the reliability and power efficiency by balancing the trade-off between the quality of performance and estimation cost. By estimating and predicting the mass objects\u27 location and movement, the proposed sensor placement algorithm demonstrates a siguificant improvement on the detection of mass objects with nearmaximal detection accuracy. Quantitative analysis on the effects of mobility estimation and prediction on the accuracy of detection by sensor networks can be conducted with recursive EM algorithms. The future work includes the deployment of the proposed concepts and algorithms into real-world ad hoc and sensor networks

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Practical Network Coding in Sensor Networks: Quo Vadis?

    Get PDF
    Abstract. Network coding is a novel concept for improving network ca-pacity. This additional capacity may be used to increase throughput or reliability. Also in wireless networks, network coding has been proposed as a method for improving communication. We present our experience from two studies of applying network coding in realistic wireless sen-sor networks scenarios. As we show, network coding is not as useful in practical deployments as earlier theoretical work suggested. We discuss limitations and future opportunities for network coding in sensor net-works. 1 Network Coding in Wireless Sensor Networks Network Coding was introduced by Ahlswede et al. [1], proving that it can in-crease multicast capacity. Since then, it has been investigated in several different networked scenarios which demand different traffic characteristics. Most previous research has focused on theoretical aspects of applying network coding to sensor networks. There are, however, also more practical examples of applying networ

    Towards offering more useful data reliably to mobile cloudfrom wireless sensor network

    Get PDF
    The integration of ubiquitous wireless sensor network (WSN) and powerful mobile cloud computing (MCC) is a research topic that is attracting growing interest in both academia and industry. In this new paradigm, WSN provides data to the cloud, and mobile users request data from the cloud. To support applications involving WSN-MCC integration, which need to reliably offer data that are more useful to the mobile users from WSN to cloud, this paper first identifies the critical issues that affect the usefulness of sensory data and the reliability of WSN, then proposes a novel WSN-MCC integration scheme named TPSS, which consists of two main parts: 1) TPSDT (Time and Priority based Selective Data Transmission) for WSN gateway to selectively transmit sensory data that are more useful to the cloud, considering the time and priority features of the data requested by the mobile user; 2) PSS (Priority-based Sleep Scheduling) algorithm for WSN to save energy consumption so that it can gather and transmit data in a more reliable way. Analytical and experimental results demonstrate the effectiveness of TPSS in improving usefulness of sensory data and reliability of WSN for WSN-MCC integration

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance

    Atomic-SDN: Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?

    Get PDF
    The adoption of Software Defined Networking (SDN) within traditional networks has provided operators the ability to manage diverse resources and easily reconfigure networks as requirements change. Recent research has extended this concept to IEEE 802.15.4 low-power wireless networks, which form a key component of the Internet of Things (IoT). However, the multiple traffic patterns necessary for SDN control makes it difficult to apply this approach to these highly challenging environments. This paper presents Atomic-SDN, a highly reliable and low-latency solution for SDN in low-power wireless. Atomic-SDN introduces a novel Synchronous Flooding (SF) architecture capable of dynamically configuring SF protocols to satisfy complex SDN control requirements, and draws from the authors' previous experiences in the IEEE EWSN Dependability Competition: where SF solutions have consistently outperformed other entries. Using this approach, Atomic-SDN presents considerable performance gains over other SDN implementations for low-power IoT networks. We evaluate Atomic-SDN through simulation and experimentation, and show how utilizing SF techniques provides latency and reliability guarantees to SDN control operations as the local mesh scales. We compare Atomic-SDN against other SDN implementations based on the IEEE 802.15.4 network stack, and establish that Atomic-SDN improves SDN control by orders-of-magnitude across latency, reliability, and energy-efficiency metrics
    corecore