16,639 research outputs found

    Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes

    Get PDF
    I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems.Comment: 35 pages, 3 figures, based on KES 2008 keynote and ALT 2007 / DS 2007 joint invited lectur

    Sentinel-1 Imaging Performance Verification with TerraSAR-X

    Get PDF
    This paper presents dedicated analyses of TerraSAR-X data with respect to the Sentinel-1 TOPS imaging mode. First, the analysis of Doppler centroid behaviour for high azimuth steering angles, as occurs in TOPS imaging, is investigated followed by the analysis and compensation of residual scalloping. Finally, the Flexible-Dynamic BAQ (FD-BAQ) raw data compression algorithm is investigated for the first time with real TerraSAR-X data and its performance is compared to state-of-the-art BAQ algorithms. The presented analyses demonstrate the improvements of the new TOPS imaging mode as well as the new FD-BAQ data compression algorithm for SAR image quality in general and in particular for Sentinel-1

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Data compression for full motion video transmission

    Get PDF
    Clearly transmission of visual information will be a major, if not dominant, factor in determining the requirements for, and assessing the performance of the Space Exploration Initiative (SEI) communications systems. Projected image/video requirements which are currently anticipated for SEI mission scenarios are presented. Based on this information and projected link performance figures, the image/video data compression requirements which would allow link closure are identified. Finally several approaches which could satisfy some of the compression requirements are presented and possible future approaches which show promise for more substantial compression performance improvement are discussed
    • …
    corecore