68 research outputs found

    Exact Algorithms for 0-1 Integer Programs with Linear Equality Constraints

    Full text link
    In this paper, we show O(1.415n)O(1.415^n)-time and O(1.190n)O(1.190^n)-space exact algorithms for 0-1 integer programs where constraints are linear equalities and coefficients are arbitrary real numbers. Our algorithms are quadratically faster than exhaustive search and almost quadratically faster than an algorithm for an inequality version of the problem by Impagliazzo, Lovett, Paturi and Schneider (arXiv:1401.5512), which motivated our work. Rather than improving the time and space complexity, we advance to a simple direction as inclusion of many NP-hard problems in terms of exact exponential algorithms. Specifically, we extend our algorithms to linear optimization problems

    New Lower Bounds and Derandomization for ACC, and a Derandomization-Centric View on the Algorithmic Method

    Get PDF
    In this paper, we obtain several new results on lower bounds and derandomization for ACC? circuits (constant-depth circuits consisting of AND/OR/MOD_m gates for a fixed constant m, a frontier class in circuit complexity): 1) We prove that any polynomial-time Merlin-Arthur proof system with an ACC? verifier (denoted by MA_{ACC?}) can be simulated by a nondeterministic proof system with quasi-polynomial running time and polynomial proof length, on infinitely many input lengths. This improves the previous simulation by [Chen, Lyu, and Williams, FOCS 2020], which requires both quasi-polynomial running time and proof length. 2) We show that MA_{ACC?} cannot be computed by fixed-polynomial-size ACC? circuits, and our hard languages are hard on a sufficiently dense set of input lengths. 3) We show that NEXP (nondeterministic exponential-time) does not have ACC? circuits of sub-half-exponential size, improving the previous sub-third-exponential size lower bound for NEXP against ACC? by [Williams, J. ACM 2014]. Combining our first and second results gives a conceptually simpler and derandomization-centric proof of the recent breakthrough result NQP := NTIME[2^polylog(n)] ? ? ACC? by [Murray and Williams, SICOMP 2020]: Instead of going through an easy witness lemma as they did, we first prove an ACC? lower bound for a subclass of MA, and then derandomize that subclass into NQP, while retaining its hardness against ACC?. Moreover, since our derandomization of MA_{ACC?} achieves a polynomial proof length, we indeed prove that nondeterministic quasi-polynomial-time with n^?(1) nondeterminism bits (denoted as NTIMEGUESS[2^polylog(n), n^?(1)]) has no poly(n)-size ACC? circuits, giving a new proof of a result by Vyas. Combining with a win-win argument based on randomized encodings from [Chen and Ren, STOC 2020], we also prove that NTIMEGUESS[2^polylog(n), n^?(1)] cannot be 1/2+1/poly(n)-approximated by poly(n)-size ACC? circuits, improving the recent strongly average-case lower bounds for NQP against ACC? by [Chen and Ren, STOC 2020]. One interesting technical ingredient behind our second result is the construction of a PSPACE-complete language that is paddable, downward self-reducible, same-length checkable, and weakly error correctable. Moreover, all its reducibility properties have corresponding AC?[2] non-adaptive oracle circuits. Our construction builds and improves upon similar constructions from [Trevisan and Vadhan, Complexity 2007] and [Chen, FOCS 2019], which all require at least TC? oracle circuits for implementing these properties

    Short PCPs with projection queries

    Get PDF
    We construct a PCP for NTIME(2 n) with constant soundness, 2 n poly(n) proof length, and poly(n) queries where the verifier’s computation is simple: the queries are a projection of the input randomness, and the computation on the prover’s answers is a 3CNF. The previous upper bound for these two computations was polynomial-size circuits. Composing this verifier with a proof oracle increases the circuit-depth of the latter by 2. Our PCP is a simple variant of the PCP by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (CCC 2005). We also give a more modular exposition of the latter, separating the combinatorial from the algebraic arguments. If our PCP is taken as a black box, we obtain a more direct proof of the result by Williams, later with Santhanam (CCC 2013) that derandomizing circuits on n bits from a class C in time 2 n /n ω(1) yields that NEXP is not in a related circuit class C ′. Our proof yields a tighter connection: C is an And-Or of circuits from C ′. Along the way we show that the same lower bound follows if the satisfiability of the And of any 3 circuits from C ′ can be solved in time 2 n /n ω(1). ∗The research leading to these results has received funding from the European Community’

    A Satisfiability Algorithm for Sparse Depth Two Threshold Circuits

    Full text link
    We give a nontrivial algorithm for the satisfiability problem for cn-wire threshold circuits of depth two which is better than exhaustive search by a factor 2^{sn} where s= 1/c^{O(c^2)}. We believe that this is the first nontrivial satisfiability algorithm for cn-wire threshold circuits of depth two. The independently interesting problem of the feasibility of sparse 0-1 integer linear programs is a special case. To our knowledge, our algorithm is the first to achieve constant savings even for the special case of Integer Linear Programming. The key idea is to reduce the satisfiability problem to the Vector Domination Problem, the problem of checking whether there are two vectors in a given collection of vectors such that one dominates the other component-wise. We also provide a satisfiability algorithm with constant savings for depth two circuits with symmetric gates where the total weighted fan-in is at most cn. One of our motivations is proving strong lower bounds for TC^0 circuits, exploiting the connection (established by Williams) between satisfiability algorithms and lower bounds. Our second motivation is to explore the connection between the expressive power of the circuits and the complexity of the corresponding circuit satisfiability problem

    Satisfiability Algorithm for Syntactic Read-kk-times Branching Programs

    Get PDF
    The satisfiability of a given branching program is to determine whether there exists a consistent path from the root to 1-sink. In a syntactic read-k-times branching program, each variable appears at most k times in any path from the root to a sink. We provide a satisfiability algorithm for syntactic read-k-times branching programs with n variables and m edges that runs in time Oleft(poly(n, m^{k^2})cdot 2^{(1-mu(k))n}right), where mu(k) = frac{1}{4^{k+1}}. Our algorithm is based on the decomposition technique shown by Borodin, Razborov and Smolensky [Computational Complexity, 1993]

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,,aKFna_1,\ldots,a_K \in {\mathbb F}^n, \bullet the Prover sends the Verifier the values C(a1),,C(aK)FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(Kd)\tilde{O}(K \cdot d) length, and \bullet the Verifier tosses poly(log(dKF/ε))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(K(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than ε\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page

    Consequences of APSP, triangle detection, and 3SUM hardness for separation between determinism and non-determinism

    Full text link
    We present implications from the known conjectures like APSP, 3SUM and ETH in a form of a negated containment of a linear-time with a non-deterministic logarithmic-bit oracle in a respective deterministic bounded-time class They are different for different conjectures and they exhibit in particular the dependency on the input range parameters.Comment: The section on range reduction in the previous version contained a flaw in a proof and therefore it has been remove

    A PCP Characterization of AM

    Get PDF
    We introduce a 2-round stochastic constraint-satisfaction problem, and show that its approximation version is complete for (the promise version of) the complexity class AM. This gives a `PCP characterization' of AM analogous to the PCP Theorem for NP. Similar characterizations have been given for higher levels of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the result for AM might be of particular significance for attempts to derandomize this class. To test this notion, we pose some `Randomized Optimization Hypotheses' related to our stochastic CSPs that (in light of our result) would imply collapse results for AM. Unfortunately, the hypotheses appear over-strong, and we present evidence against them. In the process we show that, if some language in NP is hard-on-average against circuits of size 2^{Omega(n)}, then there exist hard-on-average optimization problems of a particularly elegant form. All our proofs use a powerful form of PCPs known as Probabilistically Checkable Proofs of Proximity, and demonstrate their versatility. We also use known results on randomness-efficient soundness- and hardness-amplification. In particular, we make essential use of the Impagliazzo-Wigderson generator; our analysis relies on a recent Chernoff-type theorem for expander walks.Comment: 18 page
    corecore