4,826 research outputs found

    Simulating the Formation of Massive Protostars: I. Radiative Feedback and Accretion Disks

    Full text link
    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M_{\odot}. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2-10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M_{\odot} simulation, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively-driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M_{\odot} simulation shows a star with a mass of 5.48 M_{\odot} and a disk of mass 3.3 M_{\odot}, while our 100 M_{\odot} simulation forms a 28.8 M_{\odot} mass star with a 15.8 M_{\odot} disk over the course of 41.6 kyr, and our 200 M_{\odot} simulation forms a 43.7 M_{\odot} star with an 18 M_{\odot} disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear limited by their own luminosities.Comment: 24 pages, 14 figures. Accepted to The Astrophysical Journa

    MapReduce analysis for cloud-archived data

    Get PDF
    Public storage clouds have become a popular choice for archiving certain classes of enterprise data - for example, application and infrastructure logs. These logs contain sensitive information like IP addresses or user logins due to which regulatory and security requirements often require data to be encrypted before moved to the cloud. In order to leverage such data for any business value, analytics systems (e.g. Hadoop/MapReduce) first download data from these public clouds, decrypt it and then process it at the secure enterprise site. We propose VNCache: an efficient solution for MapReduceanalysis of such cloud-archived log data without requiring an apriori data transfer and loading into the local Hadoop cluster. VNcache dynamically integrates cloud-archived data into a virtual namespace at the enterprise Hadoop cluster. Through a seamless data streaming and prefetching model, Hadoop jobs can begin execution as soon as they are launched without requiring any apriori downloading. With VNcache's accurate pre-fetching and caching, jobs often run on a local cached copy of the data block significantly improving performance. When no longer needed, data is safely evicted from the enterprise cluster reducing the total storage footprint. Uniquely, VNcache is implemented with NO changes to the Hadoop application stack. © 2014 IEEE

    TechNews digests: Jan - Nov 2008

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    LogBase: A Scalable Log-structured Database System in the Cloud

    Full text link
    Numerous applications such as financial transactions (e.g., stock trading) are write-heavy in nature. The shift from reads to writes in web applications has also been accelerating in recent years. Write-ahead-logging is a common approach for providing recovery capability while improving performance in most storage systems. However, the separation of log and application data incurs write overheads observed in write-heavy environments and hence adversely affects the write throughput and recovery time in the system. In this paper, we introduce LogBase - a scalable log-structured database system that adopts log-only storage for removing the write bottleneck and supporting fast system recovery. LogBase is designed to be dynamically deployed on commodity clusters to take advantage of elastic scaling property of cloud environments. LogBase provides in-memory multiversion indexes for supporting efficient access to data maintained in the log. LogBase also supports transactions that bundle read and write operations spanning across multiple records. We implemented the proposed system and compared it with HBase and a disk-based log-structured record-oriented system modeled after RAMCloud. The experimental results show that LogBase is able to provide sustained write throughput, efficient data access out of the cache, and effective system recovery.Comment: VLDB201

    SKIRT: hybrid parallelization of radiative transfer simulations

    Full text link
    We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modeling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behavior of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.Comment: 21 pages, 20 figure

    FIRI - a Far-Infrared Interferometer

    Full text link
    Half of the energy ever emitted by stars and accreting objects comes to us in the FIR waveband and has yet to be properly explored. We propose a powerful Far-InfraRed Interferometer mission, FIRI, to carry out high-resolution imaging spectroscopy in the FIR. This key observational capability is essential to reveal how gas and dust evolve into stars and planets, how the first luminous objects in the Universe ignited, how galaxies formed, and when super-massive black holes grew. FIRI will disentangle the cosmic histories of star formation and accretion onto black holes and will trace the assembly and evolution of quiescent galaxies like our Milky Way. Perhaps most importantly, FIRI will observe all stages of planetary system formation and recognise Earth-like planets that may harbour life, via its ability to image the dust structures in planetary systems. It will thus address directly questions fundamental to our understanding of how the Universe has developed and evolved - the very questions posed by ESA's Cosmic Vision.Comment: Proposal developed by a large team of astronomers from Europe, USA and Canada and submitted to the European Space Agency as part of "Cosmic Vision 2015-2025

    Quasar Jets and their Fields

    Get PDF
    Observations of jets from quasars and other types of accreting black hole are briefly summarized. The importance of beaming and γ\gamma-ray observations for understanding the origin of these jets is emphasised. It is argued that both the power source and the collimation are likely to be magnetic in origin, although the details remain controversial. Ultrarelativistic jets may be formed by the spinning hole and collimated by a hydromagnetic disc wind. Progress in understanding jets has been handicapped by our inadequate knowledge of how magnetic field really behaves under cosmic conditions. Fortunately, significant insights are coming from solar observations, numerical simulation and laboratory plasma experiments. Some possible, evolutionary ramifications are briefly discussed and it is suggested that it is the mass of the black hole relative to that of the galaxy which determines the eventual galaxy morphology.Comment: Latex. 17pages Proc Discusison Meeting on Magnetic Activity in Stars, Discs and Quasars. Ed. D. Lynden-Bell, E. R. Priest and N. O. Weiss. To appear in Phil. Trans. Roy. Soc.
    corecore