574 research outputs found

    A robust adaptive algebraic multigrid linear solver for structural mechanics

    Full text link
    The numerical simulation of structural mechanics applications via finite elements usually requires the solution of large-size and ill-conditioned linear systems, especially when accurate results are sought for derived variables interpolated with lower order functions, like stress or deformation fields. Such task represents the most time-consuming kernel in commercial simulators; thus, it is of significant interest the development of robust and efficient linear solvers for such applications. In this context, direct solvers, which are based on LU factorization techniques, are often used due to their robustness and easy setup; however, they can reach only superlinear complexity, in the best case, thus, have limited applicability depending on the problem size. On the other hand, iterative solvers based on algebraic multigrid (AMG) preconditioners can reach up to linear complexity for sufficiently regular problems but do not always converge and require more knowledge from the user for an efficient setup. In this work, we present an adaptive AMG method specifically designed to improve its usability and efficiency in the solution of structural problems. We show numerical results for several practical applications with millions of unknowns and compare our method with two state-of-the-art linear solvers proving its efficiency and robustness.Comment: 50 pages, 16 figures, submitted to CMAM

    On the Singular Neumann Problem in Linear Elasticity

    Full text link
    The Neumann problem of linear elasticity is singular with a kernel formed by the rigid motions of the body. There are several tricks that are commonly used to obtain a non-singular linear system. However, they often cause reduced accuracy or lead to poor convergence of the iterative solvers. In this paper, different well-posed formulations of the problem are studied through discretization by the finite element method, and preconditioning strategies based on operator preconditioning are discussed. For each formulation we derive preconditioners that are independent of the discretization parameter. Preconditioners that are robust with respect to the first Lam\'e constant are constructed for the pure displacement formulations, while a preconditioner that is robust in both Lam\'e constants is constructed for the mixed formulation. It is shown that, for convergence in the first Sobolev norm, it is crucial to respect the orthogonality constraint derived from the continuous problem. Based on this observation a modification to the conjugate gradient method is proposed that achieves optimal error convergence of the computed solution

    Multi-GPU acceleration of large-scale density-based topology optimization

    Get PDF
    This work presents a parallel implementation of density-based topology optimization using distributed GPU computing systems. The use of multiple GPU devices allows us accelerating the computing process and increasing the device memory available for GPU computing. This increment of device memory enables us to address large models that commonly do not fit into one GPU device. The most modern scientific computers incorporate these devices to design energy-efficient, low-cost, and high-computing power systems. However, we should adopt the proper techniques to take advantage of the computational resources of such high-performance many-core computing systems. It is well-known that the bottleneck of density-based topology optimization is the solving of the linear elasticity problem using Finite Element Analysis (FEA) during the topology optimization iterations. We solve the linear system of equations obtained from FEA using a distributed conjugate gradient solver preconditioned by a smooth aggregation-based algebraic multigrid (AMG) using GPU computing with multiple devices. The use of aggregation-based AMG reduces memory requirements and improves the efficiency of the interpolation operation. This fact is rewarding for GPU computing. We evaluate the performance and scalability of the distributed GPU system using structured and unstructured meshes. We also test the performance using different 3D finite elements and relaxing operators. Besides, we evaluate the use of numerical approaches to increase the topology optimization performance. Finally, we present a comparison between the many-core computing instance and one efficient multi-core implementation to highlight the advantages of using GPU computing in large-scale density-based topology optimization problems.This work has been supported by the AEI/FEDER and UE under the contract DPI2016-77538-R, and by the “Fundación Séneca – Agencia de Ciencia y Tecnología de la Región de Murcia” of Spain under the contract 20911/PI/18

    Iterative methods for elliptic finite element equations on general meshes

    Get PDF
    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included
    corecore