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A B S T R A C T   

This work presents a parallel implementation of density-based topology optimization using distributed GPU 
computing systems. The use of multiple GPU devices allows us accelerating the computing process and increasing 
the device memory available for GPU computing. This increment of device memory enables us to address large 
models that commonly do not fit into one GPU device. The most modern scientific computers incorporate these 
devices to design energy-efficient, low-cost, and high-computing power systems. However, we should adopt the 
proper techniques to take advantage of the computational resources of such high-performance many-core 
computing systems. It is well-known that the bottleneck of density-based topology optimization is the solving of 
the linear elasticity problem using Finite Element Analysis (FEA) during the topology optimization iterations. We 
solve the linear system of equations obtained from FEA using a distributed conjugate gradient solver pre-
conditioned by a smooth aggregation-based algebraic multigrid (AMG) using GPU computing with multiple 
devices. The use of aggregation-based AMG reduces memory requirements and improves the efficiency of the 
interpolation operation. This fact is rewarding for GPU computing. We evaluate the performance and scalability 
of the distributed GPU system using structured and unstructured meshes. We also test the performance using 
different 3D finite elements and relaxing operators. Besides, we evaluate the use of numerical approaches to 
increase the topology optimization performance. Finally, we present a comparison between the many-core 
computing instance and one efficient multi-core implementation to highlight the advantages of using GPU 
computing in large-scale density-based topology optimization problems.   

1. Introduction 

Topology optimization techniques allow us to find the optimal dis-
tribution of material within a design domain such that a cost function is 
minimized subject to a set of constraints. Such methods provide us with 
innovative and high-performance conceptual designs at the early stages 
of the design process without assuming any prior structural configura-
tion. For these reasons, engineering designers adopt topology optimi-
zation techniques as a powerful tool that allows them to design 
lightweight and optimized structures in a broad spectrum of industries 
[1]. We can broadly classify the topology optimization methods into 
three main categories depending on the representation used to describe 
the shapes they involve: Eulerian, Lagrangian, and density-based methods. 
Eulerian methods use an implicit representation of the structural 
boundary that is modified to optimize the design. Some examples of 
these implicit representations are the level-set function tracked in the 
Level-Set Method (LSM) [2] and the interfacial dynamics evolved in the 
phase field methods [3]. Lagrangian methods use an explicit 

representation of the structural shape employing a computational mesh 
or CAD model [4]. Density-based methods operate on a fixed mesh of 
finite elements to find the optimal void/solid material distribution that 
minimizes an objective function. The homogenization method [5] and 
the Solid Isotropic Material Penalization (SIMP) method [6,7] are some 
examples of the most popular density-based topology optimization ap-
proaches. The latter has become the most popular and implemented 
method in commercial software of topology optimization, probably due 
to its simplicity and feasibility. The density-based topology optimization 
method SIMP is the approach that we adopt in this work. 

The mesh resolution is of paramount importance in the topology 
optimization process. We need fine tessellation for capturing the geo-
metric details of the design, obtaining more optimized designs by 
increasing the number of design variables. The use of high-resolution 
finite element models gives rise to a large system of equations, which 
should be solved efficiently to make the process feasible, both in 
computing time and computational resource requirements terms. This 
problem is a well-known computational challenge due to the constant- 
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increasing in the required fidelity and complexity of finite element 
models [8]. 

Multiresolution topology optimization techniques decouple analysis 
and design discretizations. They improve the computational perfor-
mance by using a coarse discretization for the analysis and a fine dis-
cretization for the design variables [9,10]. However, the iterative 
updates of the topology optimization design variables depend on the 
analysis results, and thus some Adaptive Mesh Refinement (AMR) 
technique is needed to obtain meaningful benefits, which depend on the 
complexity of the design [11]. The use of approaches for increasing the 
efficiency of the topology optimization process is also rewarding. Some 
examples are the rescaling of large systems of equations to reduce the 
ill-conditioning [12], the use of low accurate approximations [13] of the 
analysis solution, and the use of efficient preconditioners [14]. We also 
have to mention using reanalysis techniques that avoid the full analysis 
of the modified design in the optimization procedure. Some examples 
are the use of approximate reanalysis [15] by only solving the system of 
equations at an interval of iterations and approximating the solution at 
other iterations of the nested topology optimization process, the use of 
iterative reanalysis in moving morphable component-based topology 
optimization [16] for improving the computational performance of the 
static analysis, and the use of isogeometric reanalysis in structural 
optimization modifying the control points of the design [17]. Finally, 
High-Performance Computing (HPC) has also been used to address the 
computationally intensive tasks of the topology optimization process 
using multi-core computing efficiently [18–22]. 

The use of graphics cards for scientific computing is becoming an 
integral part of modern high-performance systems. We can find these 
massively parallel many-core architectures in most modern supercom-
puters [23] and high-performance desktop workstations. However, the 
proper exploitation of General-Purpose computing on Graphics Pro-
cessing Units (GPGPUs) [24] requires the adoption of algorithms with 
data parallelism. Another fundamental point is the limited device 
memory of Graphics Processing Units (GPUs), and thus the combination 
of GPU computing with function parallelism in distributed GPU systems 
will allow us to alleviate such a constraint [25]. 

The use of massively parallel many-core architectures to address 
topology optimization problems is growing in popularity last decade. 
The motivation is to reduce the computational burden of the topology 
optimization process by commonly exploiting data locality. The early 
work of Wadbro and Berggren [26] proposed the use of GPU computing 
for the evaluation of high-resolution finite element models in heat 
conduction topology optimization. They adopted a Preconditioned 
Conjugate Gradient (PCG) method with an assembly-free element-wise 
implementation to reduce the device memory requirements. Schmidt 
and Schulz [27] proposed a nodal-wise assembly-free PCG imple-
mentation using GPU computing for solving the elasticity problems at 
the iterations of the minimization of the structural compliance problem 
using the SIMP method on a regular grid of hexahedral finite elements. 
The proposal achieved significant speedups in the matrix-vector opera-
tions of the iterative solver using shared memory. They grouped the 
shared memory operations in successive 2D slices of the stencil-based 
computation, which increases the GPU performance performing the 
matrix-vector operations [28]. Another strategy for improving the GPU 
performance is the reduction of the grain-size in the assembly-free GPU 
implementation [29]. 

The use of GPU computing in geometric multigrid methods has also 
shown to be rewarding. These approaches are with the most efficient 
and popular techniques to solve large linear systems of equations. Krylov 
subspace methods commonly use these methods as a preconditioner in 
the context of structural mechanics. The main handicap of implementing 
geometric multigrid methods using GPU computing is the amount of 
memory for storing the coefficient matrix and interpolation operators at 
the different levels. For this reason, Dick et al. [30] proposed an efficient 
nodal-wise matrix-free GPU implementation of the geometric multigrid 
method with stencil computation for solving elasticity problems with 

the finite element method. They exploit the regularity of a Cartesian grid 
to obviate the storage of the coefficient matrix, replacing the use of 
memory by “on-the-fly” calculations performed in parallel using GPU 
computing. The stencil computation also allows exploiting data locality. 
In particular, enabling coalescing memory access into single memory 
transactions and implementing efficient “on-the-fly” stencil-based grid 
transfer operators. 

Several works have followed this strategy to achieve high- 
performance GPU computing in the topology optimization of struc-
tural mechanics problems [31–34]. However, the adoption of ersatz 
material approximation with a regular Cartesian grid induces errors in 
the FEA analysis [2]. We use such analysis to evaluate the objective 
function of the optimization algorithm. This approximation consists of 
the use of a bi-material equation interpolating in the boundary of finite 
elements. This strategy usually requires the refinement of the regular 
Cartesian grid to achieve a reasonable error estimation. However, the 
tessellation cannot be too small since the problem becomes more and 
more badly conditioned as the discretization size tends to zero [35]. This 
lack of precision can be an obstacle to the optimization problem. 

The number of finite elements using a regular Cartesian grid to 
represent the domain of the design space is higher than tessellating the 
CAD model using conventional methods. Conventional meshing tech-
niques also provide suitable finite elements for the analysis and a higher 
degree of flexibility for implementing multiphysics problems. For these 
reasons, recent works make use of GPU computing to efficiently 
assemble and solve the system of equations of multiphysics using sparse- 
matrix representation in topology optimization [36]. Many in-
vestigations also evaluate the GPU acceleration of topology optimization 
using unstructured meshes, usually achieving low speedup in the solving 
stage using iterative methods [37]. The use of multiple GPUs to accel-
erate the solving and increase the device memory size using unstruc-
tured meshes and sparse-matrix representation is also studied by [38], 
focusing on the optimization of the communication strategy to achieve 
performance increases. We discard the use of direct solvers using GPU 
computing due to the memory constraints of such devices [39]. The 
Krylov subspace iteration method has a lower memory requirement, but 
the assembly process and storage of the coefficient matrix can exceed the 
device memory of one single GPU. The use of multiple graphics cards 
allows us to increase the amount of device memory available to address 
the problem and to achieve higher acceleration in demanding tasks. On 
the other hand, the adoption of techniques saving memory can increase 
the performance of GPU computing meaningfully. 

Despite the promising potential of using multiple GPUs for address-
ing topology optimization problems, the use of such high-performance 
systems remains small. One example is accelerating the parallel evalu-
ation of stochastic collation points in robust topology optimization 
problems using multiple GPUs in the same host [40]. The stochastic 
collocation approach is embarrassingly parallel, allowing evaluating 
each stochastic model by only one GPU device. Such an approach 
minimizes the communications to the calculation of stochastic moments. 
Nevertheless, the use of domain-decomposition methods [41] provides a 
higher degree of flexibility. Besides, it facilitates the exploitation of the 
computational capabilities of modern computing architectures. 

This work aims to evaluate the use of multiple GPU devices in 
density-based topology optimation. The objective is two-fold: it accel-
erates the computing process and increases the available device mem-
ory. The latter allows us to solve large models that commonly do not fit 
on one GPU. It is well-known that the solving stage of the linear system 
of equations that evaluates the objective function dominates the overall 
speedup. Thus, the work focuses on testing suitable techniques to solve 
large systems of equations exploiting these massively parallel architec-
tures. We also take into account the flexibility and easy integration of 
the methods adopted. In this sense, Algebraic Multigrid Methods (AMG) 
only use the information provided by the coefficient matrix, allowing 
their use as a “black-box” function in finite element codes. We adopt a 
distributed conjugate gradient solver using the memory available by 
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each processor, including host and device memory of each graphics card. 
We also use a smooth aggregation-based AMG method for pre-
conditioning the Krylov subspace iteration method since this AMG 
approach requires lesser device memory than other multigrid methods. 
The computational burden is distributed between the computational 
resources using domain decomposition techniques. Besides, we provide 
a quantitative comparison of the numerical results between using a 
many-core computing approach and an efficient multi-core imple-
mentation. These experimental results show the benefits in performance 
using multi-GPU systems for addressing large-scale topology optimiza-
tion problems. 

We organize the remainder of the paper as follows. Section 2 in-
troduces the distributed architecture and the required communications 
system for working the computational resources together. We briefly 
review the basis and theoretical background of density-based topology 
optimization in section 3. Section 4 presents the parallel strategy using 
high-level libraries to effectively take advantage of the computational 
resources of multi- and many-core architectures. Section 5 shows the 
numerical experiments evaluating the performance, feasibility, and 
scalability of the techniques adopted to take advantage of distributed 
systems using multiple GPUs in density-based topology optimization 
problems. Finally, section 6 presents the conclusion of the evaluation of 
the numerical results. 

2. Multi-GPU architecture 

The use of multiple graphics cards incorporates another level of 
parallelism to the GPU system, called task-level parallelism. This addi-
tional level of parallelism allows us to distribute the workload between 
the GPUs in the distributed system. Then, we can take advantage of the 
data-parallelism for which these massive parallel architectures are 
designed. The use of task-level parallelism allows us to increase flexi-
bility in the implementation, whereas the exploitation of data-level 
parallelism allows us to scale-up the performance of the application. 
Figure 1 shows the typical configuration of a GPU cluster, where the 
computing nodes incorporate many GPUs, namely multi-GPU systems. 
We install the many-core devices in motherboards using multiple PCIe 
slots or PCIe slots expansion boards. We can observe that the compu-
tational units use their local memory. This makes it necessary to use an 
efficient mechanism for sharing data between the computational nodes 

of the high-performance system. 
Figure 1 shows the typical deployment connection of a cluster 

incorporating many-core architectures as co-processors. The head node 
is the external interface to the GPU cluster. This node receives all 
external network connections, processes incoming requests, and assigns 
works to compute nodes. These compute nodes perform the computation 
using the available computational resources, including multi- and many- 
core architectures. The main reasons for using a head node are perfor-
mance and security issues. We dedicate the head node to handle all 
incoming traffic and manage the work distribution to the compute 
nodes. For the latter, we adopt the standard Message Passing Interface 
(MPI), which is commonly used to build applications that can scale in 
distributed memory systems. 

The communication mechanism can use the PCI-e data bus and the 
network, including Ethernet or Infiniband. These technologies have 
different memory bandwidth operating at different transfer rates. The 
communications also introduce latency when data transfer requires 
computing several operations, such as the operating system (OS) man-
agement and the computation of communication protocols. Remote 
Direct Memory Access (RDMA) technology provides data exchange be-
tween devices without involving the OS and CPU. These devices include 
GPUs, network interface cards (NICs), and storage adapters. The use of 
RDMA technology allows us to boost the network and host performance 
by achieving lower latency, lower CPU load, and higher bandwidth. 
AMD company supports these functionalities using ROCm. We have to 
consider these facts in the numerical experiments. 

3. Density-based topology optimization 

Topology optimization consists of solving a binary programming 
problem that aims to find the optimal material layout minimizing an 
objective function subject to constraints in the design domain. Density- 
based topology optimization methods relax the integer-based problem 
by introducing an interpolation scheme that penalizes a continuous 
density variable characterizing composite materials [42]. These 
continuous composites allow the use of gradient-based solvers in the 
optimization. The problem can be stated as 

Fig. 1. Hardware architecture of GPU cluster and deployment connections.  
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min
ρe

f (ρe,u)

s. t. : K(ρe)u = f
: V(ρe) ≤ V∗

: 0 ≤ ρe ≤ 1, ρe ∈ D

(1)  

where f is the objective function, ρe is the vector of density design 
variables, u is the system response, K is the global stiffness matrix, and f 
is the force vector. We denote the design domain by D and constrain the 
volume of material V(ρe) to be smaller than a prescribed target V∗. 

This parameterization leads to designs with large areas of interme-
diate densities numerically optimal but usually impossible to manufac-
ture. We usually address this problem using implicit penalization 
techniques driving the optimization design to solid/void configurations. 
The SIMP method makes use of these relaxing techniques using a power- 
law interpolation function between void and solid to determine the 
stiffness matrix of each element Ke as follows 

Ke = Kmin + ρe
p(K0 − Kmin), (2)  

where K0 and Kmin > 0 are the stiffness matrix of solid and void material 
respectively, and p > 1 is the penalization power. We can select p suf-
ficiently big to penalize intermediate densities. According to Bendsøe 
and Sigmund [42], p ≥ 3 is usually required for ensuring that the 
Hashin-Shtrikman bounds are not violated. 

We can apply the SIMP method to different physics problems. In this 
work, we define the objective function for the minimization of structural 
compliance (maximization of stiffness) as follows 

f = c = fTu, (3)  

where f and u are the global force load and the displacement vector, 
respectively. Considering the discretized linear state system 

Ku = f, (4)  

and using the adjoint state method, the sensitivity of (3) with respect to 
the design variables ρe is 

fρe =
∂f
∂ρe

= − u∗T∂K
∂ρe

u = − u∗Tpρe
p− 1(K0 − Kmin)u, (5)  

where u∗ is given by the solution of the adjoint problem 

Ku∗ =
∂f
∂u

, (6)  

where the right hand side is ∂f/∂u = f for the minimization of structural 
compliance, i.e. the problem is self-adjoint and the solution of (6) is u∗ =

u. 
We usually have to introduce additional constraints to avoid nu-

merical difficulties and modeling problems, such as mesh-dependency of 
solutions and checker-board patterns [7], respectively. In this work, we 
adopt the sensitivity filter, which regularizes the sensitivity field using a 
convolution integral of the product of design variables and sensitivities. 
We can define the filtered sensitivity variable implicitly as a solution of a 
Helmholtz type differential equation with homogeneous Neumann 
boundary conditions [43]. A salient point of this approach is that we do 
not need to operate with neighbor cells, which is difficult and compu-
tationally expensive for complex geometries and design domains 
distributed among multiple non-overlapping partitions. 

The product of design variables in the design domain ρe ∈ D and 
sensitivities is denoted as 

g = ρe
∂f
∂ρe

. (7)  

We can define the implicit form of the convolution integral for sensi-
tivity filter on the domain Ω⊂Rn as the solution of the following 
Helmholtz differential equation with homogeneous Neumann boundary 
conditions 

− r2∇2 ĝ + ĝ = g ĝ ∈ Ω

∂ĝ
∂n

= 0 ĝ ∈ ∂Ω
(8)  

where g is the nodal product of design variables and sensitivities, ̂g is the 
filtered field, and r is a length parameter playing a similar role as the 
radius of the convolution integral for calculating the sensitivity filter. 
We can obtain a relationship between length scales to configure the 
equivalent r parameter to the corresponding physical radius rp of the 
convolution integral. We approximate the projection between nodal and 
elemental g variables using interpolation functions, and then integrating 
over the design domain. We can solve this problem efficiently using the 

Fig. 2. Flowchart of the distributed density-based topology optimization.  
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parallel finite element method presented below. After obtaining the 
nodal values of the filtered field ĝ, the filtered sensitivity for a given 
element is obtained by averaging the nodal values of the filtered field 
and dividing by the element density [43]. We have to mention that 
recent alternative formulations are proposed to accommodate design 
interfaces located along the design domain boundary [44], and thus 
avoiding the sticking effect. 

We update the design parameters using the Optimality Criteria (OC) 
scheme proposed by Bendsøe [45] for its numerical efficiency. The OC 
updating scheme is as follows 

ρek+1
=

⎧
⎪⎪⎨

⎪⎪⎩

max
{
(1 − ζ)ρek

, 0
}

if ρek
Bη

ek
≤ max

{
(1 − ζ)ρek

, 0
}
,

min
{
(1 + ζ)ρek

, 1
}

if min
{
(1 + ζ)ρek

, 1
}
≤ ρek

Bη
ek
,

(
ρek

Bη
ek

)q
otherwise,

(9)  

where ζ is a positive step width, η is a numerical damping coefficient, q is 
a penalty factor to further achieve black-and-white topologies (typically 
q = 2) and Bek is found from the optimality condition as 

Bek = −
∂f (ρe)

∂ρe

(

λ
∂V(ρe)

∂ρe

)− 1

, (10)  

where the Lagrange multiplier λ is found using a bisection algorithm. 
The algorithm stops when we reach the maximum number of iterations 
or when the change variable ‖ ρek+1

− ρek
‖∞ and the change in the 

objective function |fk+1 − fk| fall below a prescribed value. 

4. Parallel strategy 

The partition of complex models into smaller and more manageable 
pieces is a common approach to make use of distributed computational 
resources. This approach allows us to divide the computational burden 
and the memory requirements across the computational resources of the 
distributed computational system. The underline idea consists of parti-
tioning the domain into a set of subdomains. We then solve these sub-
domains in parallel. This strategy increases the overall performance by 
distributing computing and memory requirements. We know the tech-
niques using this strategy as Domain Decomposition Methods (DDMs). 
These methods are iterative in nature and require communication be-
tween the computational processes. Their performance depends on the 
workload balancing of the subdomains and the volume of communica-
tions between them. Efficient partitioning techniques allow optimizing 
the former factor, whereas the variants of DDMs aim to optimize the 
latter. For simplicity, we adopt a simple Global Subdomain Imple-
mentation (GSI) [46], which distributes the operations across the sub-
domains using communications. 

Figure 2 shows the flowchart of the parallel implementation of the 
distributed density-based topology optimization. We divide the problem 
into several subdomains to perform the recursive stages of the topology 
optimization method. In particular, the solving of FEA, the calculation of 
the objective function and sensitivities, the solving of the distributed 
sensitivity filter, and the update of design variables. We present below 
the details of the parallel implementation of such stages. 

4.1. Domain partitioning 

A key point of density-based topology optimization is that we use the 
same partitioning during the whole process. Thus, we only have to make 
the partitioning into several non-overlapping subdomains in the 
initialization, and we use these subdomains in the stages of the opti-
mization loop shown in Figure 2. The partitioning algorithm takes the 
resulting mesh of the geometric discretization to divide it following 
optimization criteria. In particular, the minimization of the number of 
interface elements reducing the data exchange between processes 
making the computation associated with each part. 

We generate a dual graph from the mesh of the finite element model 
to perform the partitioning. Each finite element becomes a vertex of the 
dual graph, and we then use a multilevel k-way partitioning method 
[47] to define the subdomains considering optimization criteria. These 
optimization criteria include the minimization of the resulting sub-
domain connectivity graph and the contiguous partition enforcement. 
The efficiency of the partitioning is of paramount importance since the 
partition method is memory-intensive, which is particularly true for 
large-scale problems and for partitioning with a high number of sub-
domains. We use ParMETIS [48] library to perform this parallel parti-
tioning using the MPI standard. 

4.2. Distributed solving 

Let consider the linear system of equations 

Ax = b, (11)  

where A ∈ Rn×n is the coeffient matrix, b ∈ Rn×1 is the right-hand side 
vector, x ∈ Rn×1 is the solution vector, and n is the number of unknowns. 
We require a distributed representation of the coefficient matrix and 
vectors to solve the Helmholtz PDE (8) and the linear elasticity (4) 
problems using multi- and many-core architectures. Let us assume that 
the coefficient matrix A using compressed sparse row (CSR) format is 
distributed across p = {1,⋯, np} processes (with np the number of pro-
cesses) by contiguous blocks of rows as follows 

A =

⎛

⎝
A0

⋮
Ap− 1

⎞

⎠, (12)  

where the computation of each block submatrix Ap− 1 ∈ Rnp− 1×n is per-
formed by one single processor p with np− 1 the number of rows of the 
block submatrix and n the number of columns of A. The block sub-
matrices use the global row indices {n0,⋯,np− 1} to facilitate the oper-
ations between subdomains. We store these submatrices into local Ap− 1

loc 

and remote Ap− 1
rem parts. The former is a square matrix with the “local” 

np− 1 unknowns, whereas the latter is a matrix containing coefficients 
with global column indices stored in other processors. This data struc-
ture allows us to differentiate between “local” and “distributed” 
computation. Local computation is performed with the data stored in the 
own process p, whereas distributed computation requires some 
communication mechanism. We adopt a similar approach for distributed 
dense vectors b ∈ Rnp− 1 using the global row indices {n0,⋯,np− 1}. 

The communications make use of the standardized and portable MPI 
mechanism. Each process p calculates in the initialization the global 
columns required from both the own and other processes. Data exchange 
consists of receiving ghost values from the processes sharing unknowns 
(global column indices) and then sending the data to the processes that 
require them to form the gather vectors. We perform data exchange 
directly between processes since each processor p knows its receive and 
send processors. This data exchange procedure reduces the computa-
tional complexity and the storage requirements because the number of 
neighbors and the amount of data are independent of the number of p 
processors. 

We address the linear system of equations arising from PDE (8) and 
(4) using a distributed conjugate gradient iterative solver precondi-
tioned with an aggregation-based AMG method. The use of multigrid 
methods as a preconditioner of Krylov subspace methods is very popular 
in the context of structural mechanics. The underline idea is that the 
interpolation operator of the multigrid method will hardly be optimal, 
which makes it less efficient for some specific error components. The 
convergence is slow when this occurs despite almost all of the error 
components are reduced quickly. The use of Krylov subspace methods 
usually eliminates these error components efficiently. The use of some 
iterative solver is a more efficient solution than improving the 
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construction of the interpolation operator. We choose aggregation-based 
AMG methods as a preconditioner because they define the interpolation 
as a piecewise constant operator with only one non-zero per row. This 
fact has a particularly beneficial effect on the performance of GPU 
computing due to the significant reduction of memory requirements in 
comparison with classical AMG [49] and the performance improvement 
of the interpolation operator. 

Multigrid methods use a two-grid scheme to address the problem. Let 
l be the grid level and nl the number of unknowns in that l level. 
Considering the initialization A0 = A and n0 = n, we define the coarse 
grid coefficient matrices Al+1 recursively as follows 

Al+1 = RlAlPl, (13)  

where Pl ∈ Rnl×nl+1 is the interpolation or prolongation operator, Rl ∈

Rnl+1×nl (normally obtained as PT
l ) is the restriction operator, and Al ∈

Rnl×nl and Al+1 ∈ Rnl+1×nl+1 are the fine and coarse grid coefficient 
matrices, respectively. We calculate recursively such transfer operators 
until a grid level L in which the number of unknowns nL is sufficiently 
low to solve it in a reasonable time, typically using a direct solver. 

Algorithm 1 describes the AMG setup for aggregation-based AMG 
methods. We calculate the grid hierarchy and the transfer operators for 
all the levels l using the algebraic properties of the coefficient matrix A. 
The setup requires the coefficient matrix A ∈ Rn×n and the near null- 
space vector B ∈ Rn×m. It uses strength, aggregate, tentative, pro-
longate, and Galerkin projection operations. The strength operator 
constructs a graph Cl of strong connections at the level l evaluating the 
relationship between unknowns with the diagonal and outside diagonal 
coefficients using a coarsening ratio. The aggregation process uses the 
graph Cl to select independent grid points as root nodes grouping/ 
aggregating them with their neighbors. We build the tentative prolon-
gation matrix P̃l as a simple grid transfer operator by a piecewise con-
stant interpolation. We then apply a smoother S̃l to the tentative 
prolongation matrix ̃Pl to obtain a more robust prolongation operator Pl. 
Finally, we perform the sparse Galerkin product using two matrix-matrix 
products. 

Algorithm 2 shows the pseudo-code of the V-cycle of aggregate AMG 
for preconditioning the distributed conjugate gradient iterative solver. 
This algorithm aims to approximate the solution of (11) given the re-
sidual of the previous estimation of the iterative solver. The procedure 
consists of the application of μ1 smoothing operations to the approxi-
mate solution sl at the level l and the computation of the residual rl for 
the relaxed approximate solution sl. We then restrict the residual to the 
coarse grid and solve the linear system if we reach the last level L. We 
prolongate the solution sl at the coarsest grid to the finer one applying μ2 
smoothing operations to the approximate solution. 

Algorithm 3 details the pseudo-code of the distributed conjugate 
gradient algorithm using the V-cycle of aggregate AMG as a precondi-
tioner. This iterative solver requires the maximum number of iterations 
maxiter, the tolerance < tol, tolabs >, the coefficient matrix A, the right- 
hand side f, and the initial guess for initializing the iterative proced-
ure. The recursive solver provides an approximate solution u of (11) 
with a residual after it iterations. 

We use high-level open-source libraries to effectively integrate these 
functionalities in the topology optimization process using the compu-
tational resources of multi- and many-core architectures. In particular, 
we use AMGCL [50] for the distributed Krylov iterative solver and the 
multigrid preconditioning, and VEXCL [51,52] for the use of multiple 
GPUs in the development using OpenCL. 

4.3. Elemental-based calculation 

Once we divide the domain into several non-overlapped subdomains, 
the parallel computation of the objective function (3), the sensitivities 
(5), and the update of design variables (9) is straightforward because 
these operations only require the information of the own finite elements. 
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Thus, the computation needed by each subdomain is performed by one 
single processor or co-processor for multi- and many-core computation, 
respectively. We use the VEXCL open-source library to facilitate the 
development using OpenCL. 

5. Numerical Experiments 

We evaluate the benefits and limitations of using a distributed system 
with multiple GPUs for addressing the density-based topology optimi-
zation problem. It is well-known that FEA is the principal bottleneck of 
the topology optimization pipeline, and thus the experiments focus on 
the evaluation of the use of many-core devices to address the solving 
stage during the topology optimization process. We aim to evaluate the 
scalability of these techniques analyzing the pros and cons, and 
comparing the results with efficient multi-core systems using the same 
strategy. The numerical experiments consist of solving different three- 
dimensional problems with different discretization sizes using struc-
tured and unstructured meshes with diverse types of finite elements. 

We run the numerical experiments using a set of workstations 
working as a computer cluster, as shown in Figure 1. We use four 
compute nodes for the numerical experiments with an Intel Xeon W- 
2145 CPU at 3.70GHz and 96GB of RAM. A couple of the compute nodes 
incorporates four low-cost AMD Radeon VII graphics cards. We use these 
compute nodes to evaluate the performance of the distributed system 
using GPU computing. The AMD Radeon VII graphics card incorporates 
the Vega 20 processor built on the 7 nm process with 13.23e9 transis-
tors. It features 3840 shading units, 240 texture mapping units, and 64 
ROPs. The 3840 stream processors operate at a frequency from 1400 
MHz (base) to 1750 MHz (boost). It has 16GB of HBM2 memory running 
at 1000 MHz and a memory interface of 4096-bits, which provides a 
total memory bandwidth of around 1024GBps. A key of this graphics 
card is that it includes specific hardware to perform double-precision 
floating-point operations. The theoretical performance is 13.44 
TFLOPS and 3.36 TFLOPS for single- and double-precision floating-point 
operations, respectively. The significant double-precision computa-
tional capability (rate 1:4 w.r.t. single-precision) is only included on the 
graphics cards designed for scientific computation purposes. The ther-
mal design power (TDP) of AMD Radeon VII is around 295W, which 
allows us to install four graphics devices using a high power PSU. 
Figure 3 shows the two compute nodes incorporating a multi-GPU sys-
tem with four AMD Radeon VII each node. We connect the head and 
compute nodes using a 10 Gigabit Ethernet network. 

The hardware allows us to run all the experiments using both multi- 
and many-core architectures using different computational resources to 
evaluate the scalability. The multi-core numerical experiments can use 

up to 32 cores in four compute nodes using distributed memory, whereas 
many-core numerical experiments can use eight GPU devices using two 
compute nodes. We compile the source code of the numerical experi-
ments using the AMDGPU driver version 19.50. 

The battery of experiments consists of four topology optimization 
problems using structured and unstructured meshes with different finite 
elements to show that the approach is not limited to any constraint. In 
particular, the experiments consist of a cantilever beam, a wheel rim, 
and a hollow circular shaft with and without varying cross-sections. The 
first three experiments use a structured mesh, whereas the last one uses 
an unstructured mesh. Note that the only test using finite elements with 
a similar aspect ratio is the first one. GPU computing strategies usually 
uses stencil computation to exploit data locality operating on a regular 
Cartesian structured mesh. This approach, combined with matrix-free 
implementations to save device memory, shows good GPU perfor-
mance. However, this proposal is not adopting stencil computation. We 
parameterize the mesh with the number of divisions of geometric 
primitives to facilitate reproducible results. We also increase the prob-
lem size by uniformly refining the mesh. Table 1 specifies the geometric 
and topology optimization parameters of the experiments. We evaluate 
the effect of the tolerance of the distributed conjugate gradient method 
presented in Algorithm (3) on the performance. In particular, we use 
tolerances tol = {10− 6, 10− 8} to test the evolution of optimization and 
computational performance. We set the stiffness of solid K0 = 1 and void 
Kmin = 10− 9 material in the power-law interpolation function of (2). We 
also define the set of optimizable and non-optimizable finite elements in 
the initialization of the topology optimization for each experiment. 

We solve the experiments using multi- and many-core computing and 
compare the GPU instance to an efficient multi-core implementation. We 

Fig. 3. Distributed system with two compute nodes incorporating four AMD Radeon VII each one.  

Table 1 
Geometric and topology design parameters for the experiments.  

Geometry (meters) Topology parameters 

Cantilever beam   
L W H v (%) p rp (m)    
2.0 1.0 1.0 12 3.0 0.08 

Wheel rim 
L  H  D1  D2  D3  v (%) p rp (m)  
0.155 0.1 0.108 0.424 0.4318 50 3.0 0.04 

Hollow circular shaft with varying cross-section  
L  H  D1  D2  v (%) p rp (m)   
4 0.9 1 2 50 3.0 0.08 

Hollow circular shaft   
L  D  H  v (%) p rp (m)    
4 1 0.9 40 3.0 0.08  
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also evaluate the use of mixed-precision in the FEA solving stage (4), 
which would be rewarding using GPU computing considering the 
theoretical computational performance rate 1:4 between single- and 
double-precision floating-point operations of AMD Radeon VII. The use 
of mixed-precision consists of using single-precision for the computation 
of the preconditioning (AMG setup and V-cycles of the aggregate AMG 
method) and double-precision for the calculations of the iterative solver 
to avoid convergence problems due to round-off errors. We report the 
wall-clock time and speedup with the reference of the multi-core 
implementation for all the numerical experiments. The numerical re-
sults provide the information to highlight the benefits and limitations of 
using many-core architectures in density-based topology optimization. 
We present below the numerical results of the four density-based to-
pology optimization experiments evaluating the computational aspects 
of the parallel strategy using multi- and many-core computation. 

5.1. Cantilever 

The first experiment consists of the topology optimization of a three- 
dimensional cantilever beam with fixed displacements on one side and 
loads uniformly distributed along the lower edge of the other side. 
Figure 4(a) shows the geometry and boundary conditions of the finite 
element model, indicating the parameters specified in Table 1. This table 
also includes the topology optimization design parameters. In particular, 
the volume fraction v, the penalization p, and the physical radius rp of 
the convolution integral for calculating the sensitivity filter, which al-
lows us to obtain the variable r of (8) by the relation between length 
scales [43]. Figure 4(b) depicts a coarse mesh partitioned into eight 
subdomains using the ParMetis library. We can observe that the parti-
tioning is performed into balanced subdomains enforcing the contiguous 
partitions. It also shows the parameterization of the tessellation with the 
div variable for the geometric variables parameters specified in Table 1. 
We use such a div parameter together with the refinement of lref levels to 
obtain the mesh with the number of design variables to optimize. 

We tessellate the cantilever using a structured mesh composed of 
eight-node linear hexahedral elements. One refinement level of a mesh 
with hexahedral elements refines the mesh dividing each finite element 
into eight new bricks. There are several choices for the smoothing iter-
ations or relaxation operator mentioned in Algorithm 2. We choose the 
incomplete LU factorization with zero fill-ins (ILU0) for the multi-core 
solving and several Jacobi iterations for the many-core solving to pre-
vent using device memory-consuming algorithms, which seriously affect 
the GPU performance. We initialize the topology optimization with a 
similar density design for all the finite elements satisfying the volume 
constraint. All the finite elements are optimizable for this experiment. 

We evaluate the strong scaling of the GPU implementation using a 
problem with memory requirements that fit on the device memory of 

one GPU. We obtain this model with two million finite elements 
(6151203 unknowns) configuring the parameter div = 100 without any 
refinement of the mesh. Figure 5(a) shows the strong scaling of many- 
core implementation using a different number of GPU devices and 
computing nodes with tolerance tol = 10− 8 for the FEA stage. We also 
evaluate the performance improvement reducing the tolerance (tol =

10− 6) and reusing the displacement solution of the previous iteration, 
showing the results in Figure 5(b). These experiments detail the wall- 
clock time for the FEA solving stage (4) during the 204 iterations of 
the topology optimization process. We group the experiments into two 
sets: topology optimization using one (continuous line) and two (dashed 
line) compute nodes. The distributed solving strategy makes use of 
mixed-precision for all the topology optimizations. We can observe that 
the reduction of the tolerance of the iterative solver reusing the solution 
of the previous iteration can improve the performance significantly, 
especially when the topology of the last iteration is close to the current 
design. We also can observe that the wall-clock time reduces as 
increasing the number of GPU devices for solving. However, the per-
formance improvement decreases as the problem size is smaller in each 
subdomain. This fact is also due to communications between devices and 
nodes required by the GSI approach. We can observe that the perfor-
mance improvement using the third device is higher than using the 
second device. We attribute this fact to the intra-node communications 
needed by the second device in comparison with all the computations 
performed by only one device. This problem is exacerbated, together 
with the problem size of each subdomain, when we require inter-node 
communications. 

We also evaluate the weak scaling of the GPU instance by solving 
topology optimization problems with a size of one million finite ele-
ments (3168963 unknowns) per GPU device. We generate the models 
adjusting the div and lref parameters. Figure 6 shows the weak scaling 
tests of many-core implementation with a tolerance tol = 10− 6 for 
solving FEA reusing the displacement solution of the last topology 
optimization iteration. These experiments detail the wall-clock time for 
the FEA solving (4) using mixed-precision during the 204 iterations of 
the topology optimization process. We can observe that the performance 
of the GPU instance initially degrades as we use new devices to solve the 
model with one million finite elements per device. As in the previous 
experiments, we observe that this effect exacerbates when we incorpo-
rate the second GPU device for the resolution, i.e., once we start to use 
intra-node communications. The strong scaling shows better perfor-
mance as we include new GPU devices. We attribute this effect to effi-
cient partitioning minimizing the connections between the subdomains. 
We should remark that the communication mechanism exchanges data 
directly between processes as detailed in section 4, and thus the scal-
ability improves as the number of connections between GPU devices 
does not increase with the problem size. 

Fig. 4. Cantilever experiment: (a) geometric configuration and boundary conditions, and (b) mesh parameterization and partitioning into eight subdomains.  
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Figure 7 shows the wall-clock time of AMG stages for the weak 
scaling evaluation of the GPU instance. We use one million finite ele-
ments (3168963 unknowns) per GPU device and a tolerance tol = 10− 8 

for the distributed conjugate gradient. The AMG stages are the AMG 
setup and solving step. The former aims to find the proper transfer op-
erators using the algebraic properties of the coefficient matrix. This 
objective is a challenging task, and the algorithms used to find these 
transfer operators are intrinsically serial. The latter computes the iter-
ations of the distributed conjugate gradient algorithm. It uses the V- 
cycle of aggregate AMG as a preconditioner. Once we have the hierar-
chy, the solving is easily parallelizable, usually using sparse matrix- 
vector products. Figure 7(a) shows the AMG setup timing and the total 

wall-clock time for solving. We can observe that AMG setup consumes a 
significant fraction of the time for solving. Figure 7(b) shows the wall- 
clock time per conjugate gradient iteration, including the V-cycle of 
aggregate AMG as a preconditioner. We can observe that the time 
required to perform one conjugate gradient iteration is low. The ratio 
between both stages depends on the converge of the distributed conju-
gate gradient algorithm. We have to remark that using parallel 
computing can be more beneficial to reduce the effort in the AMG setup 
performing a high number of conjugate gradient iterations in parallel. 

We finally evaluate the performance of solving FEA with a higher 
number of unknowns than the previous tests. We configure the param-
eter div = 10 and the number of refinement levels lref = 4 to obtain a 

Fig. 5. Strong scaling for solving FEA of the cantilever experiment using two million hexahedral finite elements (6151203 unknowns): with tolerance (a) 10− 8 and 
(b) 10− 6 and reusing the solution of the last iteration. 
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finite element model with 8192000 hexahedral finite elements 
(24961923 unknowns). Figure 8(a) shows the wall-clock time for solv-
ing FEA during the optimization using a tolerance tol = 10− 8 for the 
iterative solver. Figure 8(b) shows similar information about the same 
experiment but using a tolerance tol = 10− 6 for the iterative solver and 
initializing it with the result of the last iteration of topology optimiza-
tion. These experiments allow us to evaluate the performance and 
feasibility of this approach. We perform all the optimizations with multi- 
and many-core computing using mixed- and double-precision. The 
multi-core experiment makes use of 32 cores using four compute nodes, 
whereas the many-core experiment uses 8 GPU devices using two 
compute nodes. We observe that the reduction of the tolerance of the 
iterative solver and reusing the solution of the previous iteration 
improve the performance meaningfully, especially when the topology is 
close to the previous design. Figure 9 shows the evolution of the 
objective function during the topology optimization. We obtain similar 
convergence of the topology optimization objective function by 
reducing the tolerance of the iterative solver. We can observe that 
solving using mixed-precision is rewarding both it using multi- and 
many-core computing. 

We also show the speedup between multi- and many-core computing 
using mixed- and double-precision. We obtain a speedup with the ex-
periments using a tolerance tol = 10− 8 for the iterative solver of around 
3.2x and 2.8x using mixed- and double-precision, respectively. We 
observe a moderate reduction of the speedup reducing the tolerance of 
the iterative solver. We attribute this fact to the fewer iterations needed 
by the distributed iterative conjugate gradient solver, where the V-cycles 
of the AMG method show higher speedups than the AMG setup. We 
obtain higher acceleration using mixed precision with GPU computing. 
However, the increase in performance is lower than the theoretical rate 
of 1:4 between single- and double-precision floating-point operations of 
AMD Radeon VII. We should remark that only the preconditioning uses 
single-precision floating-point computations and that the computing is 
only a part of the wall-clock time since communications are needed. In 
any case, we can obtain higher performance improvement using 
graphics devices with lower computational performance rates. 

We can find this experiment in [20], being available as the default 
example in the open-source PETSc based topology optimization project 
associated with such a publication. This project uses the DMDA func-
tionalities of PETSc [53], which provide us an interface for both the 
topology and geometry of a Cartesian structured mesh. DMDA also in-
cludes the capability of parallel refinement and coarsening. This library 
makes use of stencil computation to update data points of the Cartesian 
structured mesh according to some fixed pattern, called a stencil. The 
PETSc based code provides good performance combining GMRES iter-
ative solver preconditioned with a geometric multigrid method and 
stencil computation. We have compared the presented multi-core 
implementation with the PETSc based code obtaining wall-clock times 
of the same order of magnitude configuring similar tolerances for the 
iterative solvers. Besides, the use of aggregation-based AMG requires 
lower levels than classical AMG [54], and thus the memory re-
quirements of the proposed implementation are significantly lower than 
the PETSc based code. The presented implementation allows us to run 
the previous topology optimization using only two computing nodes, as 
shown in the GPU computing results. We have to remark that we can 
obtain reduced speedup using GPU computing if the problem size is not 
high enough to take advantage of the potential of many-core devices, as 
we show above in the strong scaling evaluation of the GPU 
implementation. 

5.2. Wheel rim 

The second experiment consists of the topology optimization of a 
wheel rim with fixed displacements in the center bore and six loads 
uniformly distributed along with the line segments in the wheel rim 
diameter dividing it into six equal parts. Figure 10(a) shows the geom-
etry and boundary conditions of the finite element model, indicating the 
parameters specified in Table 1. In particular, the wheel rim width L, the 
wheel bore H, and the wheel rim diameter D3. The values of these pa-
rameters correspond to a wheel rim for 155/90R17 tires. We also specify 
two intermediate diameters (D1 and D2) to define the non-optimizable 
volumes of the design for the connection with the axle and with the 

Fig. 6. Weak scaling for solving FEA of the cantilever experiment with one million finite elements (3168963 unknowns) per GPU device and tolerance 10− 6 reusing 
the solution of the last iteration. 
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tire, as shown in Figure 10(c). Figure 10(b) depicts a coarse mesh par-
titioned into six balanced subdomains enforcing the contiguous parti-
tioning. It also shows the tessellation of the geometric parameters 
specified in Table 1 using the div, divr, and divc parameters. We use these 
parameters, together with the refinement of lref levels, to obtain the 
mesh with the number of design parameters to optimize. 

We tessellate the wheel rim problem using a structured mesh 
composed of four-node linear tetrahedral elements. One refinement 
level of a mesh with tetrahedral elements refines the mesh dividing each 
finite element into eight new tetrahedra. We choose the simplest and 
parallel smoother sparse approximate inverse (SPAI-0) for the relaxing 
iterations of Algorithm 2. We initialize the non-optimizable finite 

elements with the maximum design variable ρe = 1, whereas the opti-
mizable finite elements are initialized with similar density design vari-
ables satisfying the volume constraint. 

We evaluate the performance and scalability of solving FEA using 
mixed- and double-precision during the topology optimization process. 
We also evaluate the performance and feasibility of reducing the toler-
ance of the iterative solver and reusing the displacement result of the 
previous iteration. We obtain a finite element model with 88473600 
tetrahedra finite elements (45023040 unknowns) configuring the pa-
rameters div = 30, divr = 26, divc = 1, and the number of refinement 
levels lref = 3. Figure 11(a) shows the wall-clock time for solving FEA (4) 

Fig. 7. Wall-clock time for the solving of the cantilever experiment with one million finite elements (3168963 unknowns) per GPU device and tolerance 10− 8: (a) 
total wall-clock time and AMG setup timing, and (b) wall-clock time per conjugate gradient iteration. 
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using a tolerance tol = 10− 8 for the iterative solver during the 58 iter-
ations of the topology optimization process using multi- and many-core 
computing. Figure 11(b) shows the wall-clock time for solving FEA using 
a tolerance tol = 10− 6 and reusing the result of the displacement field of 
the last optimization iteration as the initial seed of the iterative solver. 
We obtain a speedup of around 4.8x and 3.9x using mixed- and double- 
precision, respectively. As in the previous experiment, we observe a 
moderate reduction of the speedup reducing the tolerance of the itera-
tive solver. Nevertheless, we reduce the wall-clock time for solving FEA 
meaningfully, especially when the topology is similar to the obtained in 
the previous iteration of the optimization process. We attribute this fact 
to the significant reduction of the iterations of the distributed iterative 
solver. We have checked that the evolution of the objective function 

during the topology optimization is similar to reducing the tolerance of 
the iterative solver, showing Figure 12 such an evolution and the final 
design. We also have to mention that the speedups are significantly 
higher than the obtained using a structured hexahedral mesh with the 
ILU0 relaxation operator. 

5.3. Hollow circular shaft with varying cross-section 

The third experiment consists of the topology optimization of a 
three-dimensional hollow circular shaft with a varying cross-section 
with fixed displacements on one side and four loads uniformly distrib-
uted along the line segments dividing the other side into four equal 
parts. Figure 13(a) shows the geometry and boundary conditions of the 

Fig. 8. Wall-clock time for solving FEA of the cantilever experiment using eight million hexahedral finite elements (24961923 unknowns): with tolerance (a) 10− 8 

and (b) 10− 6 reusing the solution of the previous iteration. 
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finite element model, indicating the parameters specified in Table 1; in 
particular, the length of the shaft L, the diameter D1 in the sides, the hole 
diameter H in the sides, and the diameter D2 in the center of the shaft. 
We define the cross-section variation using a spline with the points 
indicated in Figure 13(a). Figure 13(b) depicts a coarse mesh partitioned 
into six balanced subdomains enforcing the contiguous partitioning. It 
also shows the tessellation of the geometric parameters specified in 
Table 1 using the div parameter. We use this parameter together with the 
refinement of lref levels to obtain the mesh with the number of design 
parameters to optimize. Figure 13(c) shows the definition of the opti-
mizable and non-optimizable volumes. 

We tessellate the hollow circular shaft with varying cross-section 
experiments using a structured mesh composed of eight-node linear 
hexahedral elements with a different aspect ratio to fit the complex 
geometry. We choose the simplest and parallel smoother sparse 
approximate inverse (SPAI-0) for the relaxing iterations of Algorithm 2. 
We initialize the non-optimizable finite elements with the maximum 
design variable ρe = 1, whereas we initialize the optimizable finite ele-
ments with similar density design variables satisfying the volume 
constraint. We obtain a finite element model with 15630336 hexahedral 
finite elements (49860864 unknowns) configuring the parameters div =
10 and the number of refinement levels lref = 3. Figure 14(a) shows the 
wall-clock time for solving FEA (4) during the 199 iterations of the to-
pology optimization process using multi- and many-core computing and 
configuring a tolerance tol = 10− 8 for the distributed conjugate gradient 

solver. Figure 14(b) shows the wall-clock time for solving FEA using a 
tolerance tol = 10− 6 and reusing the result of the displacement field of 
the last optimization iteration as the initial seed of the iterative solver. 
We run all the experiments using mixed-precision. This experiment aims 
to evaluate the performance of the approach using a non-regular grid. 
Cartesian regular grids are usually adopted to exploit GPU computing 
using stencil computation in topology optimization. We run the exper-
iment using 32 cores with multi-core computing and 8 AMD Radeon VII 
with many-core computing obtaining a speedup of 7.8x using mixed- 
precision. In this case, we observe a drastic reduction of the speedup 
reducing the tolerance of the iterative solver. However, we significantly 
reduce the wall-clock time for solving FEA with the timing until seven 
times lower in the multi-core implementation. Figure 15 shows the final 
design and the evolution of the objective function during the topology 
optimization, which is the same using both tolerances. 

5.4. Hollow circular shaft 

The last experiment consists of the topology optimization of a three- 
dimensional hollow circular shaft with fixed displacements on one side 
and four loads uniformly distributed along the line segments dividing 
the other side into four equal parts. Figure 16(a) shows the geometry and 
boundary conditions of the finite element model, indicating the pa-
rameters specified in Table 1. In particular, it shows the length L, the 
diameter D, and hole diameter H of the shaft. Figure 16(b) depicts a 
coarse mesh partitioned into six balanced subdomains enforcing the 
contiguous partitioning. It also shows the tessellation of the geometric 
parameters specified in Table 1 using the div parameter. We use this 
parameter, together with the refinement of lref levels, to obtain the mesh 
with the number of design parameters to optimize. Figure 16(c) shows 
the definition of the optimizable and non-optimizable volumes. 

We tessellate the hollow circular shaft problem using an unstruc-
tured mesh composed of four-node linear tetrahedral elements. We 
choose the SPAI-0 relaxing operator for the smoothing iterations of Al-
gorithm 2. We initialize the non-optimizable finite elements with the 
maximum design variable ρe = 1, whereas we initialize the optimizable 
finite elements with similar density design variables satisfying the vol-
ume constraint. We obtain a finite element model with 106348544 
tetrahedral finite elements (56513256 unknowns) configuring the pa-
rameters div = 20 and the number of refinement levels lref = 4. This 
experiment is significantly higher than the previous ones aiming to 
evaluate the feasibility and performance of the distributed approach to 
address large-scale problems using low-cost computational resources. 
Figure 17(a) shows the wall-clock time for solving FEA (4) using a 
tolerance tol = 10− 8 for the iterative solver during the 414 iterations of 
the topology optimization. Figure 17(b) shows the wall-clock time for 

Fig. 10. Wheel rim experiment: (a) geometric configuration and boundary conditions, (b) mesh parameterization and partitioning into six subdomains, and (c) 
definition of optimizable and non-optimizable volumes. 

Fig. 9. Evolution of the objective function during the topology optimization of 
the cantilever experiment using eight million hexahedral finite elements 
(24961923 unknowns). 

D. Herrero-Pérez and P.J. Martínez Castejón                                                                                                                                                                                             



Advances in Engineering Software 157–158 (2021) 103006

15

Fig. 11. Wall-clock time for solving FEA of the wheel rim experiment using 88 million tetrahedra finite elements (45023040 unknowns): with tolerance (a) 10− 8 and 
(b) 10− 6 reusing the solution of the previous iteration. 
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solving FEA using a tolerance tol = 10− 6 and reusing the result of the 
displacement field of the last optimization iteration as the initial seed of 
the iterative solver. We run all the experiments using multi- and many- 
core computing with mixed-precision. We obtain a speedup of around 
6.1x using many-core computing with 8 AMD Radeon VII (2 compute 
nodes) in comparison with multi-core computing with 32 cores of Intel 
Xeon W-2145 (4 compute nodes). In this experiment, we observe a 
moderate reduction of the speedup reducing the tolerance of the itera-
tive solver. Figure 18 shows the final design and the evolution of the 
objective function during the topology optimization, which is similar 
using the tolerances mentioned above. It also depicts a suitable inter-
mediate result running 80 iterations of topology optimization. Thus, we 
can reduce a high number of topology optimization iterations by 
adjusting the stopping criteria of topology optimization. 

5.5. Discussion 

We have presented an extensive battery of numerical experiments 
using structured and unstructured meshes with different finite elements. 
We focus on the FEA solving stage to analyze the performance, feasi-
bility, and scalability of the proposal. Figure 19 justifies that the solving 

of FEA has been in the spotlight of the study. This figure shows the 
percentage of wall-clock time spent by the FEA solving stage, the solving 
of the Helmholtz PDE acting as a sensitivity filter, and the other stages of 
the topology optimization process using multi-core computing with 32 
cores and mixed-precision computing. We take multi-core imple-
mentation as a reference because solving FEA shows the worst speedup 
using many-core computing in the stages mentioned above. We observe 
that the solving of Helmholtz PDE takes around 8% of the wall-clock 
time of the cantilever experiment with 24961923 unknowns, whereas 
this percentage is reduced significantly for problems with a higher 
number of unknowns. In particular, it takes about 6,5% of the total wall- 
clock time in the wheel rim experiment with 45023040 unknowns and is 
negligible for the hollow circular shaft experiments. 

We can draw similar conclusions for the other stages of the topology 
optimization process. In particular, the distributed computing of the 
objective function (3), the sensitivities (5), and the update of elemental 
densities (9). The computation of these stages is embarrassingly parallel, 
and we can obtain significant speedups using many-core computing. 
Nevertheless, the bottleneck is the solving of the linear elasticity prob-
lem using the finite element method. This problem is exacerbated for 
large-scale problems, where the wall-clock time spent to perform other 
stages is negligible. 

The models using tetrahedral elements have a higher number of 
finite elements than the models using hexahedral finite elements. The 
number of design variables of the optimization algorithm corresponds to 
the number of finite elements, and thus using meshes of tetrahedra al-
lows us to capture more details in the topology optimization. The nu-
merical experiments using many-core computing have shown significant 
speedups in comparison with an efficient multi-core implementation. 
Besides, the use of multiple GPUs allows us to accelerate solving and to 
increase the problem size that we can address. We observe that the use of 
structured meshes of tetrahedra accelerates the convergence. We solve 
the wheel rim experiment with 88 million elements taking 1 hour and 15 
minutes using many-core computing with two compute nodes, whereas 
it requires 6 hours and 40 minutes to solve it using multi-core computing 
with four compute nodes. We optimize the hollow circular shaft 
experiment with 106 million elements in one day and one-hour using 
many-core computing with two compute nodes, whereas we require six 
days to do it using multi-core computing. Nevertheless, we can solve this 
experiment in 5 hours using many-core computing by adjusting the 
stopping criteria of topology optimization and thus reducing the number 
of topology optimization iterations. 

Fig. 13. Hollow circular shaft with varying cross-section experiment: (a) geometric configuration and boundary conditions, (b) mesh parameterization and parti-
tioning into six subdomains, and (c) definition of optimizable and non-optimizable volumes. 

Fig. 12. Evolution of the objective function during the topology optimization 
of the wheel rim experiment with 88 million tetrahedra finite elements 
(45023040 unknowns). 
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Fig. 14. Wall-clock time for solving FEA of the hollow circular shaft with varying cross-section experiment using 15 million hexahedra finite elements (49860864 
unknowns): with tolerance (a) 10− 8 and (b) 10− 6 reusing the solution of the previous iteration. 
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The experiments using hexahedral elements can address problems 
with a fewer number of finite elements. In particular, we solve the 
cantilever experiment with 8 million finite elements in 3 hours and 10 
minutes using many-core computing with two compute nodes, requiring 
10 hours using multi-core computing with four compute nodes. Finally, 
we solve the hollow circular shaft with a varying cross-section experi-
ment with 15 million finite elements in 9 hours using many-core 
computing with two compute nodes, requiring two-days and eight- 
hours using multi-core computing with four compute nodes. 

6. Conclusion 

We have presented a parallel implementation of density-based to-
pology optimization using a distributed GPU system. We use non- 
overlapped partitioning of the domain into balanced subdomains to 
distribute the computation of density-based topology optimization 
stages to the computation resources. The solving of FEA in the iterations 
of topology optimization is the well-known bottleneck of such a 

problem. The numerical results show that using a distributed conjugate 
gradient solver preconditioned with aggregate AMG is rewarding using 
GPU computing. This fact is particularly the case for large-scale prob-
lems because smooth aggregation-based AMG methods define interpo-
lation as a piecewise constant operator with only one non-zero per row. 
This fact makes that we need fewer levels in the V-cycles than classical 
AMG, which reduces memory consumption drastically and is rewarding 
for GPU computing. The use of multiple GPU devices allows to accel-
erate the computing process and to increase the available device mem-
ory. This fact enables us to address large-scale topology optimization 
problems that commonly do not fit on one GPU. The adopted techniques 
aim to accelerate the solving stage dominating the overall speedup of the 
topology optimization problem. 

We test the influence of the tolerance and the initialization of the 
distributed conjugate gradient showing that the performance is highly 
dependent on such parameters obtaining similar topology optimization 
designs. This fact makes difficult the performance comparison with 
other approaches. We evaluate the strong and weak scaling of the GPU 

Fig. 16. Hollow circular shaft experiment: (a) geometric configuration and boundary conditions, (b) mesh parameterization and partitioning into six subdomains, 
and (c) definition of optimizable and non-optimizable volumes. 

Fig. 15. Evolution of the objective function during the topology optimization of the hollow circular shaft with varying cross-section experiment with 15 million 
hexahedra finite elements (49860864 unknowns). 
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Fig. 17. Wall-clock time for solving FEA of the hollow circular shaft experiment using 106 million tetrahedra finite elements (56513256 unknowns): with tolerance 
(a) 10− 8 and (b) 10− 6 reusing the solution of the previous iteration. 
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implementation showing good scalability as increasing the number of 
compute nodes and poor performance as reducing the problem size for 
each subdomain. This fact is a well-known issue in GPU computing, 
where the problem size should be high enough to make significant 
computing in comparison with data transfer between host and device 
memory. We evaluate the performance improvement using mixed- 
precision for the AMG setup and V-cycles of the preconditioner. We 
also test the proposal using structured and unstructured meshes with 
different finite elements and relaxing operators, achieving significant 

speedups using many-core computing with low-cost GPUs (two compute 
nodes) in comparison with an efficient multi-core implementation (four 
compute nodes). 
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Fig. 19. Percentage of wall-clock time for solving the different stages of topology optimization.  

Fig. 18. Evolution of the objective function during the topology optimization of the hollow circular shaft experiment with 106 million tetrahedra finite elements 
(56513256 unknowns). 
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Ciencia y Tecnología de la Región de Murcia” of Spain under the con-
tract 20911/PI/18. 

References 

[1] Deaton JD, Grandhi RV. A survey of structural and multidisciplinary continuum 
topology optimization: post 2000. Struct Multidiscip Optim 2014;49(1):1–38. 

[2] Allaire G, Jouve F, Toader A-M. Structural optimization using shape sensitivity 
analysis and a level-set method. J Comput Phys 2004;194:363–93. 

[3] Takezawa A, Nishiwaki S, Kitamura M. Shape and topology optimization based on 
the phase field method and sensitivity analysis. J Comput Phys 2010;229: 
2697–718. 

[4] Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, Bærentzen JA. Topology 
optimization using an explicit interface representation. Struct Multidisc Optim 
2014;49(3):387–99. 

[5] Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a 
homogenization method. Comput Meth Appl Mech Eng 1988;71(2):197–224. 

[6] Zhou M, Rozvany GIN. The COC algorithm, Part II: Topological, geometrical and 
generalized shape optimization. Comput Methods Appl Mech Eng 1991;89(1): 
309–36. 

[7] Bendsøe MP, Sigmund O. Topology Optimization – Theory, Methods, and 
Applications. second. Springer-Verlag Berlin Heidelberg; 2004. 

[8] Venkataraman S, Haftka R. Structural optimization complexity: what has Moore’s 
law done for us? Struct Multidiscip Optim 2004;28(6):375–87. 

[9] Nguyen T-H, Paulino G-H, Song J, Le C-H. A computational paradigm for 
multiresolution topology optimization (MTOP). Struct Multidiscip Optim 2010;41 
(4):525–39. 

[10] Liu H, Wang Y, Zong H, Wang M-Y. Efficient structure topology optimization by 
using the multiscale finite element method. Struct Multidiscip Optim 2018;58: 
1411–30. 

[11] Gupta D-K, van Keulen F, Langelaar M. Design and analysis adaptivity in 
multiresolution topology optimization. Int J Numer Methods Eng 2020;121(3): 
450–76. 

[12] Wang S, de Sturler E, Paulino G-H. Large-scale topology optimization using 
preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 
2007;69(12):2441–68. 

[13] Amir O, Stolpe M, Sigmund O. Efficient use of iterative solvers in nested topology 
optimization. Struct Multidiscip Optim 2010;42(1):55–72. 

[14] Amir O, Aage N, Lazarov B-S. On multigrid-CG for efficient topology optimization. 
Struct Multidiscip Optim 2014;49(1):815–29. 

[15] Amir O, Bendsøe MP, Sigmund O. Approximate reanalysis in topology 
optimization. Int J Numer Methods Eng 2009;78(12):1474–91. 

[16] Mo K, Guo D, Wang H. Iterative reanalysis approximationassisted moving 
morphable componentbased topology optimization method. Int J Numer Methods 
Eng 2020;121(22):5101–22. 

[17] Liu J, Li E, Wu Y, Wang H. An efficient auxiliary projection-based multigrid 
isogeometric reanalysis method and its applicationin an optimization framework. 
Int J Numer Methods Eng 2020;121(13):2857–73. 

[18] Borrvall T, Petersson J. Large-scale topology optimization in 3D using parallel 
computing. Comput Methods Appl Mech Eng 2001;190(46–47):6201–29. 

[19] Vemaganti K, Lawrence W-E. Parallel methods for optimality criteria-based 
topology optimization. Comput Methods Appl Mech Eng 2005;194(34–35): 
3637–67. 

[20] Aage N, Andreassen E, Lazarov B-S. Topology optimization using PETSc: An easy- 
to-use, fully parallel, open source topology optimization framework. Struct 
Multidiscip Optim 2015;51(3):565–72. 

[21] Aage N, Andreassen E, Lazarov B-S, Sigmund O. Giga-voxel computational 
morphogenesis for structural design. Nature 2017;550(84):84–6. 

[22] Liu H, Tian Y, Zong H, Ma Q, Wang M-Y, Zhang L. Fully parallel level set method 
for large-scale structural topology optimization. Comput Struct 2019;221:13–27. 

[23] Kahle J, Moreno J, Dreps D. Summit and Sierra: Designing AI/HPC 
Supercomputers. Proc. of IEEE Int. Solid-State Circuits Conference. 2019. p. 42–3. 
San Francisco, CA, USA 

[24] Nickolls J, Dally W. The GPU Computing Era. IEEE Micro 2010;30(2):56–69. 

[25] Noaje G, Krajecki M, Jaillet C. MultiGPU computing using MPI or OpenMP. Int. 
Conf. on Intelligent Computer Communication and Processing. 2010. p. 347–54. 
Cluj-Napoca, Romania 

[26] Wadbro E, Berggren M. Megapixel Topology Optimization on a Graphics 
Processing Unit. SIAM Rev 2009;51(4):707–21. 

[27] Schmidt S, Schulz V. A 2589 line topology optimization code written for the 
graphics card. Comput Vis Sci 2011;14(6):249–56. 

[28] Martínez-Frutos J, Martínez-Castejón P, Herrero-Pérez D. Efficient topology 
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