11 research outputs found

    Improving a 3-D Convolutional Neural Network Model Reinvented from VGG16 with Batch Normalization

    Get PDF
    It is challenging to build and train a Convolutional Neural Network model that can achieve a high accuracy rate for the first time. There are many variables to consider such as initial parameters, learning rate, and batch size. Unsuccessfully training a model is one of the most inevitable problems. In some cases, the model struggles to find a lower Loss Function value which results in a poor performance. Batch Normalization is considered as a remedy to overcome this problem. In this paper, two models reinvented from VGG16 are created with and without using Batch Normalization to evaluate their model performance. It is clear that the model using Batch Normalization provides a better result in terms of Loss Function value and model accuracy, which also achieves a very high accuracy rate. It also reaches the saturation point of the highest model accuracy faster than the model without Batch Normalization. This paper also finds that the accuracy of 3D Convolutional Neural Network model reinvented from VGG16 with Batch Normalization is at 91.2% which can beat many benchmarking results on UCF101 such as IDT [5], Two-Stream [10], and Dynamic Image Networks IDT [4]. The technique introduced in this paper shows a fast, reliable and accurate estimation of human activity type and could be used in smart environments

    Artificial Intelligence for Videogames with Deep Learning

    Get PDF
    In this project, we propose different techniques for developing Artificial Intelligences for videogames using Deep Learning models, with a special focus on the usage of neural networks for the development phase of a videogame. To reach this point, we started the creation of a Deep Learning development pipeline, capable of integrating neural networks inside of the Unity game engine initially developed in Python. For the Python part of the project, we used mostly Keras and Tensorflow for the neural network training, with a special focus on compatibility and ease of use. As background for our work, we carried out an extensive research about the current approaches inside and outside of the game development industry. We studied known cases where videogames are being used in the deep learning industry as a tool for research and experimentation, with well known examples such as AlphaStar, capable of defeating professional players on the game Starcraft II, or OpenAI Five, who has recently defeated the world champions on the game Dota 2. We have also analyzed the status of the development of Artificial Intelligence inside the videogames industry, and the usage of Deep Learning as a part of the development process of videogames. We went through famous examples of usage of Artificial Intelligence as part of game development, especially pointing out games relationed with Deep Learning in some way. Moreover, we have analyzed the current problems and flaws that a Deep Learning driven development of a game’s artificial intelligence may have, and suggested guidelines for either application on a production environment or further experimentation. Finally, we integrated the neural networks created on an Android videogame called HardBall, developed by From The Bench Games, S.L.. We used the Artificial Intelligence created to emulate the behavior of a Non-Playable Character inside of the game, with the intention to substitute the previous Artificial Intelligence with a neural network capable of learning and playing the game

    Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead

    Get PDF
    Currently, Machine Learning (ML) is becoming ubiquitous in everyday life. Deep Learning (DL) is already present in many applications ranging from computer vision for medicine to autonomous driving of modern cars as well as other sectors in security, healthcare, and finance. However, to achieve impressive performance, these algorithms employ very deep networks, requiring a significant computational power, both during the training and inference time. A single inference of a DL model may require billions of multiply-and-accumulated operations, making the DL extremely compute-and energy-hungry. In a scenario where several sophisticated algorithms need to be executed with limited energy and low latency, the need for cost-effective hardware platforms capable of implementing energy-efficient DL execution arises. This paper first introduces the key properties of two brain-inspired models like Deep Neural Network (DNN), and Spiking Neural Network (SNN), and then analyzes techniques to produce efficient and high-performance designs. This work summarizes and compares the works for four leading platforms for the execution of algorithms such as CPU, GPU, FPGA and ASIC describing the main solutions of the state-of-the-art, giving much prominence to the last two solutions since they offer greater design flexibility and bear the potential of high energy-efficiency, especially for the inference process. In addition to hardware solutions, this paper discusses some of the important security issues that these DNN and SNN models may have during their execution, and offers a comprehensive section on benchmarking, explaining how to assess the quality of different networks and hardware systems designed for them

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways
    corecore