3,398 research outputs found

    Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge

    Get PDF
    This paper presents a coupled level-set segmentation of the myocardium of the left ventricle of the heart using a priori information. From a fast marching initialisation, two fronts representing the endocardium and epicardium boundaries of the left ventricle are evolved as the zero level-set of a higher dimension function. We introduce a novel and robust stopping term using both gradient and region-based information. The segmentation is supervised both with a coupling function and using a probabilistic model built from training instances. The robustness of the segmentation scheme is evaluated by performing a segmentation on four unseen data-sets containing high variation and the performance of the segmentation is quantitatively assessed

    Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation

    Full text link
    In cardiac magnetic resonance imaging, fully-automatic segmentation of the heart enables precise structural and functional measurements to be taken, e.g. from short-axis MR images of the left-ventricle. In this work we propose a recurrent fully-convolutional network (RFCN) that learns image representations from the full stack of 2D slices and has the ability to leverage inter-slice spatial dependences through internal memory units. RFCN combines anatomical detection and segmentation into a single architecture that is trained end-to-end thus significantly reducing computational time, simplifying the segmentation pipeline, and potentially enabling real-time applications. We report on an investigation of RFCN using two datasets, including the publicly available MICCAI 2009 Challenge dataset. Comparisons have been carried out between fully convolutional networks and deep restricted Boltzmann machines, including a recurrent version that leverages inter-slice spatial correlation. Our studies suggest that RFCN produces state-of-the-art results and can substantially improve the delineation of contours near the apex of the heart.Comment: MICCAI Workshop RAMBO 201

    GridNet with automatic shape prior registration for automatic MRI cardiac segmentation

    Full text link
    In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge. The novelty of our network comes with its embedded shape prior and its loss function tailored to the cardiac anatomy. Our model includes a cardiac centerof-mass regression module which allows for an automatic shape prior registration. Also, since our method processes raw MR images without any manual preprocessing and/or image cropping, our CNN learns both high-level features (useful to distinguish the heart from other organs with a similar shape) and low-level features (useful to get accurate segmentation results). Those features are learned with a multi-resolution conv-deconv "grid" architecture which can be seen as an extension of the U-Net. Experimental results reveal that our method can segment the left and right ventricles as well as the myocardium from a 3D MRI cardiac volume in 0.4 second with an average Dice coefficient of 0.90 and an average Hausdorff distance of 10.4 mm.Comment: 8 pages, 1 tables, 2 figure

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    A novel model-based 3D+time left ventricular segmentation technique

    Get PDF
    A common approach to model-based segmentation is to assume a top-down modelling strategy. However, this is not feasible for complex 3D+time structures such as the cardiac left ventricle due to increased training requirements, aligning difficulties and local minima in resulting models. As our main contribution, we present an alternate bottom-up modelling approach. By combining the variation captured in multiple dimensionally-targeted models at segmentation-time we create a scalable segmentation framework that does not suffer from the ’curse of dimensionality’. Our second contribution involves a flexible contour coupling technique that allows our segmentation method to adapt to unseen contour configurations outside the training set. This is used to identify the endo- and epi-cardium contours of the left ventricle by coupling them at segmentationtime, instead of at model-time. We apply our approach to 33 3D+time MRI cardiac datasets and perform comprehensive evaluation against several state-of-the-art works. Quantitative evaluation illustrates that our method requires significantly less training than state-of-the-art model-based methods, while maintaining or improving segmentation accuracy

    Segmenting the left ventricle in 3D using a coupled ASM and a learned non-rigid spatial model

    Get PDF
    This paper presents a new approach to higher dimensional segmentation. We present an extended Active Shape Model (ASM) formulation for the segmentation of multi-contour anatomical structures. We employ coupling and weighting schemes to improve the robustness of ASM segmentation. 3D segmentation is achieved through propagation of a 2D ASM using a learned non-rigid spatial model. This approach does not suffer from the training and aligning difficulties faced by direct 3D model-based methods used today. Experimental results are encouraging at this early stage, and future directions of research are provided
    corecore