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Abstract

This paper presents a coupled level-set segmentation of the myocardium of the left

ventricle of the heart using a priori information. From a fast marching initialisa-

tion, two fronts representing the endo-cardium and epi-cardium boundaries of the

left ventricle are evolved as the zero level-set of a higher dimension function. We

introduce a novel and robust stopping term using both gradient and region-based in-

formation. The segmentation is supervised both with a coupling function and using

a probabilistic model built from training instances. The robustness of the segmen-

tation scheme is evaluated by performing a segmentation on four unseen data-sets

containing high variation and the performance of the segmentation is quantitatively

assessed.
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1 Introduction

Early identification of myocardium dysfunction through quantitative analysis,

permits a reliable and fast diagnosis of heart diseases. Such quantitative func-

tions include left ventricle ejection fraction, left ventricle myocardium thick-

ening over the cardiac cycle and left ventricle myocardium mass. To evaluate

these measures, accurate delineation of the left ventricle cavity and left ven-

tricle cardiac muscle is required.

Advanced imaging techniques in Magnetic Resonance Imaging (MRI) have

allowed for the imaging of the heart muscle at increasing spatial and tempo-

ral resolutions. Multisection multiphase short-axis cardiac MR images are the

most suitable to assess left ventricle function without drawing any assump-

tions about left ventricle geometry [1]. Traditional methods of quantitative

analysis required the manual delineation of the myocardium. This has become

increasingly time consuming with the extra data now available from a single

MRI examination. Therefore an automatic segmentation of the left ventricle

myocardium is desired. This issue has been previously addressed in literature

and the developed methods can be classified into region-based and boundary

finding approaches.

Region-based methods are used to segment the image, commonly using no

a priori information. The most basic form of region-based segmentation is

thresholding. Thresholding requires a high degree of supervision, high differ-

entiation between the object being segmented and the background and may

require some additional post processing. More complex statistical region-based

methods like clustering, collect pixels of similar intensities to create a segmen-
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tation of structures in the image [2]. However, in some cases the distributions

of one structure may locally overlap with those from another structure ren-

dering intensity-based segmentation techniques unusable.

Boundary finding algorithms like snakes [3], aspire to deform a local boundary

curve and come to rest on the high frequency data in an image, corresponding

to edges. Such algorithms are sensitive to initialisation, local minima and

leaking through boundaries of low gradient.

Active Shape Models (ASMs) proposed by Cootes [4] use a statistical model

built up from a training set of segmented objects to delineate the desired

shape. The model is compiled and then compressed, commonly using Prin-

cipal Component Analysis (PCA). ASMs have become a prominent tool in

the segmentation of the left ventricle [5, 6]. It is also worth noting that the

accuracy of the segmentation relies heavily on the amount and variation of

images in the training set.

Active Appearance Models (AAMs) [4] are an extension to ASMs which use

the texture variation in the training set in the compressed PCA. This method

alleviates the problems associated with the ASMs in areas of low gradients.

Stegmann [7] showed how these active appearance models could be applied to

analyse short axis MR images of the heart. Mitchell [8] addresses the problems

that AAMs have with attaching the model with the gradient information. A

hybrid approach is taken which combines ASMs and AAMs. Lelieveldt [9]

introduces a time factor into his Active Appearance Motion Models (AAMMs)

and minimises the appearance-to-target differences.

Level-set methods for segmentation (also called Geodesic Active Contours)

were first introduced by Osher and Sethian in 1988 [10] following previous
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work in Sethian’s Ph.D. thesis [11] on flame propagation. The theory behind

this boundary-based segmentation is largely based on work in partial differen-

tial equations and the propagation of fronts under intrinsic properties such as

curvature [12]. The deformation of the level set is seen as a gradient flow to a

state of minimal energy providing the object to be segmented has clearly iden-

tifiable boundaries [13,14]. By extending the dimensionality of the problem to

N + 1, where N is the initial dimension of the problem, some advantageous

properties can be exploited. These include level-sets ability to deal with local

deformations like shape corners, changes in topology and multi-component

structures. Such qualities lend themselves well in the field of medical image

segmentation where the biological structures split and merge through the vol-

ume. In our case, this is useful when separating the papillary muscles from

the blood pool. Malladi [15, 16] showed how level-set algorithm could be ap-

plied for enhancement and shape recovery in medical images. An extension of

Malladi’s work, performed by Niessen [17] uses a more diffusive propagation

term to increase the influence of the stopping term.

Zeng et al. [18] first introduced the idea of coupled level sets for segmentation

of the cortex of the brain. The coupled level set can use the constant thickness

or distance between the level-sets as a constraint to avoid spilling or over seg-

mentation. The ideas introduced by Zeng were extended by Paragios [19] who

applied a similar coupling constraint for the segmentation of the myocardium

of the heart.

Leventon [20] introduced a priori knowledge by building an a priori model

that was embedded in a level set formalisation and evaluating its modes of

variation using PCA analysis. Paragios [21] extended this idea by using in-

tensity based probability knowledge about the left ventricle blood pool and
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myocardium and incorporating this into the segmentation process.

The method described in this paper performs a coupled level-set segmentation

of the left ventricle myocardium. We increase robustness by incorporating tex-

tual information into the stopping term. This segmentation is supervised by

incorporating a priori knowledge into the evolution and applying this informa-

tion in a global sense to avoid leaking and selecting false local minima. The a

priori model is a probability function derived from manually segmented heart

images which biases results towards a training set. Due to the low signal to

noise ration(SNR) present in MRI scans, region based information is included

in the deformation, which gives improved robustness in the segmentation of

a wide variation of cardiac morphologies. Analysis of point-to-curve errors,

reproducibility plots and correlation results are provided on data-sets of the

heart and compared against manual delineation.

2 Method

A level-set segmentation is performed to robustly segment the myocardium of

the left ventricle of the heart. Level-set segmentation involves a deformable

curve or surface evolving under gradient information and the intrinsic cur-

vature. To overcome limitations with gradient based stopping terms, we in-

troduce a region based term to the stopping function to increase robustness.

To further control the evolution, two additional features have being applied.

Firstly, a coupled level-set is introduced, representing the endo- and epi-

cardium boundary of the left ventricle. These two level-sets interact with each

other through the evolution using a coupling function. This prohibits the endo-

cardium boundary joining with the epi-cardium boundary and also restricts

5



the epi-cardium boundary spilling where there is no gradient information avail-

able. The second feature to be added to the evolution is a priori information,

obtained from manual segmentations of the endo- and epi-cardium bound-

aries. This controls the evolution to bias manually defined shapes of the left

ventricle muscle.

2.1 Level-Set Formulation Background

The fundamental objective behind level-sets is to track a closed interface Γ(t),

for which Γ(t) : [0,∞) → RN , as it evolves in the data space. The interface

is represented by a curve in 2D and a surface in 3D or the set of points that

are on the boundaries of the region of interest Ω. Caselles et al [13] formalised

the minimization of the classic energy function used in snake evolution for the

extension to levelset theory.

min
∫

g(|∇I(Γ(s))|, Iσ)|Γ′(s)|ds (1)

We reformulate the stopping term to include the gradient (∇I) and region

changes (Iσ) at that position. This improves segmentation by enforcing homo-

geneity within the region Ω being segmented and is illustrated in Figures 1 and

2. ∇I is the gradient value measured across a six connected 3D neighborhood.

Iσ is a measure of the change in texture and is calculated by firstly measuring

the mean and variance of the voxels chosen during the initialisation stage.

g =
1

1 + ∇I
Iσ

(2)

Level-set theory aims to exchange the Lagranian formalisation and replace it

with Eulerian, initial valued partial differential equation evolution. From [13]
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it can be shown that the Euler-Lagrange gives a minimizing curve that is of

the form.

d

dt
Γ(s) = g(|∇I|)κ~n− (∇g · ~n)~n (3)

The term ∇g · ~n is a naturally accuring attraction force vector normal to the

surface and κ is the curvature term. By representing the boundary as the zero

level set instance of a higher dimensional function φ, the effects of curvature

can be easily incorporated. φ is represented by the continuous Lipschitz func-

tion φ(s, t = 0) = ±d, where d is the signed distance from position s to the

initial interface Γ0. The Lipschitz condition implies that the function has a

bounded first derivative. The distance is given a positive sign outside the ini-

tial boundary ( D Ω ), a negative sign inside the boundary ( Ω\∂Ω ) and zero

on the boundary ( ∂Ω ).

φ(s) =





−d ∀s ∈ Ω \ ∂Ω

0 ∀s ∈ ∂Ω

+d ∀s ∈ Rn \ Ω

(4)

From this definition of φ, intrinsic properties of the front can be easily deter-

mined, like the normal ~n = ± ∇φ
|∇φ| and the curvature κ = ∇ · ∇φ

|∇φ| .

In the segmentation scheme we would like to add a non-zero internal advection

or ballooning force, c , to the evolution, to evolve the either outward (c = 1) or

inward (c = −1). β and ε are independent user defined parameters controlling

the effects of attraction to gradients and curvature respectively.

∂φ

∂t
= g(I)(c + εκ)|∇φ|+ β(∇g · ∇φ) (5)
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2.1.1 Determination of the stopping term

To illustrate the improved performance of the advanced stopping term, the fol-

lowing phantom images were created and tested. Two situations are described,

the first where low gradient information is present between two regions and

the second where the grayscale difference between two regions was low. The

stopping term, as defined in Equation 2, uses a combination of the gradient

and change in texture. The change in texture (Iσ) is calculated after the ini-

tialisation with the fast marching algorithm described in Section 2.4. Within

the initialised region the mean µ and variance σ of the voxels are calculated.

From these values, a Gaussian is constructed and the Iσ(s) is calculated as,

Iσ(s) =
1

2πσ2
e

(x−µ)2

2σ2 (6)

where x is the value of the voxel at each position s in the image. The value of

Iσ is normalised between 0-1.

The user defined parameters ε and β represent the influence of the curvature

and attraction to gradient on the evolving boundary. In the following tests,

we want to evaluate the influence of the improved stopping term, so the value

of ε is given less significance to reduce the influence of curvature on the evo-

lution. In the segmentation of the left-ventricle boundaries, the value of ε is

given a higher significance as we know the boundaries approximate circles.

Similarly, β controls the attraction of the level-set boundary to gradients that

are normal to the curve. Again, this value is given a reduced weighting in

the proceeding tests. The results shown in Figures 1 and 2 demonstrate the

improved robustness against boundary leaking between regions.
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(a) (b)

Fig. 1. The original phantom image with a diffused segment (a) and Sobel edge

image (b). The second row shows the evolution with the existing g = 1
1+∇I at

iteration 0, 25 and 50 while the third row shows the evolution with our proposed

approach where g = 1
1+∇I

Iσ

at iteration 0, 25 and 50.

2.2 Coupling Force

To further control the level-set evolution we employ a coupling function be-

tween two level-sets. The coupling adds an extra constraint by introducing a

second level-set that is dependent on the first and coupling the level-sets with

an inhibitor function, which allows the curve to change direction of growth.

This is achieved without any extra computational expense as the distance be-

tween any point to the level-set boundary is the value of φ at that point, see

Equation 4. The piecewise inhibitor function, which is used as the interaction

between the two level-sets, is defined below, where d is the preferred distance

between the curves and w controls the slope between inward and outward

growth. The result η2(φ1) changes value from +1 to -1, which changes the
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(a) (b)

Fig. 2. The original phantom image with a close region (a) and Sobel edge image

(b). The second row shows the evolution with the existing g = 1
1+∇I at iteration

0, 25 and 50 while the third row shows the evolution with our proposed approach

where g = 1
1+∇I

Iσ

at iteration 0, 25 and 50.

direction of the evolution for φ2 between inwards and outwards. In practice

the values of d and w are taken from the scaled a priori model.

η2(φ1) =





−1 for φ1(s) < −d− w

| 3

√
φ1(s)−d

w
| for − d− w < φ1(s) < d + w

1 for φ1(s) > d + w

(7)

For this segmentation scheme, it is assumed that the gradient between the

blood pool and the endo-cardium boundary is significantly high to halt the

evolution of the level-set, also it is known that in some cases there is little or no

gradient information between the epi-cardium boundary and the lungs or liver.

Therefore, the level-set segmenting the epi-cardium boundary is controlled by
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Fig. 3. Graph of the inhibitor function where the values of d = 6 and w = 4.

the endo-cardium level-set using the inhibitor function described.

2.3 Introducing Priors

A priori information is incorporated with a probability density function (PDF),

which is defined as P (s) =
∫

f(s) ds. The model is built from a set of

hand segmented boundaries, a probable density function is created of both

the endo-cardium and epi-cardium boundaries that are then interpolated in

the z direction, scaled and aligned in the xy direction.

The PDF is constructed by aligning the binary manually segmented boundary

images and summing the boundary elements. This is done for both the endo-

cardium boundary and the epi-cardium boundary. It is incorporated into the

evolution in a global context, after each iteration the value ρt is evaluated as,

ρt =
∑

φ(t)s ∗ Ps (8)

where φ(t)s is the value of φ at time t at the position s and Ps is the probability

density at position s.

In order to obtain the full evolution equation for the level-set we have to incor-
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porate both the coupling function and the a priori knowledge into Equation 5.

Firstly, the output from the coupling function is either 1 or -1 and we want

it to change the direction of the curve evolution. From Equation 5 we can

see that the advection force defines the direction of the evolution, therefore

we incorporate the coupling function by multiplying it with the advection

force c. The a priori is designed to disregard inappropriate gradients and give

significance only to gradients that are situated close to previously manually

segmented boundaries. For this reason, we incorporate the a priori informa-

tion in the attraction term from Equation 5. Thus, the complete evolution for

the coupled level-set is defined as,

φt+1 = φt + g(I)(cη + εκ)|∇φ|+ β

1 + ρ̃t

(∇g · ∇φ) (9)

where η is the result of the coupling function between the level-sets and is

defined in Equation 7 and ρt is the a priori knowledge and is defined in

Equation 8.

(a) (b) (c)

Fig. 4. Images show the probability density functions from a priori hand segmented

images. Figure (a) shows the combined contours while (b) and (c) show the endo-

and epi-cardium boundaries respectively. Darker gray tone defines a higher proba-

bility of the boundaries.
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2.4 Initialisation

To counteract the ’myopic’ characteristics of these deformable models, the

initialisation process is very influential and is performed as follows. Firstly, it

is known that the endocardium boundary can be characterised by the high

contrast between the blood and the heart muscle in standard (TruFISP) cine

imaging of the heart. This characteristic is used when a fast marching algo-

rithm is applied to find a fast efficient initialisation for the blood following

the manual insertion of a seed point. The fast marching approach is driven by

a force Fs = e−α∇Is , which has a diffusive effect aimed at halting the fronts

progress at regions of high gradient. This fast-marching approach falls short

of the gradient defining the transition from blood to muscle. Therefore the

contour found by the fast marching algorithm is used as the initial curve of

the level-set algorithm to find the endocardium boundary. The results from

the Fast Marching initialisation are illustrated in Figure 5.

Fig. 5. Results show the initialisation (marked in white) from a seeded Fast Marching

algorithm. The method was applied to perform a robust initial estimate of left

ventricle cavity of the heart on four separate datasets displaying a high variability

of left ventricle shape.

To find the epi-cardial boundary the endocardium initialisation is dilated

slightly and the inner gradients are masked. Both curves are given a posi-
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tive advection force to propagate outwards. It is known that both the endo-

and epi-cardium boundaries of the left ventricle are approximately circular,

therefore the ε is given a high significance in the evolution. High curvature

constraints, the distance inhibitor and the a priori constraints all act to limit

the epi-cardium front from joining the inner front or spilling in areas of low

gradient, like the liver or the lungs.

(a) (b) (c) (d)

Fig. 6. The images above show evolution of the front at four different iterations (a)

iteration = 0, (b) iteration = 5, (c) iteration = 10 and (d) iteration = 15.

(a) (b) (c)

Fig. 7. Segmentation results of the same slice at three separate phases through the

hearts cycle, (a) end-diastolic, (b) mid-diastolic and (c) end-systolic.

3 Results

In order to assess the performance of the segmentation, the results were com-

pared against those obtained by manual segmentation of the endo and epi-
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cardium boundaries. The algorithm is applied to four unseen datasets (see

figure 8) with a high variation between datasets to assess the robustness when

using the coupling function and the a priori model. The datasets have a varia-

tion in pixel spacing (1.1-2.3mm/pixel) so all error measurements are given in

pixels. Table 1 represents the average, root mean square and variation of the

point to curve error for both the endo-cardium boundary and the epi-cardium

boundary.

(a) (b) (c) (d)

Fig. 8. The images above show the segmentation using our method on the four

previously unseen datasets.

Point-to-Curve Error

Endocardium Epicardium

Average 0.477 1.149

Root Mean Square 0.839 1.649

Standard Deviation 0.683 1.157

Table 1

Point-to-curve errors between manually segmented data and our method.

The results were then assessed in 2D using the areas enclosed in the endo and

epi-cardium boundaries, see Figures 9 and 10. The results are displayed in
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Fig. 9. The linear plot and Bland-Altman plot of the automatic segmentation against

the manual segmentation for the endocardium for all datasets shown in Figure 8.

linear regression plots and in Bland-Altman [22] plots to assess reproducibil-

ity. The high gradient information present between the myocardium and the

blood pools plays a crucial role in the accurate segmentation of the endo-

cardium which yields a correlation factor of 0.86. To maintain the generality

of this approach the parameters were unchanged for all datasets assessed. The

correlation factor for the epi-cardium areas regression is 0.85. The higher than

expected error illustrated in the Bland-Altman plots for figures 9 and 10 can

be explained with the high variation of the datasets, in particular see Figure

8(c). To illustrate the influence of this dataset on the results, the dataset was

removed and the results evaluated again. With this dataset removed (11% of

the total number of images) the regression values increase to 0.89 and 0.87 for

the endo-cardium and epi-cardium boundary respectively.
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Fig. 10. The linear plot and Bland-Altman plot of the automatic segmentation

against the manual segmentation for the epicardium for all datasets shown in Fig-

ure 8.

4 Conclusions and Future Work

The qualitative and quantitative results presented in this paper proves the

validity of our coupled level-set method for cardiac myocardium segmentation.

This paper describes a novel level-set segmentation where the evolution of the

coupled fronts are dependent on both a coupling function and a model trained

on real data. An improved stopping term is introduced that is dependent on

both gradient and region information.

Positive aspects of the method include the accurate segmentation of the bound-

aries of the heart. Such a boundary based segmentation can give more accurate

results than model fitting approaches, especially in the presence of patholo-

gies. Improved robustness is achieved by using a coupled level-set approach.

The method is constrained to limit over segmentation using both a distance
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inhibitor and is predisposed to replicate expert manual segmentations.

Using the probabilities obtained from the PDF of the training set, our method

addresses the limitation of model based approaches where there is a tradeoff

between accuracy and generality. In these approaches, strengthening the a

priori’s influence on the evolution may result in loss of segmentation detail,

patient abnormalities, muscle dysfunction etc. Investigating ways of improving

accuracy without removing generality are part of our plans to further develop

the method.
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