615 research outputs found

    The Effect of Training Dataset Size on SAR Automatic Target Recognition Using Deep Learning

    Get PDF
    Synthetic aperture radar (SAR) is an effective remote sensor for target detection and recognition. Deep learning has a great potential for implementing automatic target recognition based on SAR images. In general, Sufficient labeled data are required to train a deep neural network to avoid overfitting. However, the availability of measured SAR images is usually limited due to high cost and security in practice. In this paper, we will investigate the relationship between the recognition performance and training dataset size. The experiments are performed on three classifiers using MSTAR (Moving and Stationary Target Acquisition and Recognition) dataset. The results show us the minimum size of the training set for a particular classification accuracy

    Sparse Signal Models for Data Augmentation in Deep Learning ATR

    Full text link
    Automatic Target Recognition (ATR) algorithms classify a given Synthetic Aperture Radar (SAR) image into one of the known target classes using a set of training images available for each class. Recently, learning methods have shown to achieve state-of-the-art classification accuracy if abundant training data is available, sampled uniformly over the classes, and their poses. In this paper, we consider the task of ATR with a limited set of training images. We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm, such as a Convolutional neural network (CNN). The proposed data augmentation method employs a limited persistence sparse modeling approach, capitalizing on commonly observed characteristics of wide-angle synthetic aperture radar (SAR) imagery. Specifically, we exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting. Using this estimated model, we synthesize new images at poses and sub-pixel translations not available in the given data to augment CNN's training data. The experimental results show that for the training data starved region, the proposed method provides a significant gain in the resulting ATR algorithm's generalization performance.Comment: 12 pages, 5 figures, to be submitted to IEEE Transactions on Geoscience and Remote Sensin

    Synthetic Aperture Radar simulation by Electro Optical to SAR Transformation using Generative Adversarial Network

    Get PDF
    The CycleGAN generative adversarial network is applied to simulated electo-optical (EO) images in order to transition them into a Synthetic Aperture Radar (SAR)-like domain. If possible this would allow the user to simulate radar images without computing the phase history of the scene. Though visual inspection leaves the output images appearing SAR-like, examination by t-distributed Stochastic Neighbor Embedding (t-SNE) shows that CycleGAN was insufficient at generalizing an EO-to-SAR conversion. Further, using the transitioned images as training data for a neural network shows that SAR features used for classification are not present in the simulated images

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow

    Clearing the Clouds: Extracting 3D information from amongst the noise

    Get PDF
    Advancements permitting the rapid extraction of 3D point clouds from a variety of imaging modalities across the global landscape have provided a vast collection of high fidelity digital surface models. This has created a situation with unprecedented overabundance of 3D observations which greatly outstrips our current capacity to manage and infer actionable information. While years of research have removed some of the manual analysis burden for many tasks, human analysis is still a cornerstone of 3D scene exploitation. This is especially true for complex tasks which necessitate comprehension of scale, texture and contextual learning. In order to ameliorate the interpretation burden and enable scientific discovery from this volume of data, new processing paradigms are necessary to keep pace. With this context, this dissertation advances fundamental and applied research in 3D point cloud data pre-processing and deep learning from a variety of platforms. We show that the representation of 3D point data is often not ideal and sacrifices fidelity, context or scalability. First ground scanning terrestrial LIght Detection And Ranging (LiDAR) models are shown to have an inherent statistical bias, and present a state of the art method for correcting this, while preserving data fidelity and maintaining semantic structure. This technique is assessed in the dense canopy of Micronesia, with our technique being the best at retaining high levels of detail under extreme down-sampling (\u3c 1%). Airborne systems are then explored with a method which is presented to pre-process data to preserve a global contrast and semantic content in deep learners. This approach is validated with a building footprint detection task from airborne imagery captured in Eastern TN from the 3D Elevation Program (3DEP), our approach was found to achieve significant accuracy improvements over traditional techniques. Finally, topography data spanning the globe is used to assess past and previous global land cover change. Utilizing Shuttle Radar Topography Mission (SRTM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, paired with the airborne preprocessing technique described previously, a model for predicting land-cover change from topography observations is described. The culmination of these efforts have the potential to enhance the capabilities of automated 3D geospatial processing, substantially lightening the burden of analysts, with implications improving our responses to global security, disaster response, climate change, structural design and extraplanetary exploration

    Use of remote sensing‑derived fPAR data in a grapevine simulation model for estimating vine biomass accumulation and yield variability at sub‑field level

    Get PDF
    Grapevine simulation models are mostly used to estimate plant development, growth and yield at plot scale. However, the spatial variability of pedologic and micro-climatic conditions can influence vine growth, leading to a sub-field heterogeneity in plant vigor and final yield that may be better estimated through the assimilation of high spatial resolution data in crop models. In this study, the spatial variability of grapevine intercepted radiation at fruit-set was used as input for a grapevine simulation model to estimate the variability in biomass accumulation and yield in two Tuscan vineyards (Sites A and B). In Site A, the model, forced with intercepted radiation data as derived from the leaf area index (LAI), measured at canopy level in three main vigor areas of the vineyard, provided a satisfactory simulation of the final pruning weight (r2 = 0.61; RMSE = 19.86 dry matter g m−2). In Site B, Normalized Difference Vegetation Index (NDVI) from Sentinel-2A images was firstly re-scaled to account for canopy fraction cover over the study areas and then used as a proxy for grapevine intercepted radiation for each single pixel. These data were used to drive the grapevine simulation model accounting for spatial variability of plant vigor to reproduce yield variability at pixel scale (r2 = 0.47; RMSE = 75.52 dry matter g m−2). This study represents the first step towards the realization of a decision tool supporting winegrowers in the selection of the most appropriate agronomic practices for reducing the vine vigor and yield variability at sub-field level
    • …
    corecore