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Abstract
Grapevine simulation models are mostly used to estimate plant development, growth and 
yield at plot scale. However, the spatial variability of pedologic and micro-climatic condi-
tions can influence vine growth, leading to a sub-field heterogeneity in plant vigor and final 
yield that may be better estimated through the assimilation of high spatial resolution data 
in crop models. In this study, the spatial variability of grapevine intercepted radiation at 
fruit-set was used as input for a grapevine simulation model to estimate the variability in 
biomass accumulation and yield in two Tuscan vineyards (Sites A and B). In Site A, the 
model, forced with intercepted radiation data as derived from the leaf area index (LAI), 
measured at canopy level in three main vigor areas of the vineyard, provided a satisfactory 
simulation of the final pruning weight (r2 = 0.61; RMSE = 19.86 dry matter g m−2). In Site 
B, Normalized Difference Vegetation Index (NDVI) from Sentinel-2A images was firstly 
re-scaled to account for canopy fraction cover over the study areas and then used as a proxy 
for grapevine intercepted radiation for each single pixel. These data were used to drive the 
grapevine simulation model accounting for spatial variability of plant vigor to reproduce 
yield variability at pixel scale (r2 = 0.47; RMSE = 75.52 dry matter g m−2). This study rep-
resents the first step towards the realization of a decision tool supporting winegrowers in 
the selection of the most appropriate agronomic practices for reducing the vine vigor and 
yield variability at sub-field level.
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Introduction

Grapevine (Vitis vinifera L.), with a global cultivated area of 7.3 million hectares, is one of 
the main components of agricultural systems worldwide (OIV, 2020). One third of this area 
is cultivated in Italy, France and Spain, which contribute almost 50% to the global wine 
production (OIV, 2020), so representing a key economic asset (Santos et al., 2020), and the 
typical cultural landscape of many agricultural regions (Barbera & Cullotta, 2016).

Since wine production and quality is largely affected by the spatial variability of pedo-
environmental conditions, the adoption of precision agriculture techniques aimed at opti-
mizing management improves uniformity of yields and product quality (Arnó et al., 2009; 
Brook et al., 2020; Matese et al., 2015). Indeed, the early detection of vine growth con-
ditions and the advanced scheduling of farm practices (e.g. harvest) is crucial where the 
vine growing cycle is exposed to the impact of climate change (Biasi et al., 2019; Hannah 
et al., 2013; Leolini et al., 2018b; Moriondo et al., 2011, 2013; Wolkovich et al., 2018). In 
this context, process-based models are the preferred tools for assessing the effects of the 
environment on plant development and growth since they describe potential biomass accu-
mulation as limited by nutrient or water stress (Bindi et al., 1997a, 1997b; Leolini et al., 
2018a; Moriondo et al., 2007, 2019; Sinclair, 1986). However, crop growth models usually 
require many inputs to define local environmental conditions, such as weather, soil and 
management practices, and for monitoring the ongoing growing season, so limiting their 
application to the plot scale where this information is generally fully available. In a context 
of precision agriculture, the detailed real time description of field conditions is required for 
an optimized management of agronomic practices and farm scheduling. For this reason, 
process-based models which need large amounts of input data might not be a readily avail-
able approach for simulating the spatial variability of plant processes when the resolution 
scale is extended to farm or regional scale (Basso et al., 2001; Challinor et al., 2004).

The crop model reliability to robustly simulate plant growth processes may therefore 
be improved with information derived by remote sensing (RS) platforms, which provide 
data to force or update simulated state variables to observed values (e.g. derived from 
radiometric observations) (Clevers et al., 2002; Maselli et al., 2013; Moulin et al., 1998), 
with the purpose of increasing model accuracy at field level (Basso et al., 2001; Clevers 
et  al., 1994; Ginaldi et  al., 2019; Moriondo et  al., 2007). Considering that plant canopy 
development and their light interception capability assume a relevant role in physiologi-
cal processes such as transpiration and photosynthesis (Mabrouk et  al., 1997; Mezghani 
et al., 2016), many efforts focused on deriving leaf area index (LAI) values or fPAR (frac-
tion of the Photosynthetically Active Radiation) estimates from RS vegetation indices to 
feed crop models. Despite the approach being successfully adopted for sowing crops such 
as rice (Gilardelli et al., 2019; Setiyono et al., 2018), wheat (Guo et al., 2018; Moriondo 
et al., 2007), soybean (Basso et al., 2001) and maize (Fang et al., 2008, 2011), it has been 
still little applied on perennial crops with a few exceptions like olive tree (Leolini et al., 
2022; Maselli et al., 2012) and jujube fruit tree (Bai et al., 2019). This is likely due to the 
inherent difficulty in disentangling the relative contribution of the various components of 
the agro-ecosystem to the vegetation index signal: the tree canopy and herbaceous layer 
(Maselli et al., 2012). These components may vary both during the season and within field 
depending on environmental conditions and management practices, so the assimilated 
normalized difference vegetation index (NDVI) signal must be partitioned among agro-
ecosystem elements by the use of segmentation algorithm procedures (Cinat et al., 2019; 
Di Gennaro & Matese, 2020; Sozzi et  al., 2020). Most of the available studies propose 
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multiple data assimilation at several stages during the season, thus increasing the number 
of external inputs required (e.g. RS images; Basso et al., 2001; Huang et al., 2015; Zhao 
et al., 2013). Although a larger amount of multi-temporal data can increase yield prediction 
accuracy, this procedure requires either specialized staff and several field campaigns (e.g. 
UAVs images, Ziliani et al., 2018), or time-consuming data post-processing and quality-
checks (e.g. satellite images, Matese et al., 2015), with detrimental effects on the timing of 
estimation of vine yield. Indeed, despite it having been demonstrated that the simulation 
accuracy increases with a higher number of observations closer to the target event (Basso 
et al., 2001), an advanced prediction of actual field conditions can lead to useful informa-
tion for farmers to identify the most appropriate management practices.

On this basis, this study intends to take steps forward in the integration between a grape-
vine growth model and satellite data, resolving the issue of accurately simulating vine 
biomass accumulation variability at sub-field level using a limited number of remotely 
sensed information. The aim of this work is to evaluate the feasibility of a forcing strategy 
based on remotely sensed canopy fPAR obtained at a single early stage (fruit-set) to guide 
the light interception in a crop simulation model (UNIFI.GrapeML, Leolini et al., 2018a, 
2019). This methodology was tested in two Tuscan vineyards (Sangiovese variety) for esti-
mating the variability of biomass accumulation at the end of the season, and then extended 
to a larger scale to perform a spatially explicit estimation of the plant growth processes, 
focusing on water balance and final yield as ground truth.

Materials and methods

Study area

The study was conducted in two vineyards where Sangiovese grapevine variety is grown 
(Vitis vinifera L.), located in Tuscany region, Italy:

(1)	 The first vineyard (Site A, 0.5 ha, N–S oriented) is situated at Suvereto (Leghorn, 
43° 04′ 36.4′′ N 10° 41′ 43.4′′ E; Fig. 1) and is characterized by a typical Mediter-
ranean climate with hot-dry summers and mild winters (Koppen, 1936). Annual air 
temperature was 15 °C during the period 1950–2019, with the average maximum air 
temperature recorded in August (29 °C) and average minimum air temperature in Janu-
ary (3.1 °C; E-OBS dataset, www.​ecad.​eu). The annual average amount of precipita-
tion (1950–2019) was 685 mm. The experiment was conducted in 2015, when average 
air temperature was 21.4 °C during the grapevine growing season (April–October) 
and precipitation was 198 mm. The soil texture is clay-loam (28% clay, 53% sand 
and 19% silt), tilled from budbreak to harvest to control weeds. The vines, planted in 
1999, were trained with a Guyot system (5–7 shoots per plant) at a planting density of 
2.4 m × 0.8 m. The vineyard follows the standard protocols of organic viticulture and 
agronomic practices such as composted sheep manure distribution, shoot positioning 
and pruning, and pest control with sexual confusion technique, copper and sulfur dis-
tribution (Caruso et al., 2017).

(2)	 The second vineyard (Site B, 1.4 ha, NW–SE oriented) is located at Fonterutoli (Siena, 
43° 25′ 45.30′′ N, 11° 17′ 17.92′′ E; Fig. 1) and is characterized by a Mediterranean 
climate (Koppen, 1936). Annual average air temperature was 13 °C during the period 
1950–2019 with the average maximum air temperature recorded in August (28.6 °C) 

http://www.ecad.eu
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and average minimum air temperature recorded in January (1.1 °C; E-OBS dataset, 
www.​ecad.​eu). The average annual precipitation was 910 mm (1950–2019). The experi-
ment was conducted in 2018, when the grapevine growing season had an average air 
temperature of 19.2 °C with a peak of 37.2 °C in July. The total amount of precipita-
tion was 344 mm, concentrated in April–May and August–September (source https://​
www.​sir.​tosca​na.​it/). The vineyard (slope 22%) is located in a hilly area where stable 
meadow, arable land, olive groves and vineyards are dominant, and soil texture is loam 
(23% clay, 34% sand and 43% silt; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). The vines 
were planted in 2008 and trained as a single cordon spur-pruned using a vertical shoot-
positioned trellis (8 shoots per plant on average) at a planting density of 2.2 m × 0.8 m. 
The plants were pruned leaving four two-bud spurs per vine, whereas pest control and 
soil and canopy management followed standard local management practices, i.e. winter 
pruning, partial defoliation around cluster after veraison and fruit thinning.

Fig. 1   Location and experimental design of the vineyard study cases (Site A and B) in Tuscany region. 
a Vineyard distribution of vigor areas, Site A: High (H1), Medium (M1) and Low (L1) vigor areas; Site 
B: High (H2) and Low (L2) vigor areas in Sentinel-2A grid (white squares). b Sampling scheme on the 
vineyard row: three adjacent rows of 20 m used for LAI measurements with four replicates of 4 m used for 
pruning weight data collection only in the central row (white squares; Site A), and white patches (Site B) 
used for vegetation and yield measurements. In Site B, Soil Water Content Sensors (SWCS1 and SWCS2) 
were positioned in the pixels 8 and 29 of H2 and L2 vigor zones, respectively

http://www.ecad.eu
https://www.sir.toscana.it/
https://www.sir.toscana.it/
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Experimental design and data collection

In Site A, LAI measurements were performed on June 11 (Day of the Year, DOY = 162) 
and July 9 (DOY = 190) 2015 using a LAI-2000 optoelectronic sensor (LI-COR, Lincoln, 
Nebraska, USA) and following the tow-azimuth protocol (Welles & Norman, 1991, LI-
COR 1992). The LAI measurements were performed in three different vigor areas of the 
vineyard: high (H1), medium (M1) and low (L1) areas (Fig. 1a, Site A). In each area, three 
adjacent portions of rows (3 rows × 20 m each) were selected (total 75 vines). All three rows 
were included in LAI measurements as described in Caruso et al. (2017), whereas only the 
central row in each area was used for the determination of pruning weight (Fig. 1b, Site A). 
Fresh pruning weight (kg/linear meter of vine-row) was measured in February 2016 on a 
portion of 20 m consisting of four replicates (4 m each) per vigor group (Fig. 1b, Site A). 
The 50% of dry matter found on the total shoot biomass allowed fresh pruning weight to be 
converted into dry weight (Caruso, unpublished data). Phenological stages of beginning of 
flowering (61), fruit-set (71), beginning of bunch closure (77) and veraison (83) based on 
BBCH-scale stages (Lorenz et al., 1995) were observed on the field.

Daily maximum and minimum air temperature (°C), precipitation (mm), global solar 
radiation (W m−2 then converted in MJ m−2 day−1) and wind speed (m s−1) were collected 
by a weather station sited 8 km away from the vineyard (Venturina, 43° 1′ 14.545, 10° 36′ 
22.23° E). Soil texture, available nutrient content and percentage of organic matter were 
measured on soil samples collected in five zones and at two soil depths (0.25 and 0.50 m).

In Site B, field samplings were performed three times during the growing season: on 
June 26 (DOY = 177), August 8 (DOY = 220) and September 25 (DOY = 268) 2018 in two 
zones of the vineyard characterized by high (H2) and low (L2) plant vigor (Fig. 1a, Site B). 
The sampling areas comprised 39 Sentinel-2A pixels (10 × 10 m): 19 pixels were placed in 
H2 zone and the remaining 20 in the L2 zone. For each pixel, an average of 5 vines (min. 
3–max. 9) were sampled (one plant every 10 plants) on the row along the field slope 
(Fig. 1b, 208 plants in total). fPAR and LAI were measured by AccuPAR, LP-80 Ceptome-
ter (Decagon Devices, Inc., Pullman, Wash). The ceptometer was positioned along the row 
to directly estimate the above (PARabove) and below (PARbelow) fraction of the PAR (López‐
Lozano & Casterad, 2013). The PARabove and PARbelow were used for deriving the fraction 
of intercepted radiation 

(

1 −
fPARbelow

fPARabove

)

 and LAI. The ceptometer measurements collected 
along the row were subsequently converted into canopy fPAR data as shown in López‐
Lozano and Casterad (2013). The canopy dimensions (i.e. height, width and length) were 
assessed on a total of 30 plants, randomly selected in the H2 and L2 zones of the vineyard 
(Fig. 1a, Site B). At harvest (25 September), the fresh fruit weight (kg plant−1) was meas-
ured on 208 sampled plants (Fig. 1b, Site B). Dry fruits weight was estimated after drying 
fresh fruits at 80 °C for 3 days, using 20 representative bunches from the sampled vines. 
All measurements (fPAR, LAI and fruits weight) were then averaged at pixel scale. The 
phenological phases of flowering, fruit-set and veraison were extracted from the Agroam-
biente regional website (http://​agroa​mbien​te.​info.​regio​ne.​tosca​na.​it/) in Fonterutoli area, 
assuming that maturity stage corresponds to harvest time.

Weather variables, Soil Water Content data (SWC, m3 m−3) and phenological observa-
tions were also collected. Daily maximum and minimum air temperature (°C), precipita-
tion (mm) and wind speed (m s−1) were gathered by an automatic weather station sited 
11  km away from the vineyard (weather station code: TOS11000087; TOS11000019; 
https://​www.​sir.​tosca​na.​it/). Global solar radiation (MJ m−2 day−1) was estimated from air 
temperature according to Hargreaves and Samani (1982). SWC was sampled during 2018 

http://agroambiente.info.regione.toscana.it/
https://www.sir.toscana.it/
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in two pixels placed in H2 and L2 zone (Fig. 1a, Site B) at 15–20 cm depth using Decagon 
EC-5 sensors (Decagon Devices, 2010) with a frequency of 15 min and then aggregated at 
daily scale.

Image acquisition and processing

An Unmanned Aerial Vehicle (UAV) flight campaign was performed on June 26, 2018 in 
site B using the multirotor platform (Mikrokopter HiSystems GmbH, Moomerland, Ger-
many, Di Gennaro et al., 2019). The flight plan was managed by the software Mikrokop-
ter Tool (V2.20, HiSystems GmbH, Moomerland, Germany), which allows generating a 
route of waypoints as a function of the sensor field of view (FOV), the degree of overlap-
ping between images and the ground resolution needed. The flight height was 50 m above 
ground level, achieving 0.03  m ground resolution and 80% of forward and lateral over-
lap. The images, used for the detection of vine canopy cover, were acquired by a Sony 
Cyber-shot DSC-QX100 RGB camera (Sony Corporation, Tokyo, Japan), which includes 
a CMOS Emor R sensor (20.2 megapixel) and a Carl Zeiss Vario-Sonnar T lens. The high 
resolution RGB images were recorded at noon under clear sky conditions. Subsequently, 
the images were mosaicked using Agisoft Photoscan Professional Edition 1.1.6 (Agisoft 
LLC, St. Petersburg, Russia), and processed using ArcGIS (ArcMap 10.3). Extraction of 
the vine canopy cover from RGB images was performed considering the color distribu-
tion curves of main elements in the vineyard (i.e. vegetation and background): a threshold-
ing technique was applied on the green index to detect the plant canopy and thus extract 
the vegetation cover (Maselli et al., 2012). Moreover, the 2A product (surface reflectance) 
images of Sentinel-2A at 10 × 10  m resolution were acquired from the official Coperni-
cus Open Access Hub (https://​scihub.​coper​nicus.​eu). The available cloud-free Sentinel-2A 
images (179 and 219 day of year, DOY) closer to the field measurement campaign dates 
(DOY 177 and 219) were manually selected. Those images were subsequently processed 
using the raster package (version 2.8_19) in the R software environment (version 3.5.2) to 
extract the NDVI (Eq. 1, Rouse et al., 1974) in the 39 pixels of Site B. The NDVI values, 
ranging from − 1 (deep water) to + 1 (dense green vegetation), at fruit-set stage (DOY 177) 
were then used for spatially re-scaling on the vine canopy cover derived by the UAV flight 
and used to estimate fPAR data.

where NIR is the reflectance in the near-infrared band (760–900 nm) and RED is the reflec-
tance in the red band (630–690 nm).

Forcing grapevine simulation model with fPAR data

The original version of UNIFI.GrapeML (Leolini et al., 2018a) simulates biomass accu-
mulation at a daily time step, as a function of LAI and fPAR, which is then converted 
into biomass using the radiation use efficiency (RUE, g MJ−1) approach as described in 
Bindi et al. (1997a, 1997b) for grapevine. The daily value of RUE is modulated accord-
ing to CO2 concentration and as a function of air temperature (Ritchie & Otter, 1985; Van 
Leuken & Seligman, 1987). The accumulated biomass is converted into transpired water 
using the transpiration efficiency coefficient (Soltani & Sinclair, 2012). The phenological 
model defines budbreak occurrence, which depends on the accumulation of chilling and 

(1)NDVI =
NIR − RED

NIR + RED
,

https://scihub.copernicus.eu
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forcing units from a user-defined day of the year until the end of the eco-dormancy period. 
The development stages after budbreak are estimated using the forcing unit accumulation 
approach (Caffarra & Eccel, 2010). During the budbreak-flowering period, the biomass is 
entirely allocated into vegetative organs, whereas during fruit-set-harvest period it is par-
titioned into fruits, proportionally to daily increases in the harvest index (dHI/dT). The 
model also takes into account the effect of suboptimal temperatures around flowering, by 
introducing a yield-reducing temperature factor, as described by Farquhar and Caemmerer 
(1982) for photosynthesis.

In this study, the simulated LAI dynamic was adapted to reproduce the senescence 
process after veraison, thus separating the photosynthetically active green leaf area index 
(GLAI) from the total LAI. The GLAI trend was divided into three stages: in stage 1, the 
GLAI increases from budbreak to fruit-set. In stage 2, the GLAI remains constant up to 
veraison, after which it starts decreasing due to leaf senescence (stage 3). In the third stage, 
temperature and photoperiod modulate the impact of senescence as described in Delpierre 
et al. (2009) for deciduous trees (Bregaglio et al., 2016; Online Resource 1). The simulated 
fPAR dynamic, as previously described in Bindi et  al. (1997a, 1997b), now follows this 
GLAI dynamic.

The simulation was initially performed without forcing the model with proximal and 
satellite RS data, in order to derive the maximum value of fPAR at fruit-set. This run 
allowed the trend of fPAR to be set (pre-run fPAR trend), which was derived as the ratio 
between the unforced daily fPAR (fPARiU) and the pre-run max fPAR (max[fPARfruit-setU]). 
Subsequently, the values of LAI (Site A) and NDVI (Site B) at fruit-set stage were used to 
derive the fPAR at maximum vine canopy development, using two linear relationships. The 
maximum value of fPAR from RS sensors (max[fPARfruit-setRS]) was then multiplied by the 
pre-run fPAR trend to obtain the daily dynamics of intercepted radiation (Eq. 2).

UNIFI.GrapeML model (Fig. 2) was coupled with UNIMI.SoilW component, which is 
a software library collecting models to simulate crop water uptake and redistribution in 
the soil profile (Donatelli et al., 2014; Leolini et al., 2018a). The ratio between available 
and total water holding capacity in one meter of the root zone (i.e. field capacity and wilt-
ing point) was used to compute a water stress index (0–1, 0 maximum stress, 1 no stress), 
which is a reducing factor of leaf area expansion and plant photosynthesis (Bindi et  al., 
1997a, 1997b, 2005). The minimum weather dataset required to drive the model includes 
daily data of maximum and minimum air temperature, global solar radiation and precipita-
tion, other than the CO2 atmospheric concentration.

Strategies for fPAR estimation

In Site A, LAI field measurements collected on DOY 162 and 190 were used for deriving 
LAI values on DOY 149 and 224 in all three vineyard vigor areas (H1, M1, L1) by using 
the LAI vs NDVI relationship found by Caruso et al. (2017) with the purpose of evaluating 
the LAI trend during the season.

Subsequently, the average LAI values measured on each vigor area at 162 DOY (fruit-
set stage) were converted into fPAR data of the four corresponding replicates of the central 
row. fPAR data were derived by a linear regression obtained from ceptometer observations 

(2)fPARi =
fPARiU

max
[

fPARfruit−setU

] ⋅max
[

fPARfruit−setRS

]

.
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among these two variables in Site B (fPAR = 0.149‧LAI + 0.0585, r2 = 0.94). The four 
fPAR data extracted per vigor area were used to force the grapevine simulation model.

In Site B, fPAR was calculated from remotely-sensed NDVI values after detecting 
actual vine cover from the UAV flight. Given that grapevine canopies did not entirely 
cover the ground, a re-scaling procedure was applied on Sentinel-2A NDVI data in order 
to estimate the contribution of grapevine and grass cover. The correlation between the 
vine canopy cover extracted from all pixels of the UAV image and the related values of 
Sentinel-2A NDVI (Fig. 3, solid line) allowed the NDVI value to be derived, correspond-
ing to full pixel coverage by vine canopy (when canopy cover is equal to 1, according to 
Maselli et al., 1998). Subsequently, the NDVI value at full canopy cover was thus re-scaled 
using the vine cover of each pixel to extrapolate the actual NDVI contributions due to vines 
(

NDVIActual = NDVIFullCC ⋅ CC
)

.
The resulting NDVI was then converted into fPAR using the generalized linear equa-

tion of Myneni and Williams (1994), which was successfully applied to other crops (e.g. 
Maselli et al., 2012 on olive tree; Eq. 3).

where fPAR ranges from 0 to 1.

Model parameterization and performance evaluation

The accuracy of the data assimilation methodology proposed in this study was evaluated 
comparing simulated outputs with the observations collected in the two study cases. In Site 
A, the UNIFI.GrapeML was forced using fPAR data directly estimated from proximal LAI 
observations in the field, whereas in Site B the model forcing was performed by using of 
NDVI-derived fPAR data from satellite RS platform.

The grapevine simulation model was calibrated for Sangiovese variety (Table  S1 in 
Online Resource 2) in previous studies (Bindi et al., 1997a, 1997b, 2001a, 2001b, 2005; 
Leolini et  al., 2019). In this work, only the parameters related to leaf area development 
(SLAE) and biomass partitioning (HI and HIcutoff) were adjusted in order to improve model 
accuracy in simulating leaf area and fruit biomass (Table S1 in Online Resource 2). The 
information on vine training management (shoot number and planting density) was used 
for adjusting the simulation to the actual conditions of Site A and B.

Since the growth model does not explicitly consider the distribution of biomass in 
shoots and leaves, the weight of shoots at pruning for site A was obtained from simulated 
vegetative biomass by subtracting the weight of leaf biomass calculated using simulated 
leaf area and the specific leaf weight (54.85 g dry weight m−2, Palliotti et al., 2009). Dry 
matter partitioning towards the shoots after harvesting was considered negligible (Nendel 
& Kersebaum, 2004).

(3)fPAR = 1.1638 ⋅ NDVI − 0.1426,

Fig. 2   UNIFI.GrapeML workflow including the new implementations (red color). LeafFallDelPierre, 
LeafSenescence and LeafCycle are new models implemented for describing leaf development during the 
growing season on which fPAR is modulated. The implementation of the switch in the Intercepted radiation 
model allows the user to select between fPAR simulated by the model (fPAR model, ML) or fPAR derived 
by RS systems (fPAR RS). Tx daily maximum air temperature (°C), Tn daily minimum air temperature (°C), 
P precipitation (mm day−1), GSR global solar radiation (MJ m−2 day−1), CF Chilling-Forcing, GDD grow-
ing degree days (°C day−1), t resolution time

▸
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Model performances were evaluated using the Determination coefficient (r2, Eq.  4), 
Root Mean Squared Error (RMSE, Eq. 5) and Coefficient of Residual Mass (CRM, Eq. 6). 
The target variables for model evaluation were the shoot biomass in Site A and grapevine 
yield and water balance in Site B.

where Oi is the observed value, O is the average of the observed values, Pi is the predicted 
value, n is the number of observations.

Results

Grapevine model performance after forcing with fPAR derived from proximal LAI 
observations

UNIFI.GrapeML was able to reproduce the LAI development and shoot biomass accumu-
lation during the 2015 growing season in Site A (Fig. 4). The LAI trend was compared to 

(4)r2 = 1 −

∑n

i=1

�

Oi − Pi

�2

∑n

i=1

�

Oi − O
�2

,

(5)RMSE =

[

n
∑

i=1

(Pi − Oi)
2

n

]0.5

,

(6)CRM =

∑n

i=1
Oi −

∑n

i=1
Pi

∑n

i=1
Oi

,

Fig. 3   Procedure of NDVI re-scaling based on the vine canopy cover in Site B. NDVIObsMax and 
NDVIObsMin are the maximum and minimum observed values of the NDVI extracted by Sentinel-2A image 
for all pixels, respectively. CCObsMax and CCObsMin are the maximum and minimum observed values of the 
canopy cover extracted by UAV image for all pixels, respectively. NDVIFullCC is the NDVI value at full vine 
canopy cover while a is the slope and b is the intercept of the linear regression



Precision Agriculture	

1 3

simulated GLAI showing satisfactory performances at field scale (r2 = 0.96; RMSE = 0.09; 
CRM = 0.09; Fig. 4a). The forcing of UNIFI.GrapeML with the maximum fPAR value at 
fruit-set stage allowed the simulation to be re-initialized (Fig. 4b). The model was thus able 
to differentiate the trends of fPAR in areas of different vigor (H1, M1, L1) and to simu-
late shoot biomass at the end of the season (r2 = 0.61; RMSE = 19.86 g  m−2 dry matter; 
CRM =  − 0.06, Fig. 4c).

Grapevine model performance after forcing with fPAR derived from Sentinel‑2A 
NDVI data

NDVI re‑scaling and fPAR estimation from remote sensing imagery

The proposed procedure allowed the contribution of the grapevine and ground grass to the 
canopy cover to be discerned, by rescaling NDVI values derived from Sentinel-2A pix-
els with a single UAV image in Site B (r2 = 0.80; Fig. 5a). The comparison between the 
original NDVI from Sentinel-2A and the actual NDVI contribution of vine canopies in 
each pixel of the experimental design is shown in Fig. 5b (r2 = 0.80). The derived fPAR 
was thus compared to observed data of intercepted radiation measured by the ceptometer, 
showing satisfying accuracy at maximum canopy development (r2 = 0.83; RMSE = 0.04; 
CRM =  − 0.09; Fig.  5c-June). On the contrary, a larger difference between NDVI-based 
and observed fPAR was found in August (r2 = 0. 66; RMSE = 0.06; CRM =  − 0.20; 
Fig.  5c-August). Finally, it is worth mentioning that the use of the re-scaling procedure 
increased the correlation between fPAR obtained from Sentinel 2A images and ceptometer 
measurements (r2 = 0.62; RMSE = 0.24; CRM =  − 1.23; Fig. S1 in Online Resource 2).

Soil water content simulation

Soil water dynamic was accurately simulated in both L2 and H2 zones of Site B (L2 zone-
pixel 29: r2 = 0.66; RMSE = 0.023 m3  m−3; CRM = 0.01; H2 zone—pixel 8: r2 = 0.66; 
RMSE = 0.024 m3 m−3; CRM = 0). The comparison of simulated and measured SWC data 
is shown in Figs. 6 and S2 in Online Resource 2. SWC was close to field capacity (0.231 
m3 m−3) at the beginning and end of the season because of the high amount of precipita-
tion occurring during the spring-winter period (January–May and November–December), 

Fig. 4   a Simulated GLAI trend (solid line) and LAI observations (black dots) ± standard deviation over the 
growing season in Site A. b Average fPAR (solid lines) and variability (colored shaded areas) seasonal 
trends in H1, M1 and L1 vigor areas. c Correlation between simulated and observed shoot biomass (g 
m−2, dm dry matter) in all vineyard vigor areas (H1, M1, L1) at the end of the season. Significance level: 
**p < 0.01 (Color figure online)
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Fig. 5   a Correlation between vine canopy (from 0 to 1) and NDVI values (from 0 to 1) extracted for each 
pixel of Sentinel-2A image at fruit-set stage in Site B. b Correlation between NDVI values (from 0 to 1) of 
each pixel in Sentinel-2A image and the NDVI values of vine canopies (from 0 to 1) after re-scaling NDVI 
on the vine canopy cover (from 0 to 1) of each pixel. c Comparison between Sentinel-2A (DOY 179; white 
bars) and Ceptometer-derived (DOY 177; black bars) fPAR in June 2018 (top) and August 2018 (DOY 219; 
bottom). d Average (continuous line) and variability (shaded area) of the seasonal trend of the fraction of 
intercepted radiation simulated using UNIFI.GrapeML in Site B. The points with whiskers represent the 
average value and variability of the fPAR distribution measured with a ceptometer in June and August 2018 
in each pixel of the experimental design. Significance level: ***p < 0.001

Fig. 6   Soil water content dynamics during 2018 in the low vigor area of Site B. The observed and simu-
lated values of the soil water content (m3 m−3) for the pixel (number 29, see Fig. 1a, Site B) where soil 
water sensors were placed are reported in blue (points) and orange (continuous line). The shaded area rep-
resents the soil water content variability after forcing the model with fPAR data in all pixels of the experi-
mental design. The secondary y-axis shows the amount of daily precipitation (mm; solid black line) (Color 
figure online)
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whereas it decreased during summer until the beginning of autumn when wilting point 
(0.130 m3 m−3) was reached as a consequence of root water uptake in the drought period. 
The simulated SWC matched the data measured by soil water probes positioned in L2 vigor 
pixel (SWCS2 in Fig. 1a, Site B; Fig. 6). The forcing with remotely-sensed fPAR allowed 
the simulation model to differentiate the plant growth and transpiration in each pixel and to 
adequately represent the variability of SWC at pixel scale (Figs. 6, S2 in Online Resource 
2—shaded areas). The minimum simulated SWC ranges from 0.11 to 0.15 m3 m−3 at DOY 
205 (23 July), depending on the plants’ vigor in the different pixels of Site B.

Grapevine yield simulation

UNIFI.GrapeML was able to accurately reproduce the GLAI value at fruit-set stage (0.90 
m2  m−2 simulated vs 0.89 m2  m−2 observed) at field level. The model was also able to 
reproduce the variability of grapevine yield at Sentinel-2A pixel scale of Site B (r2 = 0. 
47; RMSE = 75.52 dry matter g m−2; CRM = 0; Fig.  7a), after calibrating harvest index 
according to measurements (51% of the total plant biomass partitioned to the fruit). The 
larger fruit biomass production in the upper side of the vineyard was determined by higher 
plant vigor. This higher plant vigor led to higher light interception as revealed by the field 
observations (RMSE = 0.05; mean daily intercepted radiation from bud-break to matu-
rity = 0.18, RMSE = 92.16 g m−2 dry matter). On the contrary, a lower fruit biomass pro-
duction was determined by a decreased plant vigor in the lower side of the vineyard. Simi-
larly, a low plant vigor corresponded to decreased light interception (intercepted radiation 
RMSE = 0.02, mean daily intercepted radiation from bud-break to maturity = 0.11, grape-
vine yield RMSE = 59.45 g m−2 dry matter, Figs. 7b, S3 in Online Resource 2).

Discussion

The use of state variables (e.g. fPAR or LAI) obtained from remote sensing to drive crop 
simulation models allows the variability of plant growth and development processes 
to be captured at sub-field scale and this approach  is widely described in the literature 

Fig. 7   a Correlation between observed and simulated values of fruit biomass (g m−2, dm = dry mat-
ter) obtained forcing UNIFI.GrapeML with NDVI-derived fPAR data in Site B. b Comparison between 
observed and simulated yield (g m−2 dm) in high and low productivity zones of the vineyard. Significance 
level: ***p < 0.001
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(e.g. Ginaldi et al., 2019; Huang et al., 2019; Jin et al., 2018). The availability of satellite 
data at a time resolution comparable to the time step of the simulation model is a prerequi-
site for a model forcing approach (Jin et al., 2018). This implies the use of multi-temporal 
data that, while increasing the accuracy of the simulations, can reduce the model usabil-
ity for real-time monitoring operations (Wang et  al., 2014; Zhou et  al., 2017). Further-
more, satellite revisiting frequency is usually coarser than the model time step, therefore 
post-processing approaches must be applied to reduce this gap (Huang et  al., 2019; Jin 
et al., 2018). As an example, Moriondo et al. (2007) derived fPAR on a daily time step by 
linearly interpolating the original NDVI data obtained from NOAA-AVHRR to drive the 
Cropsyst simulation model (Stöckle et al., 2003).

The challenge faced in this study consisted of finding a compromise between simulation 
accuracy and input requirements for estimating grapevine growth and harvested yield, test-
ing the feasibility of a single satellite image joined with a high resolution RGB image to 
estimate vine leaf area growth during the season. This simplification is intended to foster 
the operational implementation of the proposed methodology for real-time monitoring of 
vine growth and development. Specifically, the forcing approach focused on the sole use 
of fPAR data obtained at fruit-set to drive crop model simulation over the entire growing 
season. This stage corresponds to the time when canopy development and the relevant light 
interception reach their maximum value during the season (Munitz et al., 2020; Orlandini 
et  al., 2008, Online Resource 1), considered as the best moment for capturing the vine 
growth variability at sub-field scale. Previous studies on both annual (Huang et al., 2015; 
Panigrahy et al., 2012) and woody crops (Bai et al., 2019) already pointed out that model 
forcing with leaf area detected at maximum vegetative development plays a major role in 
improving the simulation accuracy with respect to leaf areas obtained in other phenological 
stages. In this sense, the use of Sentinel-2 imagery having a more frequent updating of the 
remotely sensed information due to the high revisiting frequency of this satellite mission 
(Maselli et al., 2020), allows a more accurate estimation of when the plant reaches maxi-
mum vigor.

After fruit-set, the simulation continues without further assimilating RS data, relying 
on the crop model algorithms that describe canopy dynamics. These consider that leaf area 
growth stops after fruit-set, and starts decreasing after veraison as a consequence of senes-
cence processes (Munitz et al., 2020; Figs. 4, 5; Online Resource 1), which are triggered by 
lowering temperatures and reducing day length (Delpierre et al., 2009). This accounts for 
the differences in seasonal fPAR dynamics simulated in Site A, where higher temperatures 
during the veraison-maturity stage smoothed the senescence process with respect to Site 
B, where lower temperatures accelerated the process (Figs. 4, 5). In Site A, fPAR at fruit-
set, estimated from measured LAI, allowed the model to reproduce the spatial variability 
of shoot biomass growth, proving the reliability of the proposed methodology to estimate 
early the biomass accumulation expressed as final shoot biomass (Fig. 1a).

The approach proved to be valid using NDVI-derived fPAR from satellite RS data as 
forcing factor at pixel scale in Site B, even given the difficulties in distinguishing the actual 
contribution of crop canopy cover and plant inter-row components to the signal perceived 
by satellite platforms (Battista et al., 2016). In this regard, one of the main results of this 
study is the application and validation of a methodology to disentangle the contribution of 
vine canopy and the inter-row to the NDVI value from RS, thus enabling the effective inte-
gration of satellite data into a crop growth model. The proposed approach, originally devel-
oped by Maselli (2001) for different soil cover classes, which was already successfully 
applied to olive orchards (Maselli et  al., 2012; Leolini et  al., 2022), is based on the use 
of maps that spatially describe the distribution of fraction cover. A single high-resolution 
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UAV image (~ 3 cm) acquired around fruit-set (DOY 179) was thus used in site B to seg-
ment the grapevine canopy cover and to evaluate the actual contribution of grapevine 
plants to the NDVI signal at single pixel scale (Fig. 5a). The linear relationship between 
plant canopy cover and the NDVI values obtained at fruit-set allowed us to extrapolate the 
NDVI contribution of the vine canopies and to derive actual fPAR data relevant to grape-
vine. The re-scaling of NDVI at Sentinel-2A pixel scale, compared to the direct use of raw 
NDVI values (higher r2 and lower RMSE), is thus a fundamental step at this stage which 
allows to improve the estimation of the spatial variability of fPAR. The use of this sim-
ple strategy allowed to satisfactorily distinguish the variability in fPAR existing between 
two vigor areas of Site B at fruit-set stage (Fig.  5c-June) even though simulation accu-
racy decreased in August (DOY 219), when simulated fPAR was generally overestimated 
(Fig. 5c-August).

Despite more complex approaches having been demonstrated to be more effective in 
detecting plant vigor and biophysical parameters at sub-field level (Khaliq et  al., 2019; 
Matese et al., 2015; Sozzi et al., 2020), the need for high-resolution images (e.g. UAVs) 
and the time-consuming data post-processing make these strategies less affordable for 
crop monitoring. Moreover, the empirical approaches generally used for directly estimat-
ing the actual crop state (e.g. vigor, yield, etc.) through remotely sensed VIs and statistical 
or deep learning methods (Arab et  al., 2021; Ballesteros et  al., 2020; Di Gennaro et  al., 
2019; Matese & Di Gennaro, 2021; Sun et al., 2017) cannot provide information on the 
causes that may lead to a reduction in harvested yield. By contrast, the dynamic of growth 
processes is fully considered in process-based models where crop physiological responses 
are modeled in relation to the variability of climate, soil and management conditions and 
environmental stresses (e.g. water stress; Bindi et al., 1997a, 1997b; Brisson et al., 2003). 
Therefore, a grapevine simulation model, which explicitly reproduces the crop physiologi-
cal processes, may indeed account for the effect of agro-management practices and envi-
ronmental conditions (e.g. heat and water stress) on vine growth and yield (Figs. 7, S3 in 
Online Resource 2). Finally, in spite of the bias in fPAR detection, the approach faithfully 
reproduced soil water dynamics during the season considering two distinct areas where soil 
water sensors were positioned (Figs. 6, S2 in Online Resource 2), other than being able to 
satisfactorily capture the spatial variability of final yield, even without a specific model 
calibration on these experiments.

However, despite the good model performances in reproducing soil water dynamics, 
vegetative growth and final yield, some drawbacks of the proposed approach can be high-
lighted. From a purely operational point of view, the model can be forced only after evalu-
ation of the fraction cover of vine canopies, which is needed to rescale NDVI and to extract 
fPAR at the fruit-set stage. While this fraction can be assumed almost constant in time and 
space in a mature olive grove (Leolini et al., 2022; Maselli et al., 2012; Moriondo et al., 
2019), this does not hold in a vineyard and must be evaluated seasonally. This implies the 
retrieval of detailed maps to drive NDVI signal partitioning (Fig. 3, Eq. 3) thus resulting in 
a bottleneck for the development of an automated service for estimating growth and devel-
opment processes. The use of a single high-resolution image for detecting the vine frac-
tion cover at maximum canopy development may avoid the huge, and often not feasible, 
model input requirements during the season. However, this implies that, after this stage, 
the dynamics of the state variable will be described according to the specific modeling 
approach adopted. In this sense, the overestimation of fPAR in August is likely related to 
the increase of simulated leaf area from fruit-set to veraison stage (Fig. 5d, Fig. S1, Online 
Resource 1). The LAI, and consequently the fPAR of vine plants, in fact, can vary during a 
growing season due to both phenological development and environmental factors, such as 



	 Precision Agriculture

1 3

thermal and water limitations. The bias between estimated and observed fPAR may there-
fore be ascribed to a possible reduction in leaf area due to leaf loss following high water 
stress (Chacón-Vozmediano et al., 2020; Picón-Toro et al., 2012), which is not accounted 
for in the model and would require a specific algorithm.

Besides the intrinsic features of the variety, vegetative and reproductive growth is 
indeed strongly related to environmental stresses and management practices. In this study, 
different planting density and shoot numbers have been taken into account to represent the 
different vegetative and fruit growth conditions of Sangiovese in Site A and B (Table S1 in 
Online Resource 2). However, the model simulates the dynamics of fruit growth as a fixed 
percentage of daily accumulated biomass based on a proportional biomass increase with 
respect to the radiation intercepted by the canopy (Bindi et al., 1997a, 1997b; Sun et al., 
2017). This fixed ratio may be reduced according to suboptimal temperatures at fruit-set 
(Leolini et al., 2018a). Differently to other approaches that focused on source-sink relation-
ships for describing carbon partitioning among vegetative and reproductive plant organs 
(Cola et al., 2014; Vivin et al., 2002; Wermelinger et al., 1991), the model used here does 
not consider these plant strategies in biomass partitioning. This implies that the changes 
occurring in the potential demand of a specific pool and the way this mechanism can alter 
the carbon allocation to plant organs during the season were not take into account. Thus, 
daily carbon partitioning being independent from the demand of a specific organ, no com-
petition for carbon from the different organs was assumed, and the effect of unfavorable 
climate conditions and/or agro-management practices (e.g. fruit and shoot thinning) which 
may stimulate the assimilates partitioning towards other organ sinks (Keller et al., 2005; 
Naor et al., 2002) was also discarded. This forcing approach allowed a satisfactory yield 
estimation to be provided, especially in low vigor areas (Fig. 6). The lower model perfor-
mances in the high vigor area can be related to the saturation of NDVI when LAI increases. 
In agreement with Junges et al. (2019), the increase of NDVI with respect to the increase 
of leaf area suggests that NDVI shows a logarithmic behaviour rather than linear for LAI 
higher than 1, which prevents to highlight differences among plant vigor in vineyards. This 
issue might be overcome by the adoption of non-linear vegetation indices which are gener-
ally less affected by canopy variation and background effects (e.g. GEMI, MSAVI, OSAVI, 
etc.), thus being less sensitive to saturation and showing up the differences in high vine 
vigor zones (Haboudane et al., 2004; Leolini et al., 2022; Pinty & Verstraete, 1992; Ron-
deaux et al., 1996).

Despite the abovementioned simplifications, the study represents the first attempt to 
force a vineyard simulation model with RS data, in the absence of an adequate spatial reso-
lution for vine canopy representation, with the purpose of improving vine growth and yield 
simulation in a system characterized by plant and inter-row layers. The approach thus lays 
the basis for a Decision Support System to help winegrowers consortiums and cooperatives 
to timely identify the most adequate management practices fostering the increase of grape-
vine yield, and thus their competitiveness on the wine market.

Conclusions

This study focused on the forcing of an existing grapevine model (UNIFI.GrapeML) with 
fPAR data at fruit-set stage in order to evaluate the variability of biomass accumulation 
and fruit production at sub-field level in two Tuscan vineyards.
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The results indicate that the grapevine model forced with fPAR data from proximal 
sensing allowed vine biomass accumulation variability at sub-field level to be properly 
reproduced in Site A, resulting in an effective methodology for early prediction of har-
vested yield. This strategy was then applied in Site B using fPAR data derived from satel-
lite imagery, showing satisfactory performances in reproducing sub-field yield variability. 
In this last study case, the adoption of the strategy for disentangling the contribution of the 
vegetation index among vine rows and inter-rows proved to be a crucial factor for the suc-
cess of the methodology.

Despite further model refinements to address specific vineyard managements being 
needed, the application of UNIFI.GrapeML, with a limited number of RS-derived inputs 
represents the starting point to set up a decision support system to optimize vineyard pro-
duction and limit within-field yield variability.
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