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Abstract—Synthetic aperture radar (SAR) is an effective remote 

sensor for target detection and recognition. Deep learning has a 

great potential for implementing automatic target recognition 

based on SAR images. In general, Sufficient labeled data are 

required to train a deep neural network to avoid overfitting. 

However, the availability of measured SAR images is usually 

limited due to high cost and security in practice. In this paper, we 

will investigate the relationship between the recognition 

performance and training dataset size. The experiments are 

performed on three classifiers using MSTAR (Moving and 

Stationary Target Acquisition and Recognition) dataset. The 

results show us the minimum size of the training set for a 

particular classification accuracy. 

Keywords-Synthetic Aperture Radar (SAR); Automatic Target 

Recognition (ATR); Convolutional Neural Networks (CNNs) 

I.  INTRODUCTION 

Synthetic aperture radar (SAR) [1] can operate in all-weather 
day-and-night conditions and generate high resolution images of 
targets. Thus, SAR is particularly suitable for target recognition, 
reconnaissance, surveillance, etc. Due to scattering mechanism 
and speckle noise in SAR imagery, the interpretation and 
understanding of SAR images are very different from optical 
images. Recognizing a target in a SAR image by human eyes is 
time consuming and often unreliable. It is desirable to develop 
automatic target recognition (ATR) algorithms for SAR images. 

Motivated by numerous successful applications in the 
computer vision community, deep learning [2] is now attracting 
wide attention in SAR remote sensing tasks [3]. However, SAR 
images are substantially different from optical images in many 
aspects. Compared to optical images, SAR images have the 
following special characteristics: large dynamic range, 
speckling noise, complex value for each pixel, and limited 
datasets available (due to high cost). Furthermore, SAR images 
are sensitive to radar parameters (e.g., wavelength, geometric 
parameters between radar and targets) and target postures. These 
characteristics limit the potentials of computer vision techniques 
(developed based on optical images) in SAR image 
understanding. Although deep learning-based frameworks in 
general are applicable to SAR images, it is crucial and 
challenging to address special issues specific to SAR images.   

One of the most challenging issues is the availability of 
measured SAR image data because collecting SAR image data 
is prohibitively expensive. In this paper, we will investigate the 
effect of training dataset size on the classification accuracy. 

Specifically, we train the classifiers using a subset of the 
MSTAR training dataset, and then test the trained classifiers 
using the MSTAR test dataset. By changing the size of the 
subset, we can obtain the dependency of classification accuracy 
on the training dataset size. 

II. MSTAR DATASET 

The MSTAR benchmark data set [4] is widely used to test 
and compare the performance of SAR-ATR algorithms. 
MSTAR datasets were collected by the Sandia National 
Laboratory SAR sensor platform. The collection was jointly 
sponsored by the Defense Advanced Research Projects Agency 
and the Air Force Research Laboratory as part of the MSTAR 
program. Hundreds of thousands of SAR images containing 
ground targets were collected, including different target types, 
aspect angles, depression angles, serial number, and articulation, 
and only a small subset of which are publicly available on the 
website. The publicly released data sets include ten different 
categories of ground targets (armored personnel carrier: BMP-
2, BRDM-2, BTR-60, and BTR-70; tank: T-62, T-72; rocket 
launcher: 2S1; air defense unit: ZSU-234; truck: ZIL-131; 
bulldozer: D7). They were collected using an X-band SAR 
sensor, with a one-foot resolution spotlight mode, full aspect 
coverage (in the range of 0° to 360°), illustrated in Fig.1. 
Examples of SAR images of ten types of targets and their 
corresponding optical images are shown in Fig. 2. Table I lists 
the number of images and the image size for each category at 
two different depression angles: 17° for training set and 15° for 
testing set, in the MSTAR dataset.  

 

 

 

 

 

 

Fig.1  Geometry of SAR and top view of aspect angels: 𝜑 is depression angle 

and 𝜃 is aspect angle, 𝜑=15°, 17°, 30°, 44°. 𝜃 was sampled from 0 to 360 for 

each depression angle. Images for 𝜑=17° are used for training set while 𝜑=15° 

for test set. 
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Fig.2 Examples of MSTAR images for ten targets 

TABLE I.  MSTAR DATASET AT STANDARD OPERATION CONDITION 

Target Standard Operation Condition 

 Depression (15°) (test) Depression (17°) (train) 

Image size # images Image size # images 

BMP-2 (128,128) 587 (128,128) 698 

BRDM-2 (129,128) 274 (129,128) 298 

BTR-60 (128,128) 195 (128,128) 256 

BTR-70 (128,128) 196 (128,128) 233 

T-62 (173,172) 273 (173,172) 299 

T-72 (128,128) 582 (128,128) 691 

2S1 (158,158) 274 (158,158) 299 

ZSU-23-4 (158,158) 274 (158,158) 299 

ZIL-131 (193,192) 274 (193,192) 299 

D7 (178,177) 274 (178,177) 299 

Total  3203  3671 

 

III. CLASSIFIER ARCHITECTURES FOR SAR ART 

To obtain a confident and reliable result, we selected three 
well recognized classifiers based on MSART dataset from 
literatures [5][6][7]. The architectures are described in Table II, 
Table III, and Table IV, respectively.  

Classifier 1 consists of three convolution layers with ReLU 
activation function and a fully connected (FC) layer with 
softmax activation for 10 classes. The kernel sizes of three 
convolution layers are 9x9, 5x5, and 4x4, respectively. All 
convolution layers use a stride of 1, and no zero-padding. Max 
pooling is used to reduce the output data volume following the 
first two conv layers. In classifier 2, there are four conv layers, 
one FC layer with dropout for regularization, and the last FC 
layer with softmax for classification. All conv layers have the 
same kernel size (3x3) and one zero-padding. Classifier 3 is 
similar to classifier 2, except that classifier 3 has two more FC 
layers before the last FC (softmax) layer. Note that three 
classifiers have different input sizes and the numbers of conv 
channels. 

TABLE II.  CLASSIFIER 1 [5] 

Layer  Layer name Conv Kernel size Output size 

0 Input  128x128x1 

1 Conv (ReLU) 9x9 120x120x18 

Max Pooling (6x6)  20x20x18 

2 Conv (ReLU) 5x5 16x16x36 

Max Pooling (4x4)  4x4x36 

3 Conv (ReLU) 4x4 1x1x120 

flatten  120 

4 FC (softmax)  10 

 

TABLE III.  CLASSIFIER 2 [6] 

Layer  Layer name Conv kernel size Output size 

0 Input  48x48x1 

1 Conv (ReLU) 3x3, padding=1 48x48x9 

Max pool (2x2)  24x24x9 

2 Conv (ReLU) 3x3, padding=1 24x24x18 

Max pool (2x2)  12x12x18 

3 Conv (ReLU) 3x3, padding=1 12x12x36 

Max pool (2x2)  6x6x36 

4 Conv (ReLU) 3x3, padding=1 6x6x60 

Flatten  2160 

5 FC (ReLU)  60 

Dropout (p=0.1)   

6 FC (softmax)  10 

TABLE IV.  CLASSIFIER 3 [7] 

Layer  Layer name Conv kernel size Output size 

0 Input   64x64x1 

1 Conv (ReLU) 3x3, padding=1 64x64x16 

Max pool  32x32x16 

2 Conv (ReLU) 3x3, padding=1 32x32x32 

Max pool  16x16x32 

3 Conv (ReLU) 3x3, padding=1 16x16x64 

Max pool  8x8x64 

4 Conv (ReLU) 3x3, padding=1 8x8x128 

Max pool  4x4x128 

5 Flatten  2048 

FC (ReLU) 
Droput (p=0.1 
or 0.2) 

 1000  
 

6 FC (ReLU)  500 

7 FC (ReLU)  250 

8 FC (softmax)  10 

 

IV. EXPERIMENTS AND RESULTS 

In this section, we will present the details of experiments 

and the results obtained. All classifiers described in Section III 

are implemented and trained in the PyTorch framework.  To 

investigate the effect of training set size on the classification 

accuracy, we start with training a classifier using the full 

training set (i.e. 3671 examples), and measure the classification 

accuracy using the test set. Then we form a reduced (e.g. 75%) 

training set by randomly drawing examples from the full 

training set, and train the classifier from scratch using the 

reduced training set. The trained classifier will be tested by the 

same test set.  We repeat this process for a different reduced 
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 ZSU-23/4   T72        BMP2  

       

              BTR-70 

 



training set with a different size (e.g. 50%). As a result, we can 

obtain a plot of the accuracy performance versus training set 

size. 

A. Training Datasets 

In the experiments, we train each classifier at six different 

dataset sizes. These training sets are defined in Table V. The 

full training set includes 3671 examples which are distributed 

in 10 classes, as shown in Table I.  However, in the full MSTAR 

training set, the classes BMP-2 and T72 have significant larger 

number of examples (e.g. 698 and 691) than other classes (less 

than 300). Thus, to make the sample distribution across classes 

uniform in the training set, we reduce both the numbers of 

examples for BMP-2 and T72 to 299. The resulting training set 

has 2880 examples, and we define its relative size is “1.0”. To 

generate a smaller training set (e.g. 0.75), we randomly draw a 

percentage (e.g. 75%) of examples from each class in the 

training set 1.0 

TABLE V.  TRAINING SETS WITH DIFFERENT SIZES 

Training set 
relative size 

# of examples Note 

1.2 3671 Entire train set in MSTAR  

1.0 2880 Class balanced  

0.75 2880x75%=2160 Draw 75% examples from each 
class in 1.0 size set 

0.5 2880x50%=1440 Draw 50% examples from each 
class in 1.0 size set 

0.25 2880x25%=720 Draw 25% examples from each 
class in 1.0 size set 

0.1 2880x10%=288 Draw 10% examples from each 
class in 1.0 size set 

 

B. Training Settings 

Two preprocesses are performed on the SAR images in 
training set: 1) normalize each image by the set mean and 
standard deviation; and 2) center crop the image sizes (e.g. 
193x192) to the input size (e.g. 64x64 for classifier 3) required 
by the corresponding classifier.  

In the PyTorch framework, we use the following settings to 

train classifiers: 

• Epochs: 20 or 30 or 60 

• Batch size: 64 examples 

• Weight initialization: Xavier uniform 

• Optimizer: Adam, learning rate =0.01, or 0.001 

• Learning rate schedule: step size=10, gamma=0.1. 

• Dropout for regularization: p=0.1 

• Loss: cross entropy 

C. Results 

To monitor the training process, it is desirable to plot the 

loss and classification accuracy as the training processing is 

going on. Since three classifiers deliver the similar loss and 

accuracy curves, we only present these plots for classifier 3 as 

examples. Fig.3 shows the loss during the training process with 

the full training set. Since the full training set has 3671 

examples and the batch size is 64, each epoch includes 58 

batches, i.e. the neural network weights are updated 58 times 

during one epoch. For display purpose, we average the loss over 

every 10 batches, and thus obtain 5 loss values for one epoch, 

and 150 loss values for the total 30 epochs during the entire 

training process. Note that the value of loss is plotted in log10() 

scale. 

 

Fig.3 Loss plot during the training process: classifier 3, learning rate=0.001, 

dropout =0.1 

 

Fig.4 The measurement of classification accuracies on training set and test set 

as the training process is going on: classifier 3 

Fig.4 shows the training progress in terms of classification 

accuracy. During the early training epochs, the accuracies are 

improved quickly. After epoch 20, the accuracies maintain 

almost the same. This implies that the training process can stop 

at epoch 20. For this particular case shown in Fig.4, the 

performance of the classifier on test set (about 96%) is 

constantly and slightly lower than that on the training set 

(100%). This implies that a minor overfitting problem occurs 

with the trained model. Various regularization techniques [2] 

are available to alleviate the overfitting problem if overfitting is 

severe. 

After the training process has been completed (e.g. after 20 

or 30 epochs), we test it using the test set, and obtain the 

confusion matrix, as show in Fig.5. From the confusion matrix, 



we can obtain the information of the classification accuracy on 

each class.  is calculated as 96%. 

 

Fig.5 Confusion matrix of the trained classifier 3 testing on the test set 

To compare the three classifiers and find the effect of 

training set size on classification accuracy, we trained each 

classifier using different training set sizes specified in Table V. 

The results are summarized in Table VI., and visualized in Fig. 

6.  

TABLE VI.  SUMMARY OF CLASSIFIER ACCURACY AT DIFFERENT 

TRAINING SET SIZE 

Training set Classifier 1 Classifier 2 Classifier 3 

1.2(3671) 91% 96% 97% 

1.0(2880) 88% 92% 95% 

0.75(75% of 2880) 80% 89% 92% 

0.5(50% of 2880) 78% 88% 91% 

0.25(25% of 2880) 73% 77% 79% 

0.1(10% of 2880) 56% 55% 59% 
 

 

Fig.6 Classifiers’ performance versus training dataset size 

From Fig.6 we can make the following observations in the 
context of MSTAR dataset: 1) when the training set is reduced 
to below 50% of 2880 examples (144 examples per class), the 
accuracy of classifiers is getting significantly worse; 2) 
surprisingly, even when the training set has only about 30 
examples per class (i.e. 0.1 size), the accuracy is still above 55%; 
and 3) classifier 2 and classifier 3 have similar performance, and 
they outperform classifier 1. 

 

V. CONCLUSIONS 

In general, a large dataset is required to train a deep neural 

network for a classification task. This requirement may set an 

obstacle for its applications when the availability of measured 

data is very limited. In this paper, we investigated the 

quantitative relationship between the performance (i.e. 

classification accuracy) and the training dataset size in the 

context of MSTAR dataset. The training set with thousands of 

SAR images for 10 classes can achieve an accuracy above 95% 

if a good neural network architecture is chosen. However, the 

training set with hundreds of images is not sufficient to achieve 

an acceptable performance. 

To deal with the lack of large datasets in SAR ATR 

applications, there are two research directions: 1) data 

augmentation [8][9] by generating simulated SAR image data; 

and 2) meta-learning [10] by learning from different data 

domains. 
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