220 research outputs found

    A Novel Data Fusion Technique for Snow Cover Retrieval

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a novel data fusion technique for improving the snow cover monitoring for a mesoscale Alpine region, in particular in those areas where two information sources disagree. The presented methodological innovation consists in the integration of remote-sensing data products and the numerical simulation results by means of a machine learning classifier (support vector machine), capable to extract information from their quality measures. This differs from the existing approaches where remote sensing is only used for model tuning or data assimilation. The technique has been tested to generate a time series of about 1300 snow maps for the period between October 2012 and July 2016. The results show an average agreement between the fused product and the reference ground data of 96%, compared to 90% of the moderate-resolution imaging spectroradiometer (MODIS) data product and 92% of the numerical model simulation. Moreover, one of the most important results is observed from the analysis of snow cover area (SCA) time series, where the fused product seems to overcome the well-known underestimation of snow in forest of the MODIS product, by accurately reproducing the SCA peaks of winter season

    Integrating snow science and wildlife ecology in Arctic-boreal North America

    Get PDF
    Snow covers Arctic and boreal regions (ABRs) for approximately 9 months of the year, thus snowscapes dominate the form and function of tundra and boreal ecosystems. In recent decades, Arctic warming has changed the snowcover\u27s spatial extent and distribution, as well as its seasonal timing and duration, while also altering the physical characteristics of the snowpack. Understanding the little studied effects of changing snowscapes on its wildlife communities is critical. The goal of this paper is to demonstrate the urgent need for, and suggest an approach for developing, an improved suite of temporally evolving, spatially distributed snow products to help understand how dynamics in snowscape properties impact wildlife, with a specific focus on Alaska and northwestern Canada. Via consideration of existing knowledge of wildlife-snow interactions, currently available snow products for focus region, and results of three case studies, we conclude that improving snow science in the ABR will be best achieved by focusing efforts on developing data-model fusion approaches to produce fit-for-purpose snow products that include, but are not limited to, wildlife ecology. The relative wealth of coordinated in situ measurements, airborne and satellite remote sensing data, and modeling tools being collected and developed as part of NASA\u27s Arctic Boreal Vulnerability Experiment and SnowEx campaigns, for example, provide a data rich environment for developing and testing new remote sensing algorithms and retrievals of snowscape properties

    High resolution spatial variability in spring snowmelt for an Arctic shrub-tundra watershed

    Get PDF
    Arctic tundra environments are characterized by spatially heterogeneous end-of-winter snow cover because of high winds that erode, transport and deposit snow over the winter. This spatially variable end-of-winter snow cover subsequently influences the spatial and temporal variability of snowmelt and results in a patchy snowcover over the melt period. Documenting changes in both snow cover area (SCA) and snow water equivalent (SWE) during the spring melt is essential for understanding hydrological systems, but the lack of high-resolution SCA and SWE datasets that accurately capture micro-scale changes are not commonly available, and do not exist for the Canadian Arctic. This study applies high-resolution remote sensing measurements of SCA and SWE using a fixed-wing Unmanned Aerial System (UAS) to document snowcover changes over the snowmelt period for an Arctic tundra headwater catchment. Repeat measurements of SWE and SCA were obtained for four dominant land cover types (tundra, short shrub, tall shrub, and topographic drift) to provide observations of spatially distributed snowmelt patterns and basin-wide declines in SWE. High-resolution analysis of snowcover conditions over the melt reveal a strong relationship between land cover type, snow distribution, and snow ablation rates whereby shallow snowpacks found in tundra and short shrub regions feature rapid declines in SWE and SCA and became snow-free approximately 10 days earlier than deeper snowpacks. In contrast, tall shrub patches and topographic drift regions were characterized by large initial SWE values and featured a slow decline in SCA. Analysis of basin-wide declines in SCA and SWE reveal three distinct melt phases characterized by 1) low melt rates across a large area resulting in a minor change in SCA, but a very large decline in SWE with, 2) high melt rates resulting in drastic declines in both SCA and SWE, and 3) low melt rates over a small portion of the basin, resulting in little change to either SCA or SWE. The ability to capture high-resolution spatio-temporal changes to tundra snow cover furthers our understanding of the relative importance of various land cover types on the snowmelt timing and amount of runoff available to the hydrological system during the spring freshet

    Remote sensing of snow and its application to hydrometeorological studies in western Canada.

    Get PDF
    Snow plays a vital role in the energy and water budgets of drainage basins of western Canada. Various remote sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Microwave Scanning Radiometer (AMSR-E) and Special Sensor Microwave/Imager (SSM/I) have been launched to map the snow cover extent (SCE), snow cover fraction (SCF), and snow water equivalent (SWE) across the globe. However, the distribution and variability of snow inferred from remote sensing products have not been comprehensively investigated in western Canada owing to its complex topography and harsh environment. So far, little research has been conducted on SCE-streamflow and SCE-SWE-runoff models focusing on Canadian watersheds where snow cover is very important for human well being. Although microwave remote sensing of snow is widely developed and applied in Canada, the retrieval of SWE in western Canada is not as well established owing to the complex topography in this area. Therefore, the Quesnel River Basin (QRB) of British Columbia is selected as a primary test site to develop and test SCE-streamflow and SCE-SWE-runoff models. Then the Mackenzie River Basin (MRB) is chosen as a secondary test site to apply the Environment Canada (EC) SWE retrieval algorithms to upscale the hydrometeorological research. In this thesis, a new approach referred to as the spatial filter (SF) method is developed to decrease the cloud coverage in the MODIS snow products. At the same time, the new snow products are evaluated based on in-situ observations of snow depth in the QRB. Then the relationships between SCF from MODIS, topography, and hydrometeorology of the QRB are explored. In addition, various retrieval algorithms of SWE from microwave remote sensing are tested in the QRB. At last, the Environment Canada algorithms of SWE from SSM/I are adopted to produce new SCF products evaluated with the MODIS snow products. The relationships between SWE and SCF from SSM/I and hydrometeorology are also investigated in the MRB ...The studThe original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b164706

    Operational Water Forecast Ability of the HRRR-iSnobal Combination: An Evaluation to Adapt into Production Environments

    Get PDF
    Operational water-resource forecasters, such as the Colorado Basin River Forecast Center (CBRFC) in the Western United States, currently rely on historical records to calibrate the temperature-index models used for snowmelt runoff predictions. This data dependence is increasingly challenged, with global and regional climatological factors changing the seasonal snowpack dynamics in mountain watersheds. To evaluate and improve the CBRFC modeling options, this work ran the physically based snow energy balance iSnobal model, forced with outputs from the High-Resolution Rapid Refresh (HRRR) numerical weather prediction model across 4 years in a Colorado River Basin forecast region. Compared to in situ, remotely sensed, and the current operational CBRFC model data, the HRRR-iSnobal combination showed well-reconstructed snow depth patterns and magnitudes until peak accumulation. Once snowmelt set in, HRRR-iSnobal showed slower simulated snowmelt relative to observations, depleting snow on average up to 34 d later. The melting period is a critical component for water forecasting. Based on the results, there is a need for revised forcing data input preparation (shortwave radiation) required by iSnobal, which is a recommended future improvement to the model. Nevertheless, the presented performance and architecture make HRRR-iSnobal a promising combination for the CBRFC production needs, where there is a demonstrated change to the seasonal snow in the mountain ranges around the Colorado River Basin. The long-term goal is to introduce the HRRR-iSnobal combination in day-to-day CBRFC operations, and this work created the foundation to expand and evaluate larger CBRFC domains

    The recent developments in cloud removal approaches of MODIS snow cover product

    Get PDF
    The snow cover products of optical remote sensing systems play an important role in research into global climate change, the hydrological cycle, and the energy balance. Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products are the most popular datasets used in the community. However, for MODIS, cloud cover results in spatial and temporal discontinuity for long-term snow monitoring. In the last few decades, a large number of cloud removal methods for MODIS snow cover products have been proposed. In this paper, our goal is to make a comprehensive summarization of the existing algorithms for generating cloud-free MODIS snow cover products and to expose the development trends. The methods of generating cloud-free MODIS snow cover products are classified into spatial methods, temporal methods, spatio-temporal methods, and multi-source fusion methods. The spatial methods and temporal methods remove the cloud cover of the snow product based on the spatial patterns and temporal changing correlation of the snowpack, respectively. The spatio-temporal methods utilize the spatial and temporal features of snow jointly. The multi-source fusion methods utilize the complementary information among different sources among optical observations, microwave observations, and station observations.</p
    • …
    corecore