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Abstract		26 

As	the	Earth	warms,	the	spatial	and	temporal	response	of	seasonal	snow	remains	uncertain.	27 

The	global	snow	science	community	estimates	snow	cover	and	mass	with	information	from	land	28 

surface	models,	numerical	weather	prediction,	satellite	observations,	surface	measurements,	and	29 

combinations	thereof.	Accurate	estimation	of	snow	at	the	spatial	and	temporal	scales	over	which	30 

snow	varies	has	historically	been	challenged	by	the	complexity	of	land	cover	and	terrain	and	the	31 

large	global	extent	of	snow-covered	regions.	Like	many	Earth	Science	disciplines,	snow	science	is	in	32 

an	era	of	rapid	advances	as	remote	sensing	products	and	models	continue	to	gain	granularity	and	33 

physical	fidelity.	Despite	clear	progress,	the	snow	science	community	continues	to	face	challenges	34 

related	to	the	accuracy	of	seasonal	snow	estimation.	Namely,	advances	in	snow	modeling	remain	35 

limited	by	uncertainties	in	modeling	parameterization	schemes	and	input	forcings,	and	advances	in	36 

remote	sensing	techniques	remain	limited	by	temporal,	spatial,	and	technical	constraints	on	the	37 

variables	that	can	be	observed.	Accurate	monitoring	and	modeling	of	snow	improves	our	ability	to	38 

assess	Earth	system	conditions,	trends,	and	future	projections	while	serving	highly	valued	global	39 

interests	in	water	supply	and	weather	forecasts.	Thus,	there	is	a	fundamental	need	to	understand	40 

and	improve	the	errors	and	uncertainties	associated	with	estimates	of	snow.	A	potential	method	to	41 

overcome	model	and	observational	shortcomings	is	data	assimilation,	which	leverages	the	42 

information	content	in	both	observations	and	models	while	minimizing	their	limitations	due	to	43 

uncertainty.	This	article	proposes	data	assimilation	as	a	way	to	reduce	uncertainties	in	the	44 



characterization	of	seasonal	snow	changes	and	reviews	current	modeling,	remote	sensing,	and	data	45 

assimilation	techniques	applied	to	the	estimation	of	seasonal	snow.	Finally,	remaining	challenges	46 

for	seasonal	snow	estimation	are	discussed.		 	47 



1.	Introduction	and	Motivations	48 

For	many	regions	of	the	world,	seasonal	snow	acts	as	a	“virtual”	reservoir	that	accumulates	49 

in	the	winter	and	melts	in	spring,	storing	and	subsequently	providing	water	for	urban	and	50 

agricultural	users	(Viriroli	et	al.,	2007).	About	15%	of	the	world's	population	derives	the	majority	51 

of	its	water	supply	from	seasonal	snowpack	(Barnett	et	al.,	2005).	Snow	also	presents	hazards	such	52 

as	flood	and	avalanche	risks,	disruption	to	transportation,	and	impacts	on	livestock,	wildlife,	and	53 

infrastructure	(Musselman	et	al.,	2018;	Berghuijs	et	al.,	2016;	Nadim	et	al.,	2006;	Rooney	et	al.,	54 

1967;	Tachiiri	et	al.,	2008;	Descamps	et	al.,	2017;	Croce	et	al.,	2018).	In	addition,	snow-cover	55 

strongly	influences	weather	and	climate.	The	highly	reflective,	emissive,	and	insulative	properties	56 

of	snow	compared	to	other	surfaces	alter	the	heat	and	moisture	fluxes	between	the	land	and	the	57 

atmosphere	(Gong	et	al.	2004,	Trujillo	et	al.,	2012).	The	feedback	effects	of	snow	on	atmospheric	58 

circulation	and	downstream	weather	patterns	can	have	inter-continental	impacts.	For	example,	59 

anomalous	snow	cover	conditions	in	Siberia	strongly	influence	North	American	weather	(Cohen	60 

and	Entekhabi,	2001;	Dutra	et	al.,	2011;	Henderson	et	al.,	2018)	and	spring	snow	cover	in	the	61 

Himalaya	can	affect	the	formation	of	the	Indian	monsoon	(Senan	et	al.,	2016;	Xu	&	Dirmeyer	2011,	62 

2013).	Accurate	representation	of	snow	cover	in	models	can	improve	the	skill	of	numerical	weather	63 

prediction	and	water	resource	management.	Snow	estimation	is	“a	trillion-dollar	science	question”	64 

(Sturm	et	al.,	2017)	that	is	increasingly	important	as	global	warming	forces	substantial	change.	65 

Declines	in	snow-covered	area	and	volume,	and	shifts	to	earlier	snow	disappearance,	have	66 

been	observed	across	the	Northern	Hemisphere	since	many	satellite	records	began	(Déry	and	67 

Brown,	2007;	Foster	et	al.,	1996;	Hammond	et	al.,	2018;	Brown	et	al.,	2017;	Notarnicola,	2020).	To	68 

date,	snow	loss	attributed	to	warming	temperatures	has	primarily	occurred	in	spring	and	at	the	69 

geographic	margins	of	historical	seasonal	snow	cover,	namely	at	mid-latitudes	and	lower	elevations	70 

(Pierce	et	al.,	2008;	Hammond	et	al.,	2018;	Mote	et	al.,	2018).	Snow	cover	reductions	in	response	to	71 

warming	impact	the	Earth	system	via	complex	feedbacks	that	are	best	addressed	using	models.	For	72 



example,	while	warming	is	accelerating	the	global	hydrologic	cycle	(Huntington	et	al.,	2006),	73 

snowmelt	rates	may	be	slower	in	a	warmer	world	due	to	less	snow	persisting	into	the	warmest	74 

months	(Musselman	et	al.,	2017).	Similarly,	Arctic	warming	will	degrade	permafrost	(Lawrence	et	75 

al.,	2008),	yet	shallower	snow	provides	less	insulation	of	soils	from	winter	air	temperatures,	76 

resulting	in	colder	soils	in	a	warmer	world	(Groffman	et	al.,	2001).	Accurate	monitoring	and	77 

modeling	of	snow	improves	inclusion	of	these	process	interactions	in	future	Earth	system	78 

projections	while	also	serving	highly	valued	global	interests	in	water	supply,	weather	forecasts,	and	79 

agriculture	(Sturm	et	al.,	2017).	80 

While	spring	snow	cover	reductions	are	evident	in	satellite	records	(Bormann	et	al.,	2018),	81 

station	observations	(Mote	et	al.,	2018;	Klein	et	al.,	2016),	and	global	model	reanalysis	(Rupp	et	al.,	82 

2013;	Wu	et	al.,	2018),	there	remains	much	variability	and	uncertainty	in	the	spatial	and	seasonal	83 

patterns.	For	example,	increasing	autumn	snow	cover	trends	in	the	Northern	Hemisphere,	84 

especially	at	Eurasian	high	latitudes,	have	been	attributed	to	seasonal	precipitation	increases	(e.g.,	85 

Allchin	and	Dery	2017,	Hori	et	al.,	2017).	Several	studies	have	questioned	this	positive	trend,	86 

arguing	that	it	is	inconsistent	with	North	American	autumn	surface	temperature	warming	trends	87 

(e.g.	Brown	and	Derksen,	2013;	Hori	et	al.,	2017).	Similarly,	while	there	is	a	general	consensus	that	88 

snow	volume	and	mass	over	the	terrestrial	Arctic	is	decreasing,	the	literature	has	reported	highly	89 

variable	regional	trends	(Brown	et	al.,		2017).	The	limited	unanimity	on	how	global	snow	patterns	90 

have	changed	is	likely	due	the	lack	of	comprehensive	and	accurate	snow	estimates	from	models	91 

and/or	remote	sensing	observations.	There	is	a	critical	need	to	improve	snow	estimates	in	92 

reanalysis	products,	operational	models,	and	future	climate	projections.	93 

Modeling	and	remote	sensing	approaches	have	inherent	uncertainties	and	limitations	(Frei	et	al.,	94 

2012).	Uncertainties	in	models	are	mainly	associated	with	their	physics	and	parameterization	95 

schemes	or	error-prone	input	forcings	such	as	precipitation,	temperature,	and	windspeed	96 

(Musselman	et	al.,	2015;	Raleigh	et	al.,	2016).	Model	errors	can	be	reduced	with	careful	97 



configuration.	For	example,	when	run	at	sufficiently	high	grid	spacing,	a	properly	parameterized	98 

regional	climate	model	can	resolve	orographic	precipitation	fields	better	than	observation	99 

networks	(Lundquist	et	al.,	2019).	Similarly,	remote	sensing	techniques	have	inherent	limitations	100 

due	to	temporal,	spatial,	and	technical	constraints	on	critical	snow	variables.	Careful	assessment	101 

and	model	process	representation	is	required	to	represent	global	snow	patterns	and	to	disentangle	102 

the	relative	contributions	of	internal	climate	variability	and	anthropogenic	forcing.		103 

Simulating	and	observing	fine-scale	spatial	and	temporal	seasonal	snow-cover	patterns	has	104 

historically	been	challenged	by	a	high	degree	of	environmental	complexity	and	limited	in	situ	105 

observations	(Peters-Lidard	et	al.,	2019).	Important	advances	by	the	snow	science	community	106 

allow	us	to	better	understand	the	role	and	interactions	of	snow	in	Earth	systems.	These	advances	107 

are	possible	as	remote	sensing	products	and	models	continue	to	increase	in	granularity	and	108 

physical	fidelity	(Clark	et	al.,	2017).	Nonetheless,	there	remain	fundamental	knowledge	gaps.	A	109 

critical	area	is	the	need	to	document	and	narrow	the	uncertainties	in	snow	estimates	(Brown	et	al.,	110 

2017)	from	observations	and	modeling.	111 

A	promising	method	to	alleviate	shortcomings	in	snow	models	and	observations	and	to	112 

improve	our	ability	to	monitor	changes	in	seasonal	snow	is	data	assimilation	(e.g.,	Houser	et	al.,	113 

1998;	Sun	et	al.,	2004;	Andreadis	and	Lettenmier	2006;	Girotto	et	al.,	2014ab).	Data	assimilation	114 

combines	existing	and	emerging	observations	(both	in-situ	and	satellite	observations)	with	model	115 

estimates,	thus	bridging	scale	and	limitation	gaps	between	observations	and	models.	Data	116 

assimilation	can	integrate	measurements	from	multiple	sensors	to	improve	model	estimates	of	117 

snow	properties	including	mass,	commonly	referred	to	as	snow	water	equivalent	(SWE).	Thus,	data	118 

assimilation	offers	the	potential	to	document	and	reduce	uncertainties	in	snow	representation.	We	119 

argue	that	only	through	the	assimilation	of	ground	observations	and	model	data	can	satellite-120 

derived	snow	depth	and	SWE	fields	reach	the	accuracy	level	required	by	the	current	user	121 



community	including	climatologists,	hydrologists,	and	weather	and	climate	forecasters	(Tedesco	122 

2012).	123 

The	purpose	of	this	article	is	to	review	current	techniques	used	to	estimate	seasonal	snow	124 

and	to	elucidate	outstanding	challenges	that	could	be	addressed	by	combining	model	estimates	125 

with	remotely	sensed	observations.	The	first	two	sections	report	the	key	benefits	and	limitations	of	126 

remote	sensing	and	modeling	of	seasonal	snow.	The	third	section	presents	the	concept	of	data	127 

assimilation.	Finally,	section	four	provides	a	brief	summary	and	conclusions	of	the	current	128 

techniques	for	estimating	seasonal	snow.				129 

2.	Snow	Modelling		130 

A	half-century	of	thorough	inquiry	has	established	numerical	representations	of	the	effects	131 

of	wind	(e.g.	Schmidt,	1982),	topography	(e.g.	Meiman,	1968),	and	vegetation	(e.g.	Golding	and	132 

Swanson,	1978)	on	snow	distribution.	However,	the	complex	relationships	between	these	variables	133 

and	their	high	variability	in	time	and	space	and	at	different	scales	continue	to	challenge	snow	134 

model	predictive	skill	(Jost	et	al.,	2007).	Despite	these	challenges,	the	need	for	accurate	predictions	135 

of	snow	water	resources	has	prompted	the	development	of	operational	numerical	snow	models	for	136 

a	range	of	applications	including	hydrological	forecasting	(e.g.	Anderson,	1985),	weather	prediction	137 

(e.g.	Niu	et	al.,	2011),	avalanche	forecasting	(e.g.	Lehning	et	al.,	1999),	climate	modeling	(e.g.	Bonan,	138 

1998),	and	retrieval	of	snow	characteristics	by	remote	sensing	(e.g.	Mätzler	and	Wiesmann,	1999).	139 

Snow	models	differ	in	their	degree	of	process	representation	depending	on	the	intended	140 

application	(Tarboton	et	al.,	2001;	Essery	and	Etchevers,	2004).	In	this	regard,	snow	models	fall	141 

into	two	general	categories:	temperature	index	models	and	energy	balance	models.		142 

Temperature	index	models	use	empirical	relationships	between	local	air	temperature	and	143 

snowmelt	to	estimate	snow	depletion	(Ohmura,	2001).	Although	limited	in	their	representations	of	144 

physical	processes,	such	models	have	often	been	used	in	hydrological	forecasting	and	climate	145 



impacts	studies.	Energy	balance	snow	models,	on	the	other	hand,	are	designed	to	simulate	all	146 

energy	fluxes	into	and	out	of	a	snowpack	and	are	used	to	predict	snowmelt	as	a	result	of	the	147 

computed	net	internal	energy.	These	process-based	models	have	been	shown	to	yield	improved	148 

local	SWE	estimates	over	temperature	index	methods	(Walter	et	al.,	2005).	Even	within	general	149 

snow	model	categories,	models	differ	in	their	representation	of	snowpack	stratigraphy	and	vary	150 

from	single	layer	(e.g.	Essery	et	al.,	1999;	Schlosser	et	al.,	1997),	to	three-layer	(e.g.	Sun	and	Xue,	151 

2001),	to	detailed	multilayer	(e.g.	Brun	et	al.,	1992;	Jordan,	1991)	snowpack	representations.	152 

Detailed	knowledge	of	the	internal	snowpack	structure	is	critical	for	radiative	transfer	applications	153 

in	remote	sensing	(Wiesmann	and	Mätzler,	1999)	and	avalanche	forecasts	(Lehning	et	al.,	1999)	154 

and	has	utility	in	hydrological	and	climate	change	sensitivity	applications	(Bavay	et	al.,	2009),	155 

presumably	due	to	the	correlation	between	snow	material	structure	and	surface	–	atmosphere	156 

interactions.		157 

Physically-based	snow	energy	balance	models	permit	the	assessment	of	how	snow	158 

properties	such	as	density,	albedo,	emissivity,	and	conductivity	may	impact	other	environmental	159 

processes	and	states.	However,	their	estimates	rely	on	accurate	representation	of	snow	physics	and	160 

input	forcings	such	as	precipitation,	temperature,	and	windspeed	(Musselman	et	al.,	2015;	Raleigh	161 

et	al.,	2016).	That	is,	snow	model	estimates	remain	hindered	by	uncertain	forcing	(e.g.,	162 

meteorological	conditions)	and	weaknesses	in	the	snow	model,	associated	with	both	the	fidelity	of	163 

the	equations	used	to	simulate	snow	processes	(structural	uncertainty)	and	the	parameter	values	164 

selected	for	use	in	the	model	equations	(Slater	et	al.,	2013).	In	the	case	of	high	uncertainty,	simple	165 

snow	models	can	be	a	viable	alternative	to	physically	based	energy	balance	models;	however,	the	166 

latter	offer	more	flexibility	to	benefit	from	the	increasing	availability	and	performance	of	satellite	167 

remote	sensing	techniques	(Section	2)	to	validate	prognostic	model	states	that	simpler	models	may	168 

not	track	(e.g.,	surface	temperature;	Hall	et	al.,	2008).	The	process-based	models	are	often	better	169 

structured	to	improve	state	estimates	through	data	assimilation	(Section	3).	170 



Over	the	past	decade,	much	progress	has	been	made	on	the	evaluation	of	snow	in	models,	in	171 

particular	through	the	Project	for	Intercomparison	of	Land-surface	Parameterization	Schemes	172 

(PILPS)	(Slater	et	al	2001)	and	the	Snow	Model	Intercomparison	Project	(SnowMIP)	(Essery	et	al.	173 

2009).	This	progress	has	recently	been	extended	to	snow	modules	of	global	land	surface	schemes	in	174 

the	Earth	System	Model	(ESM)	SnowMIP	(Krinner	et	al.,	2018).	Despite	decades	of	marked	model	175 

improvements,	the	comment	by	Dirmeyer	et	al.,	(2006)	still	holds	that	“Generally	there	is	mediocre	176 

agreement	among	the	models	for	most	of	the	snow-related	variables,	suggesting	a	potential	area	of	177 

continuing	weakness	in	global	land	surface	schemes.”	Model	uncertainty	remains	a	persistent	gap	178 

in	snow	estimation.	Clear	avenues	for	improvement	are:	1)	better	characterize	sources	of	model	179 

uncertainty	and	2)	improve	model	structure,	forcing	data,	and	algorithms	to	reduce	that	180 

uncertainty.	The	assimilation	of	remotely	sensed	and	in-situ	observations	could	address	these	181 

points	by	characterizing	forcing	errors	(e.g.,	snowfall	precipitation;	Liu	and	Margulis	2019)	and	by	182 

improving	model	parameterization	(e.g.,	snow	albedo;	Navari	et	al.,	2018)	while	tracking	and	183 

reducing	the	inherent	uncertainty	in	the	system.	184 

	185 

3.	Remote	Sensing	of	Seasonal	Snow		186 

Advances	in	satellite	remote	sensing	systems	continue	to	revolutionize	the	way	we	monitor	187 

snow.	New	generations	of	sensors	and	platforms	now	provide	more	extensive	and	global	coverage	188 

of	mountainous	regions	where	seasonal	snow	accumulates	(Schmugge	et	al.,	2002;	Frei	et	al.,	2012).	189 

To	date,	however,	no	satellite	mission	dedicated	to	the	estimation	of	snow	water	equivalent	exists.	190 

International	community	efforts	such	as	NASA’s	SnowEx	(Kim	et	al.,	2018)	and	the	Nordic	Snow	191 

Radar	Experiment	(Lemmetyinen	et	al.	2011)	aim	to	better	characterize	sensor	performance	and	to	192 

identify	optimum	multi-sensor	synergies	to	map	critical	snowpack	properties	in	future	satellite	193 

missions.			194 



Due to the nature of interactions between snow cover and electromagnetic radiation of 195 

different frequencies, snow can be distinguished from other terrestrial surfaces using satellite 196 

observations with various active and passive sensor techniques. Active sensors provide their own 197 

source of energy and illumination to the observed objects and the remote sensor detects the 198 

return illumination or energy that is backscattered from the target object. Active remote sensing 199 

technologies that have been used for estimating seasonal snow include active microwave and 200 

light detection and ranging (lidar) techniques. Passive sensors detect the naturally emitted 201 

radiation from the Earth surface. The most common passive remote sensing techniques for snow 202 

are visible and near-infrared observations (e.g., Cline et al., 1998, Rice et al., 2011, Section 2.1) 203 

and passive microwave detection (e.g., Foster et al., 1984; Li et al., 2012, Section 2.2). 204 

Furthermore, airborne gamma radiation measurements detect the natural terrestrial gamma 205 

radiation emitted from potassium, uranium, and thorium radioisotopes in the upper layer of soil. 206 

By measuring the difference in gamma radiation before and after the snow falls, these 207 

measurements can be used to estimate snowpack mass (Carroll, 1987; Carrol and Carroll 1989). 208 

In general, active sensors offer higher spatial resolutions than passive ones but at the expense of 209 

longer repeat times, which can limit the frequency of global coverage.  210 

The	spectral	properties	of	snow	depend	upon	several	factors	including	grain	size	and	shape,	211 

water	content,	impurity	concentrations,	temperature,	and	depth	(e.g.,	Dietz	et	al.,	2012;	Domine	et	212 

al.,	2006;	Skiles	et	al.,	2018).	Snow	remote	sensing	techniques	have	primarily	focused	on	estimating	213 

three	key	variables	of	seasonal	snow:	1)	snow	extent,	2)	snow	depth	and	3)	SWE.	The	snow	extent	214 

is	the	surface	area	that	is	covered	by	snow,	while	depth	and	SWE	provide	estimates	of	snow	volume	215 

and	mass,	respectively.	Snow	extent	is	generally	obtained	reliably	with	high	spatial	and	temporal	216 

resolution	from	visible	and	near	infrared	data	(e.g.,	Hall	et	al.,	2002;	Painter	et	al.,	2009;	Riggs	et	al.,	217 

2017),	but	sensors	retrieving	snow	depth,	such	as	the	Advanced	Topographic	Laser	Altimeter	218 



System	(ATLAS)	on	ICESat-2	(Hagopian	et	al.,	2016)	are	generally	limited	in	spatial	coverage.	219 

Comparatively,	there	is	far	less	confidence	in	the	measurement	of	SWE	(Clifford	2010;	Kim	et	al.,	220 

2018).		221 

	222 

3.1.	Visible	Near	Infrared	Observations		223 

In	the	visible	and	near	infrared	(Vis/NIR)	part	of	the	electromagnetic	spectrum,	snow	is	224 

highly	reflective;	satellite	sensors	measuring	in	this	part	of	the	spectrum	can	be	used	to	identify	the	225 

presence	or	absence	of	snow.	Vis/NIR	observations	have	been	used	to	detect	snow	cover	since	the	226 

mid-1960s.	In	particular,	Vis/NIR	observations	can	provide	regional	to	global	estimates	of	227 

fractional	snow-covered	extent	or	area	(Rosenthal	and	Dozier	1996;	Painter	et	al.,	2009;	Cortés	et	228 

al.,	2014).	Vis/NIR	data	is	often	available	at	spatial	resolutions	ranging	from	tens	to	hundreds	of	229 

meters	with	varying	temporal	resolution	(daily	to	every	couple	of	weeks).	These	resolutions	are	230 

generally	considered	acceptable	for	the	mapping	of	snow	patterns	and	changes,	even	in	complex	231 

mountainous	regions	(Hammond	et	al.,	2018).	Table	1	reports	some	of	the	key	Vis/NIR	missions	232 

targeted	to	seasonal	snow	estimation.	Examples	of	Vis/NIR	satellite	missions	are	the	advanced	very	233 

high	resolution	radiometer	(AVHRR,	Emery	et	al.,	2000),	the	Landsat	suites	of	satellite	(e.g.,	Dozier	234 

1989)	and	the	moderate	resolution	imaging	spectroradiometer	(MODIS,	Hall	et	al.,	2002),	and	more	235 

recently,	the	visible	infrared	imaging	radiometer	suite	(VIIRS,	Riggs	et	al.,	2016a,	b)	and	Sentinel-2	236 

(Gascoin	et	al.,	2019).	237 

One	major	challenge	in	snow	mapping	using	Vis/NIR	is	the	discrimination	between	clouds	238 

and	snow	because	of	their	similar	behavior	in	the	visible	part	of	the	spectrum	(e.g.,	Miller	et	al.,	239 

2005;	Hall	et	al.,	2019).	If	cloud	coverage	exceeds	certain	threshold	percentages,	a	satellite	scene	240 

can	become	useless	for	snow	detection.	Furthermore,	snow	grain	size	(Hall	and	Martinec	1985;	241 

Rango	1996;	Foster	et	al.,	1999),	impurities	(Aoki	et	al.,	2007;	Painter	et	al.,	2012;	Skiles	and	Painter	242 

2019),	and	snow	temperature	influence	the	spectral	behavior	of	different	snow	and	ice	surfaces	in	243 



the	Vis/NIR	spectrum.	Finally,	snow	cover	extent	does	not	provide	a	direct	estimate	of	SWE.	244 

Indirect	methods,	such	as	retrospective	(or	reconstruction)	techniques	(e.g.,	Molotch	et	al.,	2004;	245 

Molotch	and	Margulis,	2008;	Rice	et	al.,	2011;	Jepsen	et	al.,	2012;	Raleigh	and	Lundquist,	2012;	246 

Girotto	et	al.,	2014a)	or	data	assimilation	methods	(Section	3)	must	be	used	to	estimate	SWE.		247 

3.2.	Lidar	Observations		248 

Lidar	is	an	active	ranging	system	that	provides	high-resolution,	high-accuracy	surface	249 

elevation	maps.	The	emitted	laser	pulse	is	reflected	off	multiple	surface	features	back	to	the	250 

platform	and	the	distance	travelled	is	estimated	and	used	to	map	surface	height.	Snow	depth	can	be	251 

obtained	from	two	co-registered	lidar	images	–	one	each	for	snow-free	and	snow-covered	dates	–	252 

by	differencing	the	snow	surface	and	bare-ground	elevations	(Deems	et	al.,	2013).	Airborne	rather	253 

than	spaceborne	lidar	systems	(Painter	et	al.,	2016;	Deems	et	al.,	2013)	are	likely	the	most	accurate	254 

to	date,	but	are	limited	to	targeted	areas	on	the	order	of	hundreds	of	km	and	favorable	weather	255 

conditions.	Major	limitations	of	lidar	techniques	are	that	1)	they	observe	snow	depth	and	not	SWE,	256 

thus	assumptions	or	complementary	in-situ	observations	must	be	made	about	snow	density	(Smyth	257 

et	al.,	2019);	and	2)	they	are	available	only	at	specific	locations	and	for	specific	times,	typically	258 

infrequently	and	often	just	once	per	season	near	peak	SWE	(Margulis	et	al.,	2019).		259 

3.3.	Passive	Microwave	Observations		260 

The	microwave	radiation	emitted	by	the	Earth	surface	is	attenuated	by	the	snow	mass	on	261 

the	ground.	For	this	reason,	microwave	measurements	are	more	sensitive	to	the	mass	of	snow	than	262 

Vis/NIR	observations.	Another	advantage	of	passive	microwave	sensors	with	respect	to	the	Vis/NIR	263 

is	that	they	can	detect	snow	at	night	and	in	the	presence	of	clouds.	Retrieval	algorithms	have	been	264 

developed	to	estimate	the	snow	depth	from	satellite-based	microwave	sensors.	The	retrievals	are	265 

derived	as	a	combination	of	microwave	brightness	temperature	differences	sensed	at	different	266 



frequencies,	weighted	by	coefficients	derived	from	the	difference	between	vertical	and	horizontal	267 

polarizations.	Examples	of	satellite-based	missions	that	have	been	widely	used	to	estimate	SWE	are	268 

listed	in	Table	1.	These	are	the	Scanning	Multichannel	Microwave	Radiometer	(SMMR,	e.g.,	Chang	269 

et	al.,	1987),	the	Special	Sensor	Microwave/Image	(SSM/I,	e.g.,	Tedesco	et	al.,	2004)	and	the	270 

Advanced	Microwave	Scanning	Radiometer	(AMSR-E	and	AMSR2,	e.g.,	Kelly	2009).		271 

There	are	a	number	of	limitations	to	using	passive	microwave	sensors	to	monitor	seasonal	272 

snow.	For	example,	the	presence	of	liquid	water	in	the	snowpack	(Frei	et	al.,	2012;	Kelly	2009)	273 

and/or	vegetation	alters	the	radiation	emitted	by	the	surface	(Derksen,	2008).	Another	major	274 

shortcoming	is	the	spatial	resolution	of	passive	microwave	measurements,	which	is	on	the	order	of	275 

tens	of	kilometers	(i.e.	much	coarser	than	Vis/NIR).	At	these	coarse	scales,	there	can	be	significant	276 

sub-grid	heterogeneity	within	a	single	remote	sensing	footprint,	especially	if	estimating	SWE	in	277 

complex	mountainous	terrain.	Finally,	passive	microwaves	tend	to	saturate	around	250	mm	of	SWE	278 

(Foster	et	al.,	2005),	and	thus	are	of	limited	use	to	estimate	deep	snowpacks	typical	of	Earth’s	279 

mountain	water	towers	(Derksen	et	al.,	2008;	Viviroli	et	al.,	2007).		280 

3.4.	Active	Microwave	Observations	281 

Active	microwave	sensors	have	the	potential	to	determine	snow	depth	or	SWE	from	space	282 

with	higher	resolution	than	passive	microwave	sensors.	Active	microwave	remote	sensing	283 

measures	the	total	backscattered	power	from	snow	covered	terrain.	The	total	power	received	by	284 

the	sensor	can	be	expressed	as	the	summation	of	backscatter	from	the	air-snow	boundary,	the	285 

snow	volume	and	the	snow-ground	boundary	attenuated	by	a	factor	depending	on	the	layered	286 

snowpack	properties	and	incidence	angle	(Tedesco	et	al.,	2014).	Active	microwave	observations	are	287 

not	limited	by	weather	or	sun	illumination	conditions.	While	most	active	microwave	studies	have	288 

focused	on	the	detection	of	snowmelt	(Nagler	et	al.,	2016),	some	early	studies	showed	a	very	289 

limited	sensitivity	of	active	microwave	sensors	to	snow	mass	(Bernier	et	al.,	1999;	Shi	and	Dozier	290 



2000;	Kendra	et	al.,	1998;	Strozzi	and	Matzler	1998).	Recently,	a	few	studies	have	demonstrated	the	291 

possibility	of	using	active	microwave	data	to	estimate	SWE	(Lemmetyinen	et	al.,	2018,	Moller	et	al.,	292 

2017).	Currently,	Sentinel-1	or	RADARSAT-2	are	among	the	few	Synthetic	Aperture	Radar	(SAR)	293 

missions	providing	high-resolution	backscatter	measurements	(at	C-band;	5.4	GHz)	with	a	revisit	294 

time	of	6	days	suitable	for	seasonal	snow	monitoring.	Lievens	et	al.	(2019)	demonstrated	the	value	295 

of	including	cross-polarized	backscatter	measurements	from	C-band	SAR	to	retrieve	snow	depth	in	296 

mountainous	areas	at	regional	scales.	Further,	Conde	et	al.,	(2019)	used	the	SAR	Interferometry	297 

technique	and	Sentinel-1	C-band	data	to	retrieve	SWE	estimates	with	sub-centimeter	measurement	298 

accuracy	and	a	20	m	spatial	resolution.		299 

3.5.	Gravimetric	Observations	300 

Less common ways to observe snow include gravity measurements. Gravity data 301 

collected by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On 302 

(GRACE-FO) satellites can be used to	estimate	changes	in	the	mass	of	terrestrial	water	storage	303 

caused	by	snow	and	other	hydrological	factors	such	as	soil	moisture,	groundwater,	lakes,	and	rivers	304 

(Tapley	et	al.,	2004).		However,	the	main	shortcomings	of	GRACE	estimates	are	related	to	the	very	305 

coarse	spatial	resolution	(~3	degrees)	which	limits	application	to	larger	river	basins	and	306 

continents,	and	to	the	fact	that	it	observes	the	total	sum	of	terrestrial	water	storage.	Data	307 

assimilation	of	GRACE	observations	into	land	surface	models	(Girotto	et	al.,	2016,	Girotto	et	al.,	308 

2017,	Girotto	et	al.,	2019)	can	spatially	and	vertically	downscale	the	coarse	resolution	GRACE	309 

observations	while	characterizing	finer-scale	SWE	estimates.		310 

	311 

4.	Snow	Data	Assimilation		312 



Despite	recent	rapid	advances,	current	remote	sensing	technology	and	techniques	do	not	313 

adequately	meet	global	operational	needs	to	map	seasonal	SWE.	To	this	end,	there	is	great	promise	314 

in	the	combination	of	remote	sensing	technologies	with	modeling	and	data	assimilation	methods	to	315 

produce	optimal	SWE	maps	with	sufficient	global	coverage	and	near	real-time	estimates.	In	general	316 

terms,	data	assimilation	is	a	transdisciplinary	tool	that	has	been	used	in	fields	spanning	Earth	317 

sciences	and	extending	to	medicine	(Albers	et	al.,	2017)	and	socio-economics	(Houser	et	al.,	2013).	318 

Figure	1	illustrates	the	data	assimilation	concept.	319 

All	estimates	of	a	phenomenon	or	event	(e.g.,	seasonal	SWE)	obtained	either	through	320 

modeling	(Section	2)	or	observations	(Section	3)	have	inherent	uncertainty	and	errors.	Data	321 

assimilation	is	a	tool	to	bridge	models	and	observations	in	order	to	obtain	optimized	estimates	of	322 

the	specific	phenomena	of	interest.	Theoretically,	the	results	of	a	data	assimilation	framework	323 

should	be	a	statistically	optimal	estimate	superior	to	that	from	either	the	model	or	observations	324 

alone.	Modeling	errors	are	linked	to	uncertainties	due	to	parameterization	schemes	and	input	325 

forcings	(Section	2).	Similarly,	remote	sensing	observations	are	prone	to	observation	errors	due	to	326 

measurement	acquisition	(e.g.,	sensor	errors)	and	to	representativeness	of	the	observations.	The	327 

latter	encompasses	errors	due	to	unresolved	scales	and	processes,	observation-operator	error,	pre-328 

processing	or	quality-control	error,	and	sampling	error	of	the	observation	grid	(Janjić	et	al.,	2018).	329 

A	remaining	challenge	is	a	better	representation	of	errors	in	the	observation	and	models	used	in	330 

data	assimilation	(Lahoz	and	Schneider	2014).	In	general,	modeling	and	observation	errors	are	331 

assumed	to	be	Gaussian	because	of	the	relative	simplicity	and	ease	of	implementation	of	statistical	332 

linear	estimation	under	these	conditions	and	because	Gaussian	probability	distributions	are	fully	333 

determined	by	their	mean	and	covariance	(Lahoz	and	Schneider	2014),	but	the	actual	values	of	the	334 

errors	and	their	full	distributions	are	not	known.	Thus,	statistical	assumptions	must	be	used.	These	335 

assumptions	range	from	which	parameters,	model	inputs,	or	remote	sensing	observation	to	336 

consider	as	uncertain,	to	the	decision	of	the	error	magnitudes.	Furthermore,	modeling	and	337 



observation	errors	are	often	assumed	static	in	both	time	and	space.	In	reality,	errors	vary	in	space	338 

and	time	and	a	fully	space	and	time	distributed	error	covariance	should	be	considered	(Evensen	339 

2009).	340 

Despite	these	remaining	challenges,	data	assimilation	has	been	used	to	improve	modeled	341 

estimates	of	snow	states,	snow	physics,	model	parameters,	and	sources	of	uncertainty	(Helmert	et	342 

al.,	2018).	There	exists	a	wide	variety	of	data	assimilation	techniques	spanning	degrees	of	343 

complexity	and	the	way	in	which	modeling	and	observation	errors	are	treated.	They	vary	from	the	344 

simple	direct	insertion	of	observations	into	the	model	(e.g.,	Rodell	and	Houser	2004;	Li	et	al.,	2019),	345 

where	observation	are	treated	as	perfect	(i.e.,	zero	observation	errors),	to	more	mathematical	346 

Bayesian	methods	such	as	ensemble	Kalman	filter	and	particle	filter	approaches	which	are	designed	347 

to	account	for	the	uncertainties	of	the	model	and	observations	using	error	statistics	and	an	348 

ensemble	of	possible	model	realizations.	While	modeling	and	observation	errors	are	assumed	to	be	349 

of	Gaussian	shape	in	the	ensemble	Kalman	filters,	particle	filters	relax	this	assumption.	The	350 

following	sections	expand	on	applications	of	data	assimilation	in	the	snow	science	community	and	351 

cover	studies	across	different	spatial	scales:	from	watershed,	to	regional	and	global	studies.	352 

	353 

4.1.	Direct	Insertion		354 

A	simple	direct	insertion	application	is	provided	by	Li	et	al.,	(2019).	They	directly	insert	a	355 

blended	satellite-	and	model-based	SWE	product	(Margulis	et	al.,	2016)	for	the	initialization	of	a	356 

seasonal	streamflow	forecast	model	applied	over	the	snow-dominated	Sierra	Nevada.	They	357 

demonstrate	that	a	direct	insertion	of	the	blended	SWE	product	improves	the	efficiency	of	the	358 

streamflow	model	predictions	compared	to	the	traditional	approach	where	the	model	simulates	359 

seasonal	SWE	accumulation	and	melt	using	gridded	meteorological	data.	In	another	example,	Rodell	360 

and	Houser	(2004)	and	Toure	et	al.,	(2018)	directly	inserted	MODIS	snow	cover	extent	in	a	global	361 

land	surface	model.	They	improved	SWE	model	estimates	using	a	rule	that	specifies	whether	to	362 



update	the	model	with	the	measurements	based	on	the	difference	between	modeled	and	observed	363 

(from	MODIS)	snow	cover	extent.	While	important	model	improvements	can	be	obtained	with	a	364 

direct	insertion	approach,	the	implicit	assumption	of	the	technique	is	that	errors	and	uncertainties	365 

in	the	system	are	either	acceptable	or	acceptably	mitigated	with	rule-based	insertion	decisions.	366 

4.2.	Ensemble	Kalman	Filter		367 

The	data	assimilation	approach	most	commonly	used	by	the	snow	science	community	is	the	368 

Ensemble	Kalman	Filter	(EnKF)	in	which	error	statistics	are	determined	from	an	ensemble	of	369 

possible	model	realizations.	The	literature	is	rich	with	articles	that	use	EnKF	techniques	(and	370 

variations)	to	assimilate	SWE	observations	(either	from	in-situ	or	satellite	remote	sensing)	or	371 

microwave	radiance	observations	to	directly	adjust	modeled	SWE.	Radiance	assimilation	is	more	372 

effective	because	it	overcomes	difficulties	arising	from	the	non-unique	and	complex	relationship	373 

linking	the	passive	microwave	signal	to	several	snow	properties	(e.g.,	density,	grain	374 

size/microstructure	parameters,	temperature	and	wetness)	(Helmert	et	al.,	2018).	This	review	375 

reports	only	a	few	works	on	assimilating	SWE	or	radiance	observations.	For	example,	Slater	and	376 

Clark	(2006)	used	an	ensemble	square-root	Kalman	filter	(EnSRF,	an	approach	similar	to	an	EnKF)	377 

to	assimilate	in-situ	SWE	data	into	a	snow	hydrologic	model.	They	report	improvements	in	the	378 

simulated	SWE	during	both	accumulation	and	melt	periods.	In	the	same	year,	Durand	and	Margulis	379 

(2006)	developed	a	point-scale	radiometric	data	assimilation	experiment	where	they	used	380 

synthetic	passive	microwave	observations	and	concluded	that	the	EnKF	was	able	to	recover	the	381 

true	snowpack	states.	Similarly,	Dechant	and	Moradkhani	(2011)	examined	the	ability	of	an	EnKF	of	382 

remotely	sensed	microwave	radiance	data	to	improve	SWE	prediction	and	operational	streamflow	383 

forecasts.	Huang	et	al.,	(2017)	examined	the	potential	of	SWE	data	assimilation	using	the	EnKF	to	384 

improve	seasonal	streamflow	predictions	in	the	Pacific	Northwest,	the	Rocky	Mountains,	and	the	385 

Sierra	Nevada.	They	found	that	most	EnKF	implementation	variations	resulted	in	improved	386 



streamflow	prediction.	To	conclude,	the	scientific	community	agrees	that	EnKF	assimilation	of	SWE	387 

or	microwave	radiance	observations	lead	to	overall	improved	estimates	of	seasonal	snow	and	388 

related	variables	(e.g.	streamflow,	snow	cover,	etc.).	389 

The	literature	contains	a	few	studies	where	the	EnKF	has	been	used	to	assimilate	snow	390 

cover	extent	observations	from	a	wide	range	of	Vis/NIR	satellite	missions	such	as	Landsat	and/or	391 

MODIS.	Su	et	al.,	(2008)	investigated	the	feasibility	of	an	EnKF	framework	to	assimilate	satellite	392 

observed	snow	cover	extent	over	North	America.	The	authors	concluded	that	their	framework	393 

accurately	simulated	the	seasonal	variability	of	SWE	and	reduced	the	uncertainties	in	the	ensemble	394 

spread.	Andreadis	and	Lettenmaier	(2006)	and	Clark	et	al.	(2006)	used	the	EnKF	to	assimilate	395 

remotely	sensed	Vis/NIR	snow	cover	observations	into	a	hydrologic	model.	Their	results	showed	396 

that	the	EnKF	is	an	effective	and	operationally	feasible	solution	to	update	model	predictions	of	397 

snow	cover	extent.	However,	the	EnKF	performance	is	modest	for	estimating	ephemeral	SWE,	and	398 

limited	for	deeper	snowpacks.	As	structured,	the	EnKF	leverages	the	instantaneous	correlation	399 

between	modeled	snow	cover	extent	and	SWE.	This	correlation	tends	to	diminish	for	larger	values	400 

of	SWE,	i.e.,	when	changes	in	SWE	do	not	correspond	to	changes	in	snow	cover	extent	(i.e.,	snow	401 

cover	extent	saturates	at	100%).	To	solve	for	this	weak	instantaneous	correlation,	Durand	et	al.,	402 

(2008),	Girotto	et	al.	(2014ab),	Margulis	et	al.,	(2015)	and	Oaida	et	al.	(2019)	presented	a	smoother	403 

version	of	the	EnKF,	the	Ensemble	Kalman	Smoother	(EnKS).	In	the	EnKS,	all	snow	cover	extent	404 

observations	within	an	assimilation	window	are	assimilated,	thus	multiple	strengths	of	the	405 

observed	snow	cover	extent	signal	are	leveraged,	not	only	the	instantaneous	acquisition.		406 

The	retrospective	or	reconstructive	use	of	Vis/NIR	satellite	observations	can	provide	407 

accurate	estimates	of	SWE.	The	general	idea	of	such	methods	builds	upon	work	on	deterministic	408 

reconstruction	techniques	(e.g.,	Molotch	et	al.,	2004;	Molotch	and	Margulis,	2008;	Rice	et	al.,	2011;	409 

Jepsen	et	al.,	2012)	where	the	maximum	(or	peak)	SWE	can	be	retrieved	from	a	retrospective	410 



accumulation	of	spring-summer	potential	melt	energy	fluxes	coupled	with	the	disappearance	date	411 

of	snow	as	ascertained	from	visible	and	near	infrared	images.		412 

4.3.	Particle	Filter		413 

Other,	arguably	more	sophisticated	methods	include	particle	filter	(PF)	techniques	414 

(Arulampalam	et	al.,	2002).	Similar	to	the	EnKF,	the	PF	is	a	sequential	Monte	Carlo	approach,	but	it	415 

does	not	depend	on	the	assumption	of	a	Gaussian	distribution	of	errors.	PF	techniques	typically	416 

require	larger	ensembles	to	characterize	the	full	probability	distribution	of	state	variables	and	417 

consequently	their	uncertainties	via	resampling	sets	of	state	variables.	Leisengring	and	Moradhkani	418 

(2011)	assimilated	SWE	in	the	National	Weather	Service	model	while	Margulis	et	al.	(2015)	derived	419 

an	ensemble	PF	approach	to	estimate	SWE	from	the	assimilation	of	snow	cover	extent.	Both	studies	420 

compared	the	PF	to	the	EnKF.	Their	results	suggest	that	the	particle	filter	is	superior	to	the	EnKF-421 

based	methods	for	predicting	model	states	and	parameters.	Thirel	et	al.	(2013)	improved	modeled	422 

snow	cover	extent	and	runoff	by	assimilating	MODIS	snow	cover	products	into	a	distributed	423 

hydrological	model	using	a	PF.	A	similar	approach	used	in	Margulis	et	al.	(2019)	assimilated	424 

infrequent	(i.e.,	a	couple	of	observations	per	year)	lidar	snow	depth	observations	within	a	land	425 

surface	model.	They	demonstrated	that	data	assimilation	provides	a	useful	framework	for	426 

leveraging	infrequent	remotely	sensed	snow	depth	observations	to	derive	continuous	(spatially	and	427 

temporally)	accurate	estimates	of	unobserved	variables	such	as	SWE	and	snowmelt,	even	at	times	428 

when	observations	are	unavailable.		429 

4.4.	Spatially	Distributed	Updates			430 

Spatial	distribution	updates	are	essential	in	operational	analyses	of	in	situ	snow	depth	431 

measurements.	Most	of	the	snow	data	assimilation	research	in	the	literature,	however,	are	one-432 

dimensional	approaches,	where	one	satellite	observation	type	(i.e.,	SWE,	snow	depth,	or	snow	cover	433 



extent)	is	used	to	update	co-located	modeled	snow	estimates.	That	is,	snow	updates	can	only	be	434 

performed	at	the	locations	where	an	observation	is	available.	One-dimensional	techniques	435 

disregard	spatial	correlation	across	observations	and	model	errors.	In	a	few	exceptions,	De	Lannoy	436 

et	al.	(2010)	and	Cantet	et	al.	(2019)	tested	the	effect	of	introducing	spatial	error	correlation	into	437 

snow	data	assimilation	updates.	De	Lannoy	et	al.,	(2010)	assimilated	coarse-scale	(25	km)	SWE	438 

observations	into	fine-scale	(1	km)	land	model	simulations	and	tested	the	effect	of	different	spatial	439 

aggregation	and	correlation	methods.	Their	results	indicate	that	assimilating	disaggregated	fine-440 

scale	observations	independently	is	less	efficient	than	assimilating	a	collection	of	neighboring	441 

correlated	coarser	scale	observations.	Cantet	et	al.	(2019)	assimilated	SWE	data	from	a	sparse	442 

network	of	in-situ	snow	observation	stations	using	a	PF.	Their	PF	formulation	included	error	spatial	443 

correlations	to	allow	for	snow	states	to	be	updated	at	locations	where	observations	were	not	444 

directly	available.	These	few	studies	indicate	that	underlying	spatial	error	correlations	should	be	445 

exploited	to	improve	spatial	estimates	of	seasonal	snow.		446 

4.5.	Multi-Sensor	Data	Assimilation			447 

Only	a	few	studies	have	focused	on	multi-spectral,	multi-resolution	and	multi-sensor	data	448 

assimilation	approaches.	In	fact,	merging	different	observation	types	could	be	a	challenging	task	449 

(Girotto	et	al.,	2019).	A	few	exceptions	include	work	by	Durant	and	Margulis	(2007),	De	Lannoy	et	450 

al.	(2012),	Liu	et	al.	(2013),	and	Zhao	and	Yang	(2018).	Durant	and	Margulis	(2007)	used	EnKF	in	a	451 

multi-scale,	multi-frequency	radiometric	data	assimilation	experiment	using	synthetic	passive	452 

microwave	radiance	along	with	Vis/NIR	snow	cover	extent	observations.	They	stated	that	the	453 

combined	assimilation	of	passive	microwave	and	Vis/NIR	observations	resulted	in	overall	454 

improved	snow	predictive	skill	because	of	the	positive	synergy	due	to	the	complementary	nature	of	455 

the	two	observation	types.	Liu	et	al.	(2013)	assimilated	MODIS	snow	cover	extent	and	AMSR-E	456 

snow	depth	products	into	the	Noah	land	surface	model	and	concluded	that	the	assimilation	of	snow	457 



data	consistently	improved	snow	and	streamflow	predictions.	De	Lannoy	et	al.	(2012)	assimilated	458 

AMSR-E	SWE	retrievals	and	MODIS	snow	cover	extent	observations.	Their	joint	SWE	and	snow	459 

cover	extent	assimilation	significantly	improved	root-mean-square	error	and	correlation	values.	460 

Zhao	and	Yang	(2018)	assimilated	MODIS,	GRACE	and	AMSR-E	and	found	that	the	assimilation	of	461 

MODIS	snow	cover	fraction	slightly	improves	snow	estimation	in	mid	and	high	latitudes	while	the	462 

assimilation	of	GRACE	has	potential	in	improving	snow	depth	estimation	in	most	high-latitude	463 

regions.	The	studies	reviewed	here	agree	that	a	broader	range	of	assimilated	observations	is	an	464 

essential	for	optimizing	the	information	content	provided	to	the	models	to	produce	the	best	465 

possible	estimates	of	seasonal	snow.		466 

4.6.	Snow	Data	Assimilation	in	Operational	Forecast	Systems		467 

Even	if	the	research	field	in	snow	data	assimilation	has	evolved	significantly	over	the	last	468 

decade,	operational	systems	use	methods	that	are	much	simpler	than	the	state-of-the-art	research	469 

(Helmert	et	al.,	2018).	For	example,	the	GlobSnow	product	(Luojus,	et	al.,	2013)	provides	global	470 

gridded	information	on	snow	extent	and	SWE	across	the	Northern	Hemisphere	by	incorporating	in-471 

situ	station	snow	depth	observations,	microwave	emission	modeling,	and	spaceborne	passive	472 

microwave	observations	using	an	iterative	least	squares	minimization	scheme.	Another	widely	473 

used	product	is	SNODAS,	developed	by	the	National	Oceanic	and	Atmospheric	Administration	474 

(NOAA)	(Barrett	et	al.,	2003).	SNODAS	incorporates	in-situ	and	airborne	observations	with	model	475 

estimates	to	provide	daily	SWE	at	1	km	resolution	across	the	continental	US	(Carroll	et	al.,	2001).	476 

Its	assimilation	procedure	is	a	simple	nudging	technique	that	calculates	differences	between	477 

estimated	and	observed	SWE	values	and	then	spatially	interpolates	these	differences	to	the	model	478 

grid.	Furthermore,	the	Canadian	Meteorological	Center	Daily	Snow	Depth	Analysis	product	(Brown	479 

and	Brasnett,	2010)	uses	a	simple	statistical	interpolation	method	to	blend	observations	with	480 

model	estimates	of	snow	(Brown	et	al.,	2003).	Improved	snow	data	assimilation	schemes	increase	481 



the	skill	of	snow	reanalysis	products,	which	serve	as	an	important	baseline	against	which	to	assess	482 

climate	model	ensembles	such	as	available	in	climate	model	intercomparison	projects.		483 

The	work	by	Peings	et	al.	(2011)	and	Lin	et	al.	(2016)	demonstrates	that	an	accurate	484 

initialization	of	snow	in	a	climate	model	has	a	positive	impact	on	seasonal	temperature	forecast	485 

skill	(Figure	2).	Lin	et	al.,	(2016)	showed	that	the	assimilation	of	satellite	measurements	improves	486 

the	initialization,	with	concomitant	impacts	on	the	forecast	skill	(Koster	et	al.,	2017).	Improvements	487 

at	low	latitudes	are	seen	immediately	and	last	up	to	60	days,	whereas	improvements	at	high	488 

latitudes	appear	later	in	transitional	(fall	and	spring)	seasons	(Figure	2).	Finally,	despite	the	489 

importance	of	snow	in	regulating	weather	and	climate	processes,	only	a	few	global	weather	forecast	490 

centers	include	snow	data	assimilation	schemes	in	their	forecasting	systems.	One	example	is	the	491 

European	Center	for	Medium	Weather	Forecast	(ECMWF)	center	which	assimilates	in-situ	snow	492 

depth	and	satellite-derived	snow	cover	extent	(de	Rosnay	et	al.,	2014).		493 

Zsoter	et	al.	(2019)	address	an	ongoing	challenge	in	Earth	System	modeling	and	data	494 

assimilation	applications.	They	show	that	while	data	assimilation	of	snow	properties	is	a	critical	495 

component	of	numerical	weather	prediction,	the	addition	or	removal	of	water	neither	conserves	496 

water	mass	nor	does	it	reliably	improve	hydrologic	prediction.	The	authors	attribute	the	issue	to	497 

getting	the	right	answers	for	the	wrong	reasons;	improvements	in	one	model	variable	expose	other	498 

model	deficiencies.	They	call	for	a	need	to	consider	the	whole	Earth	system	in	data	assimilation	and	499 

model	coupling	efforts.	Such	holistic	Earth	system	approaches	and	the	inclusion	of	diverse	500 

observations	promise	to	provide	robust	information	to	improve	our	ability	to	map,	model	and	501 

project	with	a	better	degree	of	accuracy	past,	current	and	future	seasonal	snow	characteristics	and	502 

the	effects	of	snow	on	the	entire	Earth	System.	503 

5.	Conclusions	504 



The	international	Earth	Sciences	community	lacks	an	accurate	way	to	estimate	seasonal	505 

snow	changes	at	sufficiently	high	temporal	and	spatial	resolutions	and	with	global	coverage	using	506 

any	single	in-situ,	remote	sensing	or	modeling	technique.	In	this	paper,	we	review	current	507 

modeling,	remote	sensing	and	assimilation	techniques	used	to	estimate	seasonal	snow	and	508 

elucidate	the	remaining	challenges	associated	with	each	system.	509 

The	representation	of	snow	in	hydrologic	and	Earth	System	models	has	steadily	improved	510 

over	the	last	60	years.		To	date,	modeling	efforts	have	provided	the	most	spatially	and	temporally	511 

complete	estimates	of	local,	regional	and	global	snow	properties;	however,	the	accuracy	of	snow	512 

model	estimates	remains	hindered	by	uncertain	forcing	and	parameters,	and	error-prone	model	513 

structures	and	process	representations.		514 

Satellite	and	airborne	remote	sensing	allow	for	extensive	and	global	coverage	of	seasonal	515 

snow	even	in	remote,	complex	mountainous	regions.	While	snow	cover	extent	and	related	surface	516 

properties	are	generally	obtained	reliably	with	high	spatial	and	temporal	resolution	from	visible	517 

and	near	infrared	data,	we	critically	lack	similar	robust	estimates	of	snow	mass	relevant	to	water	518 

resource	applications	(Clifford	2010).	Compared	to	Vis/NIR	data,	microwave	measurements	are	519 

more	directly	related	to	the	mass	of	snow.	While	active	microwave	data	have	recently	been	found	520 

suitable	for	providing	temporal	and	spatial	resolutions	for	seasonal	snow	monitoring,	passive	521 

microwave	techniques	are	not	useful	for	estimating	deep	or	wet	snow	at	an	acceptable	spatial	522 

resolution	capable	of	resolving	global	snow	processes	inclusive	of	Earth’s	mountain	water	towers.	523 

Airborne	lidar	systems	are,	to	date,	the	most	accurate	methods	to	retrieve	seasonal	snow,	but	they	524 

only	observe	snow	depth	(not	SWE)	and	are	limited	to	targeted	regions	and	for	specific,	infrequent	525 

times.	526 

Data	assimilation	is	a	viable	way	to	converge	different	temporal	and	spatial	resolutions	of	527 

in-situ	and	remotely	sensed	observations	and	as	a	useful	technology	to	bridge	the	scale	gap	528 

between	these	observations	and	models.	In	fact,	the	assimilation	of	satellite	and	airborne	529 



observations	lead,	in	general,	to	overall	improved	estimates	of	seasonal	snow	and	related	variables.	530 

Some	remaining	challenges	in	the	snow	data	assimilation	field	include	research	in	the	effects	of	531 

underlying	spatial	error	correlations	in	data	assimilation	to	improve	the	spatial	estimates	of	SWE,	532 

and	possibly	merging	multiple	observations	to	improve	snow	model	accuracy.	Finally,	even	if	the	533 

research	field	in	snow	data	assimilation	has	evolved	significantly,	operational	and	weather	534 

forecasting	systems	use	methods	(if	any)	that	are	much	simpler	than	the	state	of	the	art.	The	535 

inclusion	of	a	broader	range	of	observations	is	an	active	and	emergent	research	field	as	multi-536 

sensor,	multi-resolution	snow	observations	become	available.		537 

These	data	assimilation	efforts	promise	to	provide	robust	and	diverse	information	to	538 

improve	our	ability	to	map,	model	and	project	past,	current	and	future	characteristics	and	the	539 

effects	of	seasonal	snow	on	the	Earth	System.		540 
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Figures	and	Tables	542 

	543 

Table	1.	Key	Visible	and	Near	Infrared	(Vis/NIR)	and	passive	microwave	(PM)	satellite	missions	544 

that	have	been	used	for	estimating	seasonal	snow.		545 

	546 

	547 

		548 

	 	549 

Satellite	or	
Sensor

Operational	
Period

Spectral	
Resolution

Spatial	
Resolution

Temporal	
Resolution

Spatial	
Coverage

Landsat 1972-present Vis/NIR 15-120	m ~16	days Global
MODIS 2000-present Vis/NIR 250-1000	m <Daily Global
AVHRR 1978-present Vis/NIR 1090	m Daily Global
VIIRS 2011-present Vis/NIR 375	m <Daily Global

Sentinel-2 2018-present Vis/NIR 20	m ~	5	days Regional
SMMR 1978-1987 PM 25	km Every	other	day Global
SSM/I 1987-present PM 25	km Daily Global
AMSR/E 2002-2011 PM 25	km Daily Global
AMSR	2 2012-present PM 25	km Daily Global



	550 

	551 

Figure	1.	Estimates	of	an	environmental	variable	(e.g.,	seasonal	snow)	can	be	obtained	from	model	552 

predictions	or	from	observations	(remote	sensing	or	in-situ).	Neither	are	perfect	and	they	contain	553 

errors	and	uncertainties.	Data	assimilation	can	be	seen	as	a	method	that	combines	the	strengths	of	554 

modeled	and	observed	estimates	to	obtain	an	optimized	set	of	estimates	for	the	environmental	555 

variable.		556 

	557 

	558 



	559 

Figure	2.	Improvements	in	temperature	3-month	prediction	due	to	assimilation	of	MODIS	snow	560 

cover	extent.	Improvements	are	expressed	in	terms	of	cumulative	RMSE	difference	between	the	561 

model	run	that	assimilated	snow	information	and	a	run	with	no	assimilation.	Negative	values	562 

indicate	reduced	prediction	errors	and	improved	temperature	predictions	after	using	snow	data	563 

assimilation	constrained	land	initializations.	This	is	an	edited	version	of	Figure	2	in	Lin	et	al.,	564 

(2016).	565 

	566 
	 	567 

-4                      0                       4

[ K ]



References		568 

Albers,	D.	J.,	Levine,	M.,	Gluckman,	B.,	Ginsberg,	H.,	Hripcsak,	G.,	&	Mamykina,	L.	(2017).	569 

Personalized	glucose	forecasting	for	type	2	diabetes	using	data	assimilation.	PLoS	570 

computational	biology,	13(4),	e1005232.	571 

Allchin,	M.	I.,	&	Déry,	S.	J.	(2017).	A	spatio-temporal	analysis	of	trends	in	Northern	Hemisphere	572 

snow-dominated	area	and	duration,	1971–2014.	Annals	of	Glaciology,	58(75pt1),	21-35.	573 

Anderson,	M.	G.,	&	Burt,	T.	P.	(Eds.).	(1985).	Hydrological	forecasting	(Vol.	372).	Chichester:	Wiley.	574 

Andreadis,	K.	M.,	&	Lettenmaier,	D.	P.	(2006).	Assimilating	remotely	sensed	snow	observations	into	575 

a	macroscale	hydrology	model.	Advances	in	water	resources,	29(6),	872-886.	576 

Aoki,	T.,	Motoyoshi,	H.,	Kodama,	Y.,	Yasunari,	T.	J.,	&	Sugiura,	K.	(2007).	Variations	of	the	snow	577 

physical	parameters	and	their	effects	on	albedo	in	Sapporo,	Japan.	Annals	of	Glaciology,	46,	578 

375-381.	579 

Arulampalam,	M.	S.,	Maskell,	S.,	Gordon,	N.,	&	Clapp,	T.	(2002).	A	tutorial	on	particle	filters	for	online	580 

nonlinear/non-Gaussian	Bayesian	tracking.	IEEE	Transactions	on	signal	processing,	50(2),	581 

174-188.	582 

Barrett,	A.	P.	(2003).	National	operational	hydrologic	remote	sensing	center	snow	data	assimilation	583 

system	(SNODAS)	products	at	NSIDC	(p.	19).	Boulder,	CO:	National	Snow	and	Ice	Data	584 

Center,	Cooperative	Institute	for	Research	in	Environmental	Sciences	585 

Barnett,	T.	P.,	Adam,	J.	C.,	&	Lettenmaier,	D.	P.	(2005).	Potential	impacts	of	a	warming	climate	on	586 

water	availability	in	snow-dominated	regions.	Nature,	438(7066),	303.	587 

Bavay,	M.,	Lehning,	M.,	Jonas,	T.,	&	Löwe,	H.	(2009).	Simulations	of	future	snow	cover	and	discharge	588 

in	Alpine	headwater	catchments.	Hydrological	Processes:	An	International	Journal,	23(1),	95-589 

108.	590 



Berghuijs,	W.	R.,	Woods,	R.	A.,	Hutton,	C.	J.,	&	Sivapalan,	M.	(2016).	Dominant	flood	generating	591 

mechanisms	across	the	United	States.	Geophysical	Research	Letters,	43(9),	4382-4390.	592 

Bernier,	M.,	Fortin,	J.	P.,	Gauthier,	Y.,	Gauthier,	R.,	Roy,	R.,	&	Vincent,	P.	(1999).	Determination	of	593 

snow	water	equivalent	using	RADARSAT	SAR	data	in	eastern	Canada.	Hydrological	594 

Processes,	13(18),	3041-3051.	595 

Bonan,	G.	B.	(1998).	The	land	surface	climatology	of	the	NCAR	Land	Surface	Model	coupled	to	the	596 

NCAR	Community	Climate	Model.	Journal	of	Climate,	11(6),	1307-1326.	597 

Bormann,	K.	J.,	Brown,	R.	D.,	Derksen,	C.,	&	Painter,	T.	H.	(2018).	Estimating	snow-cover	trends	from	598 

space.	Nature	Climate	Change,	8(11),	924.	599 

Brown,	R.	D.,	Brasnett,	B.,	&	Robinson,	D.	(2003).	Gridded	North	American	monthly	snow	depth	and	600 

snow	water	equivalent	for	GCM	evaluation.	Atmosphere-Ocean,	41(1),	1-14.	601 

Brown,	R.	D.	and	B.	Brasnett.	2010,	updated	annually.	Canadian	Meteorological	Centre	(CMC)	Daily	602 

Snow	Depth	Analysis	Data,	Version	1.	Boulder,	Colorado	USA.	NASA	National	Snow	and	Ice	603 

Data	Center	Distributed	Active	Archive	Center.		604 

Brown	and	Derksen,	Is	Eurasian	October	snow	cover	extent	increasing?,	Environmental	Research	605 

Let.,	doi:10.1088/1748-9326/8/2/024006,	2013.	606 

Brown	et	al.,	2017.	Arctic	terrestrial	snow	cover.	In:	Snow,	Water,	Ice	and	Permafrost	in	the	Arctic	607 

(SWIPA)	2017.	pp.	25-64.	Arctic	Monitoring	and	Assessment	Programme	(AMAP),	Oslo,	608 

Norway.	609 

Brun,	E.,	David,	P.,	Sudul,	M.,	&	Brunot,	G.	(1992).	A	numerical	model	to	simulate	snow-cover	610 

stratigraphy	for	operational	avalanche	forecasting.	Journal	of	Glaciology,	38(128),	13-22.	611 



Cantet,	P.,	Boucher,	M.	A.,	Lachance-Coutier,	S.,	Turcotte,	R.,	&	Fortin,	V.	(2019).	Using	a	Particle	612 

Filter	to	Estimate	the	Spatial	Distribution	of	the	Snowpack	Water	Equivalent.	Journal	of	613 

Hydrometeorology,	20(4),	577-594.	614 

Carroll,	S.	S.,	&	Carroll,	T.	R.	(1989).	Effect	of	uneven	snow	cover	on	airborne	snow	water	equivalent	615 

estimates	obtained	by	measuring	terrestrial	gamma	radiation.	Water	Resources	616 

Research,	25(7),	1505-1510.	617 

Carroll,	T.	(2001).	Airborne	Gamma	Radiation	Snow	Survey	Program:	A	User’s	Guide,	Version	618 

5.0.	National	Operational	Hydrologic	Remote	Sensing	Center	(NOHRSC),	Chanhassen,	14.	619 

Carroll,	T.	R.	(1987).	Operational	airborne	measurements	of	snow	water	equivalent	and	soil	620 

moisture	using	terrestrial	gamma	radiation	in	the	United	States.	621 

B.	Goodison,	R.G.	Barry,	J.	Dozier	(Eds.),	Large	Scale	Effects	of	Seasonal	Snow	Cover	622 

(Proceedings	of	the	Vancouver	Symposium,	August	1987),	Vancouver,	BC,	IAHS	(1987),	623 

pp.	213-223	624 

Chang,	A.	T.	C.,	Foster,	J.	L.,	&	Hall,	D.	K.	(1987).	Nimbus-7	SMMR	derived	global	snow	cover	625 

parameters.	Annals	of	glaciology,	9,	39-44.	626 

Clark,	M.	P.,	Slater,	A.	G.,	Barrett,	A.	P.,	Hay,	L.	E.,	McCabe,	G.	J.,	Rajagopalan,	B.,	&	Leavesley,	G.	H.	627 

(2006).	Assimilation	of	snow	covered	area	information	into	hydrologic	and	land-surface	628 

models.	Advances	in	water	resources,	29(8),	1209-1221.	629 

Clark,	M.P.,	Bierkens,	M.F.,	Samaniego,	L.,	Woods,	R.A.,	Uijlenhoet,	R.,	Bennett,	K.E.,	Pauwels,	V.,	Cai,	630 

X.,	Wood,	A.W.	and	Peters-Lidard,	C.D.,	(2017).	The	evolution	of	process-based	hydrologic	631 

models:	historical	challenges	and	the	collective	quest	for	physical	realism.	Hydrology	and	632 

Earth	System	Sciences	(Online),	21(LA-UR-17-27603).	633 



Clifford,	D.	(2010).	Global	estimates	of	snow	water	equivalent	from	passive	microwave	634 

instruments:	history,	challenges	and	future	developments.	International	Journal	of	Remote	635 

Sensing,	31(14),	3707-3726.	636 

Cline,	D.	W.,	Bales,	R.	C.,	&	Dozier,	J.	(1998).	Estimating	the	spatial	distribution	of	snow	in	mountain	637 

basins	using	remote	sensing	and	energy	balance	modeling.	Water	Resources	Research,	34(5),	638 

1275-1285.	639 

Cohen,	J.,	&	Entekhabi,	D.	(2001).	The	influence	of	snow	cover	on	Northern	Hemisphere	climate	640 

variability.	Atmosphere-Ocean,	39(1),	35-53.	641 

Conde,	V.,	Nico,	G.,	Mateus,	P.,	Catalão,	J.,	Kontu,	A.,	&	Gritsevich,	M.	(2019).	On	the	estimation	of	642 

temporal	changes	of	snow	water	equivalent	by	spaceborne	SAR	interferometry:	a	new	643 

application	for	the	Sentinel-1	mission.	Journal	of	Hydrology	and	Hydromechanics,	67(1),	93-644 

100.	645 

Cortés,	G.,	Girotto,	M.,	&	Margulis,	S.	A.	(2014).	Analysis	of	sub-pixel	snow	and	ice	extent	over	the	646 

extratropical	Andes	using	spectral	unmixing	of	historical	Landsat	imagery.	Remote	sensing	647 

of	environment,	141,	64-78.	648 

Croce,	P.,	Formichi,	P.,	Landi,	F.,	Mercogliano,	P.,	Bucchignani,	E.,	Dosio,	A.,	&	Dimova,	S.	(2018).	The	649 

snow	load	in	Europe	and	the	climate	change.	Climate	Risk	Management,	20,	138-154.	650 

De	Lannoy,	G.	J.,	Reichle,	R.	H.,	Houser,	P.	R.,	Arsenault,	K.	R.,	Verhoest,	N.	E.,	&	Pauwels,	V.	R.	(2010).	651 

Satellite-scale	snow	water	equivalent	assimilation	into	a	high-resolution	land	surface	652 

model.	Journal	of	Hydrometeorology,	11(2),	352-369.	653 

De	Lannoy,	G.	J.,	Reichle,	R.	H.,	Arsenault,	K.	R.,	Houser,	P.	R.,	Kumar,	S.,	Verhoest,	N.	E.,	&	Pauwels,	V.	654 

R.	(2012).	Multiscale	assimilation	of	Advanced	Microwave	Scanning	Radiometer–EOS	snow	655 



water	equivalent	and	Moderate	Resolution	Imaging	Spectroradiometer	snow	cover	fraction	656 

observations	in	northern	Colorado.	Water	Resources	Research,	48(1).	657 

de Rosnay, P, Balsamo, G, Albergel, C, Munoz-Sabater, J, Isaksen, L (2014). Initialisation of 658 

Land Surface Variables for Numerical Weather Prediction. Surveys in Geophysics, 35, 659 

607-621 660 

Dechant,	C.,	&	Moradkhani,	H.	(2011).	Radiance	data	assimilation	for	operational	snow	and	661 

streamflow	forecasting.	Advances	in	Water	Resources,	34(3),	351-364.	662 

Deems,	J.S.,	Painter	T.H.,	Finnegan	D.H.	(2013).	LiDAR	measurements	of	snow	depth:	a	review.	663 

Journal	of	Glaciology	59(215),	467–479.		664 

Derksen,	C.	(2008).	The	contribution	of	AMSR-E	18.7	and	10.7	GHz	measurements	to	improved	665 

boreal	forest	snow	water	equivalent	retrievals.	Remote	Sensing	of	Environment,	112(5),	666 

2701-2710.	667 

Déry,	S.	J.,	&	Brown,	R.	D.	(2007).	Recent	Northern	Hemisphere	snow	cover	extent	trends	and	668 

implications	for	the	snow-albedo	feedback.	Geophysical	Research	Letters,	34(22).	669 

Descamps,	S.,	Aars,	J.,	Fuglei,	E.,	Kovacs,	K.M.,	Lydersen,	C.,	Pavlova,	O.,	Pedersen,	Å.Ø.,	Ravolainen,	V.	670 

and	Strøm,	H.,	(2017).	Climate	change	impacts	on	wildlife	in	a	High	Arctic	archipelago–671 

Svalbard,	Norway.	Global	Change	Biology,	23(2),	pp.490-502.	672 

Dietz,	A.	J.,	Kuenzer,	C.,	Gessner,	U.,	&	Dech,	S.	(2012).	Remote	sensing	of	snow–a	review	of	available	673 

methods.	International	Journal	of	Remote	Sensing,	33(13),	4094-4134.	674 

Dirmeyer,	P.	A.,	Gao,	X.,	Zhao,	M.,	Guo,	Z.,	Oki,	T.,	&	Hanasaki,	N.	(2006).	GSWP-2:	Multimodel	675 

analysis	and	implications	for	our	perception	of	the	land	surface.	Bulletin	of	the	American	676 

Meteorological	Society,	87(10),	1381-1398.	677 



Domine,	F.,	Salvatori,	R.,	Legagneux,	L.,	Salzano,	R.,	Fily,	M.,	&	Casacchia,	R.	(2006).	Correlation	678 

between	the	specific	surface	area	and	the	short	wave	infrared	(SWIR)	reflectance	of	679 

snow.	Cold	Regions	Science	and	Technology,	46(1),	60-68.	680 

Dozier,	J.	(1989).	Spectral	signature	of	alpine	snow	cover	from	the	Landsat	Thematic	Mapper.	681 

Remote	sensing	of	environment,	28,	9-22.	682 

Durand,	M.,	&	Margulis,	S.	A.	(2007).	Correcting	first-order	errors	in	snow	water	equivalent	683 

estimates	using	a	multifrequency,	multiscale	radiometric	data	assimilation	scheme.	Journal	684 

of	Geophysical	Research:	Atmospheres,	112(D13).	685 

Durand,	M.,	&	Margulis,	S.	A.	(2006).	Feasibility	test	of	multifrequency	radiometric	data	assimilation	686 

to	estimate	snow	water	equivalent.	Journal	of	Hydrometeorology,	7(3),	443-457.	687 

Durand,	M.,	Molotch,	N.	P.,	&	Margulis,	S.	A.	(2008).	A	Bayesian	approach	to	snow	water	equivalent	688 

reconstruction.	Journal	of	Geophysical	Research:	Atmospheres,	113(D20).	689 

Dutra,	E.,	Schär,	C.,	Viterbo,	P.,	&	Miranda,	P.	M.	(2011).	Land-atmosphere	coupling	associated	with	690 

snow	cover.	Geophysical	Research	Letters,	38(15).	691 

Emery,	C.	Fowler,	T.	Haran,	J.	Key,	J.	Maslanik,	T.	Scambos	2000.	AVHRR	Polar	Pathfinder	Twice-692 

Daily	5	km	EASE-Grid	Composites,	Version	3.		Boulder,	Colorado	USA.	NSIDC:	National	Snow	693 

and	Ice	Data	Center.		694 

Essery,	R.,	Martin,	E.,	Douville,	H.,	Fernandez,	A.,	&	Brun,	E.	(1999).	A	comparison	of	four	snow	695 

models	using	observations	from	an	alpine	site.	Climate	Dynamics,	15(8),	583-593.	696 

Essery,	R.,	&	Etchevers,	P.	(2004).	Parameter	sensitivity	in	simulations	of	snowmelt.	Journal	of	697 

Geophysical	Research:	Atmospheres,	109(D20).	698 



Essery,	R.,	Rutter,	N.,	Pomeroy,	J.,	Baxter,	R.,	Stähli,	M.,	Gustafsson,	D.,	...	&	Elder,	K.	(2009).	699 

SNOWMIP2:	An	evaluation	of	forest	snow	process	simulations.	Bulletin	of	the	American	700 

Meteorological	Society,	90(8),	1120-1136.	701 

Evensen,	G.	(2009).	Data	assimilation:	the	ensemble	Kalman	filter.	Springer	Science	&	Business	702 

Media.	703 

Foster,	J.	L.,	Hall,	D.	K.,	Chang,	A.	T.	C.,	&	Rango,	A.	(1984).	An	overview	of	passive	microwave	snow	704 

research	and	results.	Reviews	of	Geophysics,	22(2),	195-208.	705 

Foster,	J.,	Liston,	G.,	Koster,	R.,	Essery,	R.,	Behr,	H.,	Dumenil,	L.,	...	&	Cohen,	J.	(1996).	Snow	cover	and	706 

snow	mass	intercomparisons	of	general	circulation	models	and	remotely	sensed	707 

datasets.	Journal	of	Climate,	9(2),	409-426.	708 

Foster,	J.	L.,	Hall,	D.	K.,	Chang,	A.	T.,	Rango,	A.,	Wergin,	W.,	&	Erbe,	E.	(1999).	Effects	of	snow	crystal	709 

shape	on	the	scattering	of	passive	microwave	radiation.	IEEE	Transactions	on	Geoscience	710 

and	Remote	Sensing,	37(2),	1165-1168.	711 

Foster,	J.	L.,	Sun,	C.,	Walker,	J.	P.,	Kelly,	R.,	Chang,	A.,	Dong,	J.,	&	Powell,	H.	(2005).	Quantifying	the	712 

uncertainty	in	passive	microwave	snow	water	equivalent	observations.	Remote	Sensing	of	713 

environment,	94(2),	187-203.	714 

Frei,	A.,	Tedesco,	M.,	Lee,	S.,	Foster,	J.,	Hall,	D.	K.,	Kelly,	R.,	&	Robinson,	D.	A.	(2012).	A	review	of	715 

global	satellite-derived	snow	products.	Advances	in	Space	Research,	50(8),	1007-1029.	716 

Gascoin,	S.,	Grizonnet,	M.,	Bouchet,	M.,	Salgues,	G.,	&	Hagolle,	O.	(2019).	Theia	Snow	collection:	high-717 

resolution	operational	snow	cover	maps	from	Sentinel-2	and	Landsat-8	data.	Earth	System	718 

Science	Data,	11(2),	493-514.	719 

Girotto,	M.,	Margulis,	S.	A.,	&	Durand,	M.	(2014a).	Probabilistic	SWE	reanalysis	as	a	generalization	of	720 

deterministic	SWE	reconstruction	techniques.	Hydrological	processes,	28(12),	3875-3895.	721 



Girotto,	M.,	Cortés,	G.,	Margulis,	S.	A.,	&	Durand,	M.	(2014b).	Examining	spatial	and	temporal	722 

variability	in	snow	water	equivalent	using	a	27	year	reanalysis:	K	ern	R	iver	watershed,	723 

Sierra	Nevada.	Water	Resources	Research,	50(8),	6713-6734.	724 

Girotto,	M.,	De	Lannoy,	G.	J.,	Reichle,	R.	H.,	&	Rodell,	M.	(2016).	Assimilation	of	gridded	terrestrial	725 

water	storage	observations	from	GRACE	into	a	land	surface	model.	Water	Resources	726 

Research,	52(5),	4164-4183.	727 

Girotto,	M.,	De	Lannoy,	G.	J.,	Reichle,	R.	H.,	Rodell,	M.,	Draper,	C.,	Bhanja,	S.	N.,	&	Mukherjee,	A.	728 

(2017).	Benefits	and	pitfalls	of	GRACE	data	assimilation:	A	case	study	of	terrestrial	water	729 

storage	depletion	in	India.	Geophysical	research	letters,	44(9),	4107-4115.	730 

Girotto,	M.,	Reichle,	R.	H.,	Rodell,	M.,	Liu,	Q.,	Mahanama,	S.,	&	De	Lannoy,	G.	J.	(2019).	Multi-sensor	731 

assimilation	of	SMOS	brightness	temperature	and	GRACE	terrestrial	water	storage	732 

observations	for	soil	moisture	and	shallow	groundwater	estimation.	Remote	Sensing	of	733 

Environment,	227,	12-27.	734 

Golding,	D.	L.,	&	Swanson,	R.	H.	(1978).	Snow	accumulation	and	melt	in	small	forest	openings	in	735 

Alberta.	Canadian	Journal	of	Forest	Research,	8(4),	380-388.	736 

Gong,	G.,	Entekhabi,	D.,	Cohen,	J.,	&	Robinson,	D.	(2004).	Sensitivity	of	atmospheric	response	to	737 

modeled	snow	anomaly	characteristics.	Journal	of	Geophysical	Research:	Atmospheres,	738 

109(D6).	739 

Groffman,	P.	M.,	Driscoll,	C.	T.,	Fahey,	T.	J.,	Hardy,	J.	P.,	Fitzhugh,	R.	D.,	&	Tierney,	G.	L.	(2001).	Colder	740 

soils	in	a	warmer	world:	a	snow	manipulation	study	in	a	northern	hardwood	forest	741 

ecosystem.	Biogeochemistry,	56(2),	135-150.	742 

Hagopian,	J.,	Bolcar,	M.,	Chambers,	J.,	Crane,	A.,	Eegholm,	B.,	Evans,	T.,	Hetherington,	S.,	Mentzell,	E.,	743 

Thompson,	P.L.,	Ramos-Izquierdo,	L.	and	Vaughnn,	D.,	(2016,	September).	Advanced	744 



topographic	laser	altimeter	system	(ATLAS)	receiver	telescope	assembly	(RTA)	and	745 

transmitter	alignment	and	test.	In	Earth	Observing	Systems	XXI	(Vol.	9972,	p.	997207).	746 

International	Society	for	Optics	and	Photonics.	747 

Hall,	D.	K.,	&	Martinec,	J.	(1985).	Remote	sensing	of	snow	and	ice.	Principles	and	Applications	of	748 

Imaging	Radar,	677-703.	749 

Hall,	D.	K.,	Riggs,	G.	A.,	Salomonson,	V.	V.,	DiGirolamo,	N.	E.,	&	Bayr,	K.	J.	(2002).	MODIS	snow-cover	750 

products.	Remote	sensing	of	Environment,	83(1-2),	181-194.	751 

Hall,	D.	K.,	Box,	J.	E.,	Casey,	K.	A.,	Hook,	S.	J.,	Shuman,	C.	A.,	&	Steffen,	K.	(2008).	Comparison	of	752 

satellite-derived	and	in-situ	observations	of	ice	and	snow	surface	temperatures	over	753 

Greenland.	Remote	Sensing	of	Environment,	112(10),	3739-3749.	754 

Hall,	D.	K.,	Riggs,	G.	A.,	DiGirolamo,	N.	E.,	&	Román,	M.	O.	(2019).	MODIS	cloud-gap	filled	snow-cover	755 

products:	Advantages	and	uncertainties.	Hydrology	and	Earth	System	Sciences	Discussions,	1-756 

23.	757 

Hammond,	J.	C.,	Saavedra,	F.	A.,	&	Kampf,	S.	K.	(2018).	Global	snow	zone	maps	and	trends	in	snow	758 

persistence	2001–2016.	International	Journal	of	Climatology,	38(12),	4369-4383.	759 

Helmert,	J.,	Şensoy	Şorman,	A.,	Alvarado	Montero,	R.,	De	Michele,	C.,	de	Rosnay,	P.,	Dumont,	M.,	...	&	760 

Pullen,	S.	(2018).	Review	of	snow	data	assimilation	methods	for	hydrological,	land	surface,	761 

meteorological	and	climate	models:	Results	from	a	COST	HarmoSnow	762 

survey.	Geosciences,	8(12),	489.	763 

Henderson,	G.	R.,	Peings,	Y.,	Furtado,	J.	C.,	&	Kushner,	P.	J.	(2018).	Snow–atmosphere	coupling	in	the	764 

Northern	Hemisphere.	Nature	Climate	Change,	1.	765 



Hori	et	al.,	A	38-year	(1978-2015)	northern	hemisphere	daily	now	cover	extent	product	derived	766 

using	consistent	objective	criteria	from	satellite-borne	optical	sensors,	Remote	Sens.	767 

Environ.,	doi:10.1016/j.rse.2017.01.023,	2017.	768 

Houser,	P.	R.,	Shuttleworth,	W.	J.,	Famiglietti,	J.	S.,	Gupta,	H.	V.,	Syed,	K.	H.,	&	Goodrich,	D.	C.	(1998).	769 

Integration	of	soil	moisture	remote	sensing	and	hydrologic	modeling	using	data	770 

assimilation.	Water	Resources	Research,	34(12),	3405-3420.	771 

Houser,	P.	R.	(2013).	Improved	Disaster	Management	Using	Data	Assimilation.	In	Approaches	to	772 

Disaster	Management-Examining	the	Implications	of	Hazards,	Emergencies	and	Disasters.	773 

IntechOpen.	774 

Huang,	C.,	Newman,	A.	J.,	Clark,	M.	P.,	Wood,	A.	W.,	&	Zheng,	X.	(2017).	Evaluation	of	snow	data	775 

assimilation	using	the	ensemble	Kalman	filter	for	seasonal	streamflow	prediction	in	the	776 

western	United	States.	Hydrology	and	Earth	System	Sciences,	21(1),	635-650.	777 

Huntington,	T.	G.	(2006).	Evidence	for	intensification	of	the	global	water	cycle:	review	and	778 

synthesis.	Journal	of	Hydrology,	319(1-4),	83-95.	779 

Janjić,	T.,	Bormann,	N.,	Bocquet,	M.,	Carton,	J.	A.,	Cohn,	S.	E.,	Dance,	S.	L.,	...	&	Weston,	P.	(2018).	On	780 

the	representation	error	in	data	assimilation.	Quarterly	Journal	of	the	Royal	Meteorological	781 

Society,	144(713),	1257-1278.	782 

Jepsen,	S.	M.,	Molotch,	N.	P.,	Williams,	M.	W.,	Rittger,	K.	E.,	&	Sickman,	J.	O.	(2012).	Interannual	783 

variability	of	snowmelt	in	the	Sierra	Nevada	and	Rocky	Mountains,	United	States:	Examples	784 

from	two	alpine	watersheds.	Water	Resources	Research,	48(2).	785 

Jordan,	R.	(1991).	A	one-dimensional	temperature	model	for	a	snow	cover:	Technical	786 

documentation	for	SNTHERM.	89	(No.	CRREL-SR-91-16).	Cold	Regions	Research	and	787 

Engineering	Lab	Hanover	NH.	788 



Jost,	G.,	Weiler,	M.,	Gluns,	D.	R.,	&	Alila,	Y.	(2007).	The	influence	of	forest	and	topography	on	snow	789 

accumulation	and	melt	at	the	watershed-scale.	Journal	of	Hydrology,	347(1-2),	101-115.	790 

Kelly,	R.	(2009).	The	AMSR-E	snow	depth	algorithm:	Description	and	initial	results.	Journal	of	the	791 

Remote	Sensing	Society	of	Japan,	29(1),	307-317.	792 

Kendra,	J.	R.,	Sarabandi,	K.,	&	Ulaby,	F.	T.	(1998).	Radar	measurements	of	snow:	Experiment	and	793 

analysis.	IEEE	Transactions	on	Geoscience	and	Remote	Sensing,	36(3),	864-879.	794 

Kim,	E.	J.,	Gatebe,	C.	K.,	Hall,	D.	K.,	&	Kang,	D.	H.	(2018).	NASA’s	SnowEx	Campaign	and	Measuring	795 

Global	Snow	from	Space	(GSFC-E-DAA-TN55784).	796 

Klein,	G.,	Vitasse,	Y.,	Rixen,	C.,	Marty,	C.,	&	Rebetez,	M.	(2016).	Shorter	snow	cover	duration	since	797 

1970	in	the	Swiss	Alps	due	to	earlier	snowmelt	more	than	to	later	snow	onset.	Climatic	798 

Change,	139(3-4),	637-649.	799 

Koster,	R.	D.,	Betts,	A.	K.,	Dirmeyer,	P.	A.,	Bierkens,	M.,	Bennett,	K.	E.,	Déry,	S.	J.,	...	&	Liang,	X.	(2017).	800 

Hydroclimatic	variability	and	predictability:	a	survey	of	recent	research.	Hydrology	and	801 

earth	system	sciences,	21(7),	3777.	802 

Krinner,	G.,	Derksen,	C.,	Essery,	R.,	Flanner,	M.,	Hagemann,	S.,	Clark,	M.,	Hall,	A.,	Rott,	H.,	Brutel-803 

Vuilmet,	C.,	Kim,	H.	and	Ménard,	C.B.,	(2018).	ESM-SnowMIP:	assessing	snow	models	and	804 

quantifying	snow-related	climate	feedbacks.	Geoscientific	Model	Development,	11,	pp.5027-805 

5049.	806 

Lahoz,	W.	A.,	&	Schneider,	P.	(2014).	Data	assimilation:	making	sense	of	Earth	807 

Observation.	Frontiers	in	Environmental	Science,	2,	16.	808 

Lawrence,	D.	M.,	Slater,	A.	G.,	Tomas,	R.	A.,	Holland,	M.	M.,	&	Deser,	C.	(2008).	Accelerated	Arctic	land	809 

warming	and	permafrost	degradation	during	rapid	sea	ice	loss.	Geophysical	Research	810 

Letters,	35(11).	811 



Lehning,	M.,	Bartelt,	P.,	Brown,	B.,	Russi,	T.,	Stöckli,	U.,	&	Zimmerli,	M.	(1999).	SNOWPACK	model	812 

calculations	for	avalanche	warning	based	upon	a	new	network	of	weather	and	snow	813 

stations.	Cold	Regions	Science	and	Technology,	30(1-3),	145-157.	814 

Leisenring,	M.,	&	Moradkhani,	H.	(2011).	Snow	water	equivalent	prediction	using	Bayesian	data	815 

assimilation	methods.	Stochastic	Environmental	Research	and	Risk	Assessment,	25(2),	253-816 

270.	817 

Lemmetyinen,	J.,	Pulliainen,	J.,	Arslan,	A.,	Kontu,	A.,	Rautiainen,	K.,	Vehviläinen,	J.,	...	&	818 

Schuettemeyer,	D.	(2011,	July).	Analysis	of	active	and	passive	microwave	observations	from	819 

the	NoSREx	campaign.	In	2011	IEEE	International	Geoscience	and	Remote	Sensing	820 

Symposium	(pp.	2737-2740).	IEEE.	821 

Lemmetyinen,	J.,	Derksen,	C.,	Rott,	H.,	Macelloni,	G.,	King,	J.,	Schneebeli,	M.,	...	&	Pulliainen,	J.	(2018).	822 

Retrieval	of	effective	correlation	length	and	snow	water	equivalent	from	radar	and	passive	823 

microwave	measurements.	Remote	Sensing,	10(2),	170.	824 

Li,	D.,	Durand,	M.,	&	Margulis,	S.	A.	(2012).	Potential	for	hydrologic	characterization	of	deep	825 

mountain	snowpack	via	passive	microwave	remote	sensing	in	the	Kern	River	basin,	Sierra	826 

Nevada,	USA.	Remote	sensing	of	environment,	125,	34-48.	827 

Li,	D.,	Lettenmaier,	D.	P.,	Margulis,	S.	A.,	&	Andreadis,	K.	(2019).	The	Value	of	Accurate	High-828 

Resolution	and	Spatially	Continuous	Snow	Information	to	Streamflow	Forecasts.	Journal	of	829 

Hydrometeorology,	20(4),	731-749.	830 

Lievens,	H.,	Demuzere,	M.,	Marshall,	H.	P.,	Reichle,	R.	H.,	Brucker,	L.,	Brangers,	I.,	...	&	Jonas,	T.	831 

(2019).	Snow	depth	variability	in	the	Northern	Hemisphere	mountains	observed	from	832 

space.	Nature	communications,	10(1),	1-12.	833 



Lin,	P.,	Wei,	J.,	Yang,	Z.	L.,	Zhang,	Y.,	&	Zhang,	K.	(2016).	Snow	data	assimilation-constrained	land	834 

initialization	improves	seasonal	temperature	prediction.	Geophysical	Research	835 

Letters,	43(21),	11-423.	836 

Liu,	Y.,	&	Margulis,	S.	(2019).	Deriving	Bias	and	Uncertainty	in	MERRA-2	Snowfall	Precipitation	over	837 

High	Mountain	Asia.	Frontiers	in	Earth	Science,	7,	280.	838 

Liu,	Y.,	Peters-Lidard,	C.	D.,	Kumar,	S.,	Foster,	J.	L.,	Shaw,	M.,	Tian,	Y.,	&	Fall,	G.	M.	(2013).	839 

Assimilating	satellite-based	snow	depth	and	snow	cover	products	for	improving	snow	840 

predictions	in	Alaska.	Advances	in	water	resources,	54,	208-227.	841 

Lundquist,	J.,	Hughes,	M.,	Gutmann,	E.,	&	Kapnick,	S.	(2019).	Our	skill	in	modeling	mountain	rain	and	842 

snow	is	bypassing	the	skill	of	our	observational	networks.	Bulletin	of	the	American	843 

Meteorological	Society,	(2019).	844 

Luojus,	K.,	Pullianinen,	J.,	Takala,	M.,	Lemmetyinen,	J.,	Kangwa,	M.,	Smolander,	T.,	...	&	Pinnock,	S.	845 

(2013).	ESA	Globsnow:	Algorithm	Theoretical	Basis	Document-SWE-algorithm.	846 

Margulis,	S.	A.,	Girotto,	M.,	Cortés,	G.,	&	Durand,	M.	(2015).	A	particle	batch	smoother	approach	to	847 

snow	water	equivalent	estimation.	Journal	of	Hydrometeorology,	16(4),	1752-1772.	848 

Margulis,	S.	A.,	Cortés,	G.,	Girotto,	M.,	&	Durand,	M.	(2016).	A	Landsat-era	Sierra	Nevada	snow	849 

reanalysis	(1985–2015).	Journal	of	Hydrometeorology,	17(4),	1203-1221.	850 

Margulis,	S.	A.,	Fang,	Y.,	Li,	D.,	Lettenmaier,	D.	P.,	&	Andreadis,	K.	(2019).	The	Utility	of	Infrequent	851 

Snow	Depth	Images	for	Deriving	Continuous	Space-Time	Estimates	of	Seasonal	Snow	Water	852 

Equivalent.	Geophysical	Research	Letters,	46(10),	5331-5340.	853 

Mätzler,	C.,	&	Wiesmann,	A.	(1999).	Extension	of	the	microwave	emission	model	of	layered	854 

snowpacks	to	coarse-grained	snow.	Remote	Sensing	of	Environment,	70(3),	317-325.	855 



Meiman	J,		Froehlich	H,		Dils	RE.		1968.		Snow	accumulation	in	relation	to	elevation	and	forest	856 

canopy.	Paper	Presented	at	National	Fall	Meeting.	American	Geophysical	Union:	San	857 

Francisco,	CA;	8.	858 

Miller,	S.	D.,	Lee,	T.	F.,	&	Fennimore,	R.	L.	(2005).	Satellite-based	imagery	techniques	for	daytime	859 

cloud/snow	delineation	from	MODIS.	Journal	of	applied	meteorology,	44(7),	987-997.	860 

Moller,	D.,	Andreadis,	K.	M.,	Bormann,	K.	J.,	Hensley,	S.,	&	Painter,	T.	H.	(2017).	Mapping	snow	depth	861 

from	Ka-band	interferometry:	Proof	of	concept	and	comparison	with	scanning	lidar	862 

retrievals.	IEEE	Geoscience	and	Remote	Sensing	Letters,	14(6),	886-890.	863 

Molotch,	N.	P.,	Painter,	T.	H.,	Bales,	R.	C.,	&	Dozier,	J.	(2004).	Incorporating	remotely-sensed	snow	864 

albedo	into	a	spatially-distributed	snowmelt	model.	Geophysical	Research	Letters,	31(3).	865 

Molotch	NP,	Margulis	SA.	2008.		Estimating	the	distribution	of	snow-water	equivalent	using	866 

remotely	sensed	snow	cover	data	and	a	spatially	distributed	snowmelt	model:	a	multi-867 

resolution,	multi-sensor	comparison.	Advances	in	Water	Resources	31:		1503–	1514.	868 

Mote,	P.	W.,	Li,	S.,	Lettenmaier,	D.	P.,	Xiao,	M.,	&	Engel,	R.	(2018).	Dramatic	declines	in	snowpack	in	869 

the	western	US.	Npj	Climate	and	Atmospheric	Science,	1(1),	2.	870 

Musselman,	K.	N.,	Pomeroy,	J.	W.,	Essery,	R.	L.,	&	Leroux,	N.	(2015).	Impact	of	windflow	calculations	871 

on	simulations	of	alpine	snow	accumulation,	redistribution	and	ablation.	Hydrological	872 

Processes,	29(18),	3983-3999.	873 

Musselman,	K.N.,	Lehner,	F.,	Ikeda,	K.,	Clark,	M.P.,	Prein,	A.F.,	Liu,	C.,	Barlage,	M.	and	Rasmussen,	R.,	874 

2018.	Projected	increases	and	shifts	in	rain-on-snow	flood	risk	over	western	North	America.	875 

Nature	Climate	Change,	8(9),	p.808.	876 

Musselman,	K.	N.,	Clark,	M.	P.,	Liu,	C.,	Ikeda,	K.,	&	Rasmussen,	R.	(2017).	Slower	snowmelt	in	a	877 

warmer	world.	Nature	Climate	Change,	7(3),	214.	878 



Nadim,	F.,	Kjekstad,	O.,	Peduzzi,	P.,	Herold,	C.,	&	Jaedicke,	C.	(2006).	Global	landslide	and	avalanche	879 

hotspots.	Landslides,	3(2),	159-173.	880 

Nagler,	T.,	Rott,	H.,	Ripper,	E.,	Bippus,	G.,	&	Hetzenecker,	M.	(2016).	Advancements	for	snowmelt	881 

monitoring	by	means	of	sentinel-1	SAR.	Remote	Sensing,	8(4),	348.	882 

Navari,	M.,	Margulis,	S.	A.,	Tedesco,	M.,	Fettweis,	X.,	&	Alexander,	P.	M.	(2018).	Improving	Greenland	883 

Surface	Mass	Balance	Estimates	Through	the	Assimilation	of	MODIS	Albedo:	A	Case	Study	884 

Along	the	K-Transect.	Geophysical	Research	Letters,	45(13),	6549-6556.	885 

Niu,	G.	Y.,	Yang,	Z.	L.,	Mitchell,	K.	E.,	Chen,	F.,	Ek,	M.	B.,	Barlage,	M.,	...	&	Tewari,	M.	(2011).	The	886 

community	Noah	land	surface	model	with	multiparameterization	options	(Noah-MP):	1.	887 

Model	description	and	evaluation	with	local-scale	measurements.	Journal	of	Geophysical	888 

Research:	Atmospheres,	116(D12).	889 

Notarnicola,	C.	(2020).	Hotspots	of	snow	cover	changes	in	global	mountain	regions	over	2000–890 

2018.	Remote	Sensing	of	Environment,	243,	111781.	891 

Oaida,	C.	M.,	Reager,	J.	T.,	Andreadis,	K.	M.,	David,	C.	H.,	Levoe,	S.	R.,	Painter,	T.	H.,	...	&	Famiglietti,	J.	S.	892 

(2019).	A	High-Resolution	Data	Assimilation	Framework	for	Snow	Water	Equivalent	893 

Estimation	across	the	Western	United	States	and	Validation	with	the	Airborne	Snow	894 

Observatory.	Journal	of	Hydrometeorology,	20(3),	357-378.	895 

Ohmura,	A.	(2001).	Physical	basis	for	the	temperature-based	melt-index	method.	Journal	of	applied	896 

Meteorology,	40(4),	753-761.	897 

Painter,	T.	H.,	Rittger,	K.,	McKenzie,	C.,	Slaughter,	P.,	Davis,	R.	E.,	&	Dozier,	J.	(2009).	Retrieval	of	898 

subpixel	snow	covered	area,	grain	size,	and	albedo	from	MODIS.	Remote	Sensing	of	899 

Environment,	113(4),	868-879.	900 



Painter,	T.	H.,	Bryant,	A.	C.,	&	Skiles,	S.	M.	(2012).	Radiative	forcing	by	light	absorbing	impurities	in	901 

snow	from	MODIS	surface	reflectance	data.	Geophysical	Research	Letters,	39(17).	902 

Painter,	T.	H.,	Berisford,	D.	F.,	Boardman,	J.	W.,	Bormann,	K.	J.,	Deems,	J.	S.,	Gehrke,	F.,	...	&	Mattmann,	903 

C.	(2016).	The	Airborne	Snow	Observatory:	Fusion	of	scanning	lidar,	imaging	spectrometer,	904 

and	physically-based	modeling	for	mapping	snow	water	equivalent	and	snow	905 

albedo.	Remote	Sensing	of	Environment,	184,	139-152.	906 

Peings,	Y.,	Douville,	H.,	Alkama,	R.,	&	Decharme,	B.	(2011).	Snow	contribution	to	springtime	907 

atmospheric	predictability	over	the	second	half	of	the	twentieth	century.	Climate	908 

Dynamics,	37(5-6),	985-1004.	909 

Peters-Lidard,	C.	D.,	Hossain,	F.,	Leung,	L.	R.,	McDowell,	N.,	Rodell,	M.,	Tapiador,	F.	J.,	...	&	Wood,	A.	910 

(2019).	100	years	of	progress	in	hydrology.	Meteorological	Monographs,	59,	25-1.	911 

Pierce,	D.	W.,	Barnett,	T.	P.,	Hidalgo,	H.	G.,	Das,	T.,	Bonfils,	C.,	Santer,	B.	D.,	...	&	Wood,	A.	W.	(2008).	912 

Attribution	of	declining	western	US	snowpack	to	human	effects.	Journal	of	Climate,	21(23),	913 

6425-6444.	914 

Raleigh	MS,	Lundquist	JD.	(2012).		Comparing	and	combining	SWE	estimates	from	the	SNOW-17	915 

model	using	PRISM	and	SWE	reconstruction.	Water	Resources	Research,	48(1).		916 

Raleigh,	M.	S.,	Livneh,	B.,	Lapo,	K.,	&	Lundquist,	J.	D.	(2016).	How	does	availability	of	meteorological	917 

forcing	data	impact	physically	based	snowpack	simulations?.	Journal	of	918 

Hydrometeorology,	17(1),	99-120.	919 

Rango,	A.	(1996).	Spaceborne	remote	sensing	for	snow	hydrology	applications.	Hydrological	920 

Sciences	Journal,	41(4),	477-494.	921 



Rice,	R.,	Bales,	R.	C.,	Painter,	T.	H.,	&	Dozier,	J.	(2011).	Snow	water	equivalent	along	elevation	922 

gradients	in	the	Merced	and	Tuolumne	River	basins	of	the	Sierra	Nevada.	Water	Resources	923 

Research,	47(8).	924 

Riggs,	G.	A.,	Hall,	D.	K.,	&	Román,	M.	O.	(2017).	Overview	of	NASA's	MODIS	and	visible	infrared	925 

imaging	radiometer	suite	(VIIRS)	snow-cover	earth	system	data	records.	Earth	System	926 

Science	Data,	9(2),	765-777.	927 

Riggs,	G.	A.,	Hall,	D.	K.,	and	Román,	M.	O.:	MODIS	Snow	Products	User	Guide	for	Collection	6	(C6),	928 

available	at:	http://modis-snow-ice.gsfc.nasa.gov/?c=userguides,	2016a.	929 

Riggs,	G.	A.,	Hall,	D.	K.,	and	Román,	M.	O.:	VIIRS	Snow	Products	User	Guide	for	Collection	1	(C1),	930 

available	at:	http://modis-snow-ice.gsfc.nasa.gov/?c=userguides,	2016b.	931 

Rodell,	M.,	&	Houser,	P.	R.	(2004).	Updating	a	land	surface	model	with	MODIS-derived	snow	932 

cover.	Journal	of	Hydrometeorology,	5(6),	1064-1075.	933 

Rooney	Jr,	J.	F.	(1967).	The	urban	snow	hazard	in	the	United	States:	An	appraisal	of	disruption.	934 

Geographical	Review,	538-559.	935 

Rosenthal,	W.,	&	Dozier,	J.	(1996).	Automated	mapping	of	montane	snow	cover	at	subpixel	936 

resolution	from	the	Landsat	Thematic	Mapper.	Water	Resources	Research,	32(1),	115-130.	937 

Rupp,	D.	E.,	Mote,	P.	W.,	Bindoff,	N.	L.,	Stott,	P.	A.,	&	Robinson,	D.	A.	(2013).	Detection	and	attribution	938 

of	observed	changes	in	Northern	Hemisphere	spring	snow	cover.	Journal	of	Climate,	26(18),	939 

6904-6914.	940 

Schlosser,	C.	A.,	Robock,	A.,	Vinnikov,	K.	Y.,	Speranskaya,	N.	A.,	&	Xue,	Y.	(1997).	18-year	land-surface	941 

hydrology	model	simulations	for	a	midlatitude	grassland	catchment	in	Valdai,	942 

Russia.	Monthly	Weather	Review,	125(12),	3279-3296.	943 

Schmidt,	R.	A.	(1982).	Properties	of	blowing	snow.	Reviews	of	Geophysics,	20(1),	39-44.	944 



Schmugge,	T.	J.,	Kustas,	W.	P.,	Ritchie,	J.	C.,	Jackson,	T.	J.,	&	Rango,	A.	(2002).	Remote	sensing	in	945 

hydrology.	Advances	in	water	resources,	25(8),	1367-1385.	946 

Senan,	R.,	Orsolini,	Y.	J.,	Weisheimer,	A.,	Vitart,	F.,	Balsamo,	G.,	Stockdale,	T.	N.,	et	al.	(2016).	Impact	947 

of	springtime	Himalayan–Tibetan	Plateau	snowpack	on	the	onset	of	the	Indian	summer	948 

monsoon	in	coupled	seasonal	forecasts.	Climate	Dynamics,	47(9),	2709–2725.	949 

Shi,	J.,	&	Dozier,	J.	(2000).	Estimation	of	snow	water	equivalence	using	SIR-C/X-SAR.	I.	Inferring	950 

snow	density	and	subsurface	properties.	IEEE	Transactions	on	Geoscience	and	Remote	951 

Sensing,	38(6),	2465-2474.	952 

Skiles,	S.	M.,	&	Painter,	T.	H.	(2019).	Toward	understanding	direct	absorption	and	grain	size	953 

feedbacks	by	dust	radiative	forcing	in	snow	with	coupled	snow	physical	and	radiative	954 

transfer	modeling.	Water	Resources	Research,	55,	7362–7378.	955 

Skiles,	S.	M.,	Flanner,	M.,	Cook,	J.	M.,	Dumont,	M.,	&	Painter,	T.	H.	(2018).	Radiative	forcing	by	light-956 

absorbing	particles	in	snow.	Nature	Climate	Change,	8(11),	964-971.	957 

Slater,	A.G.,	Schlosser,	C.A.,	Desborough,	C.E.,	Pitman,	A.J.,	Henderson-Sellers,	A.,	Robock,	A.,	958 

Vinnikov,	K.Y.,	Entin,	J.,	Mitchell,	K.,	Chen,	F.	and	Boone,	A.,	(2001).	The	representation	of	959 

snow	in	land	surface	schemes:	Results	from	PILPS	2	(d).	Journal	of	Hydrometeorology,	2(1),	960 

pp.7-25.	961 

Slater,	A.	G.,	&	Clark,	M.	P.	(2006).	Snow	data	assimilation	via	an	ensemble	Kalman	filter.	Journal	of	962 

Hydrometeorology,	7(3),	478-493.	963 

Slater,	A.	G.,	Barrett,	A.	P.,	Clark,	M.	P.,	Lundquist,	J.	D.,	&	Raleigh,	M.	S.	(2013).	Uncertainty	in	964 

seasonal	snow	reconstruction:	Relative	impacts	of	model	forcing	and	image	availability.	965 

Advances	in	water	resources,	55,	165-177.	966 



Smyth,	E.	J.,	Raleigh,	M.	S.,	&	Small,	E.	E.	(2019).	Particle	Filter	Data	Assimilation	of	Monthly	Snow	967 

Depth	Observations	Improves	Estimation	of	Snow	Density	and	SWE.	Water	Resources	968 

Research,	55(2),	1296-1311.	969 

Strozzi,	T.,	&	Matzler,	C.	(1998).	Backscattering	measurements	of	alpine	snowcovers	at	5.3	and	35	970 

GHz.	IEEE	Transactions	on	Geoscience	and	Remote	Sensing,	36(3),	838-848.	971 

Sturm,	M.,	Goldstein,	M.	A.,	&	Parr,	C.	(2017).	Water	and	life	from	snow:	A	trillion	dollar	science	972 

question.	Water	Resources	Research,	53(5),	3534-3544.	973 

Su,	H.,	Yang,	Z.	L.,	Niu,	G.	Y.,	&	Dickinson,	R.	E.	(2008).	Enhancing	the	estimation	of	continental-scale	974 

snow	water	equivalent	by	assimilating	MODIS	snow	cover	with	the	ensemble	Kalman	filter.	975 

Journal	of	Geophysical	Research:	Atmospheres,	113(D8)	976 

Sun,	C.,	Walker,	J.	P.,	&	Houser,	P.	R.	(2004).	A	methodology	for	snow	data	assimilation	in	a	land	977 

surface	model.	Journal	of	Geophysical	Research:	Atmospheres,	109(D8).	978 

Sun	SF,	Xue	YK.	2001.	Implementing	a	new	snow	scheme	in	simplified	simple	biosphere	model.	979 

Advances	in	Atmospheric	Sciences	18(3):335–354.	980 

Tachiiri,	K.,	Shinoda,	M.,	Klinkenberg,	B.,	&	Morinaga,	Y.	(2008).	Assessing	Mongolian	snow	disaster	981 

risk	using	livestock	and	satellite	data.	Journal	of	Arid	Environments,	72(12),	2251-2263.	982 

Tapley,	B.	D.,	S.	Bettadpur,	J.	C.	Ries,	P.	F.	Thompson,	and	M.	M.	Watkins	(2004),	GRACE	983 

measurements	of	mass	variability	in	the	earth	system,	Science,	305(5683),	503–505.	984 

Tarboton,	D.,	Bloschl,	G.,	Cooley,	K.,	Kimbauer,	R.,	&	Luce,	C.	(2001).	Spatial	snow	cover	Processes	at	985 

Kiihtai	and	Reynolds	Creek.	Spatial	Patterns	in	Catchment	Hydrology:	Observations	and	986 

Modelling,	158.	987 

Tedesco,	M.	(2014).	Remote	sensing	of	the	cryosphere.	John	Wiley	&	Sons.	988 



Tedesco,	M.,	Pulliainen,	J.,	Takala,	M.,	Hallikainen,	M.,	&	Pampaloni,	P.	(2004).	Artificial	neural	989 

network-based	techniques	for	the	retrieval	of	SWE	and	snow	depth	from	SSM/I	data.	990 

Remote	sensing	of	Environment,	90(1),	76-85.	991 

Tedesco,	M.,	Derksen,	C.,	&	Pulliainen,	J.	(2012).	Hemispheric	snow	water	equivalent:	The	need	for	a	992 

synergistic	approach.	EOS,	Transactions	American	Geophysical	Union,	93(31),	305-305.	993 

Thirel,	G.,	Salamon,	P.,	Burek,	P.,	&	Kalas,	M.	(2013).	Assimilation	of	MODIS	snow	cover	area	data	in	994 

a	distributed	hydrological	model	using	the	particle	filter.	Remote	Sensing,	5(11),	5825-5850.	995 

Toure,	A.,	Reichle,	R.,	Forman,	B.,	Getirana,	A.,	&	De	Lannoy,	G.	(2018).	Assimilation	of	MODIS	snow	996 

cover	fraction	observations	into	the	NASA	catchment	land	surface	model.	Remote	997 

sensing,	10(2),	316.	998 

Trujillo,	E.,	Molotch,	N.	P.,	Goulden,	M.	L.,	Kelly,	A.	E.,	&	Bales,	R.	C.	(2012).	Elevation-dependent	999 

influence	of	snow	accumulation	on	forest	greening.	Nature	Geoscience,	5(10),	705.	1000 

Viviroli,	D.,	Dürr,	H.	H.,	Messerli,	B.,	Meybeck,	M.,	&	Weingartner,	R.	(2007).	Mountains	of	the	world,	1001 

water	towers	for	humanity:	Typology,	mapping,	and	global	significance.	Water	resources	1002 

research,	43(7).	1003 

Walter,	M.	T.,	Brooks,	E.	S.,	McCool,	D.	K.,	King,	L.	G.,	Molnau,	M.,	&	Boll,	J.	(2005).	Process-based	1004 

snowmelt	modeling:	does	it	require	more	input	data	than	temperature-index	1005 

modeling?.	Journal	of	Hydrology,	300(1-4),	65-75.	1006 

Wiesmann,	A.,	&	Mätzler,	C.	(1999).	Microwave	emission	model	of	layered	snowpacks.	Remote	1007 

Sensing	of	Environment,	70(3),	307-316.	1008 

Wu,	X.,	Che,	T.,	Li,	X.,	Wang,	N.,	&	Yang,	X.	(2018).	Slower	snowmelt	in	spring	along	with	climate	1009 

warming	across	the	Northern	Hemisphere.	Geophysical	Research	Letters,	45(22),	12-331.	1010 



Xu,	L.,	&	Dirmeyer,	P.	(2011).	Snow-atmosphere	coupling	strength	in	a	global	atmospheric	model.	1011 

Geophysical	Research	Letters,	38(13).	1012 

Xu,	L.,	&	Dirmeyer,	P.	(2013).	Snow–Atmosphere	Coupling	Strength.	Part	I:	Effect	of	Model	Biases.	1013 

Journal	of	Hydrometeorology,	14(2),	389–403.		1014 

Zhao,	L.,	&	Yang,	Z.	L.	(2018).	Multi-sensor	land	data	assimilation:	Toward	a	robust	global	soil	1015 

moisture	and	snow	estimation.	Remote	Sensing	of	Environment,	216,	13-27.	1016 

Zsoter,	E.,	Cloke,	H.,	Stephens,	E.,	de	Rosnay,	P.,	Muñoz-Sabater,	J.,	Prudhomme,	C.,	&	Pappenberger,	1017 

F.	(2019).	How	well	do	operational	Numerical	Weather	Prediction	configurations	represent	1018 

hydrology?.	Journal	of	Hydrometeorology,	20(8),	1533-1552.	1019 

	1020 


