212 research outputs found

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    Resourcing machine translation with parallel treebanks

    Get PDF
    The benefits of syntax-based approaches to data-driven machine translation (MT) are clear: given the right model, a combination of hierarchical structure, constituent labels and morphological information can be exploited to produce more fluent, grammatical translation output. This has been demonstrated by the recent shift in research focus towards such linguistically motivated approaches. However, one issue facing developers of such models that is not encountered in the development of state-of-the-art string-based statistical MT (SMT) systems is the lack of available syntactically annotated training data for many languages. In this thesis, we propose a solution to the problem of limited resources for syntax-based MT by introducing a novel sub-sentential alignment algorithm for the induction of translational equivalence links between pairs of phrase structure trees. This algorithm, which operates on a language pair-independent basis, allows for the automatic generation of large-scale parallel treebanks which are useful not only for machine translation, but also across a variety of natural language processing tasks. We demonstrate the viability of our automatically generated parallel treebanks by means of a thorough evaluation process during which they are compared to a manually annotated gold standard parallel treebank both intrinsically and in an MT task. Following this, we hypothesise that these parallel treebanks are not only useful in syntax-based MT, but also have the potential to be exploited in other paradigms of MT. To this end, we carry out a large number of experiments across a variety of data sets and language pairs, in which we exploit the information encoded within the parallel treebanks in various components of phrase-based statistical MT systems. We demonstrate that improvements in translation accuracy can be achieved by enhancing SMT phrase tables with linguistically motivated phrase pairs extracted from a parallel treebank, while showing that a number of other features in SMT can also be supplemented with varying degrees of effectiveness. Finally, we examine ways in which synchronous grammars extracted from parallel treebanks can improve the quality of translation output, focussing on real translation examples from a syntax-based MT system

    Incorporating translation quality-oriented features into log-linear models of machine translation

    Get PDF
    The current state-of-the-art approach to Machine Translation (MT) has limitations which could be alleviated by the use of syntax-based models. Although the benefits of syntax use in MT are becoming clear with the ongoing improvements in string-to-tree and tree-to-string systems, tree-to-tree systems such as Data Oriented Translation (DOT) have, until recently, suffered from lack of training resources, and as a consequence are currently immature, lacking key features compared to Phrase-Based Statistical MT (PB-SMT) systems. In this thesis we propose avenues to bridge the gap between our syntax-based DOT model and state-of-the-art PB-SMT systems. Noting that both types of systems score translations using probabilities not necessarily related to the quality of the translations they produce, we introduce a training mechanism which takes translation quality into account by averaging the edit distance between a translation unit and translation units used in oracle translations. This training mechanism could in principle be adapted to a very broad class of MT systems. In particular, we show how when translating Spanish sentences into English, it leads to improvements in the translation quality of both PB-SMT and DOT. In addition, we show how our method leads to a PB-SMT system which uses significantly less resources and translates significantly faster than the original, while maintaining the improvements in translation quality. We then address the issue of the limited feature set in DOT by defining a new DOT model which is able to exploit features of the complete source sentence. We introduce a feature into this new model which conditions each target word to the source-context it is associated with, and we also make the first attempt at incorporating a language model (LM) to a DOT system. We investigate different estimation methods for our lexical feature (namely Maximum Entropy and improved Kneser-Ney), reporting on their empirical performance. After describing methods which enable us to improve the efficiency of our system, and which allows us to scale to larger training data sizes, we evaluate the performance of our new model on English-to-Spanish translation, obtaining significant translation quality improvements compared to the original DOT system

    EUSMT: incorporating linguistic information to SMT for a morphologically rich language. Its use in SMT-RBMT-EBMT hybridation

    Get PDF
    148 p.: graf.This thesis is defined in the framework of machine translation for Basque. Having developed a Rule-Based Machine Translation (RBMT) system for Basque in the IXA group (Mayor, 2007), we decided to tackle the Statistical Machine Translation (SMT) approach and experiment on how we could adapt it to the peculiarities of the Basque language. First, we analyzed the impact of the agglutinative nature of Basque and the best way to deal with it. In order to deal with the problems presented above, we have split up Basque words into the lemma and some tags which represent the morphological information expressed by the inflection. By dividing each Basque word in this way, we aim to reduce the sparseness produced by the agglutinative nature of Basque and the small amount of training data. Similarly, we also studied the differences in word order between Spanish and Basque, examining different techniques for dealing with them. we confirm the weakness of the basic SMT in dealing with great word order differences in the source and target languages. Distance-based reordering, which is the technique used by the baseline system, does not have enough information to properly handle great word order differences, so any of the techniques tested in this work (based on both statistics and manually generated rules) outperforms the baseline. Once we had obtained a more accurate SMT system, we started the first attempts to combine different MT systems into a hybrid one that would allow us to get the best of the different paradigms. The hybridization attempts carried out in this PhD dissertation are preliminaries, but, even so, this work can help us to determine the ongoing steps. This thesis is defined in the framework of machine translation for Basque. Having developed a Rule-Based Machine Translation (RBMT) system for Basque in the IXA group (Mayor, 2007), we decided to tackle the Statistical Machine Translation (SMT) approach and experiment on how we could adapt it to the peculiarities of the Basque language. First, we analyzed the impact of the agglutinative nature of Basque and the best way to deal with it. In order to deal with the problems presented above, we have split up Basque words into the lemma and some tags which represent the morphological information expressed by the inflection. By dividing each Basque word in this way, we aim to reduce the sparseness produced by the agglutinative nature of Basque and the small amount of training data. Similarly, we also studied the differences in word order between Spanish and Basque, examining different techniques for dealing with them. we confirm the weakness of the basic SMT in dealing with great word order differences in the source and target languages. Distance-based reordering, which is the technique used by the baseline system, does not have enough information to properly handle great word order differences, so any of the techniques tested in this work (based on both statistics and manually generated rules) outperforms the baseline. Once we had obtained a more accurate SMT system, we started the first attempts to combine different MT systems into a hybrid one that would allow us to get the best of the different paradigms. The hybridization attempts carried out in this PhD dissertation are preliminaries, but, even so, this work can help us to determine the ongoing steps.Eusko Jaurlaritzaren ikertzaileak prestatzeko beka batekin (BFI05.326)eginda
    corecore