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Abstract

The current state-of-the-art approach to Machine Translation (MT) has limitations

which could be alleviated by the use of syntax-based models. Although the ben-

efits of syntax use in MT are becoming clear with the ongoing improvements in

string-to-tree and tree-to-string systems, tree-to-tree systems such as Data Oriented

Translation (DOT) have, until recently, suffered from lack of training resources, and

as a consequence are currently immature, lacking key features compared to Phrase-

Based Statistical MT (PB-SMT) systems.

In this thesis we propose avenues to bridge the gap between our syntax-based

DOT model and state-of-the-art PB-SMT systems. Noting that both types of sys-

tems score translations using probabilities not necessarily related to the quality of

the translations they produce, we introduce a training mechanism which takes trans-

lation quality into account by averaging the edit distance between a translation unit

and translation units used in oracle translations. This training mechanism could in

principle be adapted to a very broad class of MT systems. In particular, we show

how when translating Spanish sentences into English, it leads to improvements in

the translation quality of both PB-SMT and DOT. In addition, we show how our

method leads to a PB-SMT system which uses significantly less resources and trans-

lates significantly faster than the original, while maintaining the improvements in

translation quality.

We then address the issue of the limited feature set in DOT by defining a new

DOT model which is able to exploit features of the complete source sentence. We

introduce a feature into this new model which conditions each target word to the

source-context it is associated with, and we also make the first attempt at incor-

porating a language model (LM) to a DOT system. We investigate different esti-

mation methods for our lexical feature (namely Maximum Entropy and improved

Kneser-Ney), reporting on their empirical performance. After describing methods

xi



which enable us to improve the efficiency of our system, and which allows us to

scale to larger training data sizes, we evaluate the performance of our new model

on English-to-Spanish translation, obtaining significant translation quality improve-

ments compared to the original DOT system.
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Chapter 1

Introduction

Machine Translation (MT) deals with the problem of designing algorithms which

enable the automatic translation of a sentence from one natural language (the source

language) into a different language (the target language). Current research in MT is

led by data-driven approaches, meaning that in a training stage, patterns are learnt

from a large collection of translation examples, and are used later to translate new

sentences.

Most of the focus in current MT research is on defining models which can ex-

plain how new translations can be built from the information gathered in the training

stage. These models also define probability distributions over the translations they

generate, and the translation task consists of searching for the most probable trans-

lation. The ways in which translation can be modelled range from word-for-word

translation to semantic analysis of the input sentence and subsequent generation

of a target-language sentence from this semantic representation. Some of the dif-

ferent modelling possibilities can be summarised as in the pyramid in Figure 1.1.

As we move up the left side of the pyramid, the models gain information regarding

the meaning and the syntactic structure of the source-language sentence. This en-

ables the models to improve disambiguation. Let us consider the following example

sentence:

1
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(1) I looked at the kid with the telescope

This sentence is ambiguous, as it is uncertain whether what is being said is that

using a telescope a kid was looked at, or that a kid, who happens to have a telescope,

was looked at. When translating this sentence into other languages such as Spanish,

there would be two corresponding alternative translations, as in (2):

(2) a. Miré al niño con el telescopio

b. Miré al niño que tenía el telescopio

A model which performs word-for-word translation and does not consider the

relationship and dependencies between the words on the source sentence might have

difficulties distinguishing between these meanings. On the other hand, if a system

is allowed to explore more complex structures such as the alternative parse trees in

Figure 1.2, the different meanings become evident by considering the attachment

of the phrase “with the telescope”, and the translation can be chosen according to

which of these meanings is more likely.

As regards the opposite side of the pyramid, systems which generate transla-

tions based on a representation of the target sentence such as syntax or semantic

representations (and which lie higher on the right side of the translation pyramid)

will potentially benefit from increased target-language grammaticality. In addition,

models which map source syntax representations into their target counterparts are

capable of directly modelling differences in word order between the source and target

languages. For example, consider the English-French sentence pair in Figure 1.3(a),

where the subject in the English sentence is translated as object of the French sen-

tence. A model which performs word-for-word translation would have difficulties

capturing such a long-distance movement of target words. In contrast, a model

which uses source and target syntax to model translation, and which uses transla-

tion rules of the kind in Figure 1.3(b), could directly capture this relation-changing

translation.
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(b) NP-attachment: the PP is modifying the noun phrase

Figure 1.2: Alternative syntactic parses for an English sentence
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John loves Mary

Mary plaît à John

(a) English and French sentence pair, where links have been drawn to
show how the subject of the English sentence becomes the object in the
French sentence.
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à
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N

(b) Translation rule which exploits both source and tar-
get syntax.

Figure 1.3: English and French sentence pair, and translation rule which captures
the relation change by exploiting source and target syntax.
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The models which currently achieve state-of-the-art performance (e.g. Phrase-

Based Statistical MT (PB-SMT) (Koehn et al., 2003)) remain on the lower part

of the translation pyramid, only considering the relationship between source and

target words (or phrases), without considering any possible structure over these

sequences of words. Given the reasons previously outlined, it is no surprise that the

MT research community has been moving towards the goal of increasing source and

target syntax-awareness in MT systems.

An underlying assumption in this thesis is that the use of linguistic analysis

has the potential to lead to better translations, by helping to disambiguate source

sentences and to generate fluent translations. We therefore believe that the way

in which the state-of-the-art in MT could be improved is by the use of models

which capture both the source and the target syntax in a linguistically motivated

framework, using translation rules such as the one in Figure 1.3(b). One such model

is Data-Oriented Translation (DOT) (Poutsma, 2000; Hearne and Way, 2003), a

tree-to-tree system which translates by composing fragments of source and target

parse trees.

Although DOT meets our desired properties of exploiting linguistically motivated

source and target syntactic rules, when compared with PB-SMT there are a number

of aspects in which the latter stands out, and others in which both could be improved.

As we explain in Chapter 3, both DOT and PB-SMT present an inconsistency

between the way in which they are trained and the way in which they are evaluated:

although the way in which we determine which system is better is by the use of

translation quality metrics, these metrics are not directly taken into account when

scoring translations to choose between alternative outputs. This inconsistency is

present in many other MT systems as well, and gives rise to our first research

questions:

RQ1 Can features which relate to expected translation quality be incorporated in

MT models?
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Criterion PB-SMT DOT

Linguistic motivation % !

Long-distance reorderings % !

Accuracy-based scoring ∼ %

Multiple features ! %

Lexical equivalences model ! %

Table 1.1: Summary of the capabilities of PB-SMT and DOT, according to different
criteria

RQ2 Can these translation accuracy-based features improve on state-of-the-art

MT?

Despite the inconsistencies mentioned above, when it comes to scoring alternative

translations, state-of-the-art PB-SMT has a clear advantage over DOT, as the former

has the ability to incorporate an arbitrary number of features which increase the

sources of information used to assess the potential contribution of a translation

rule. In particular, a model explicitly taking into account the relationship between

source and target words is used in the scoring. In contrast, DOT is unable to

incorporate additional features, having to rely exclusively on the frequency in which

its translation rules were observed in the training data. This raises the following

further research questions:

RQ3 Can we incorporate new features into the DOT model of translation in such

a way that the contribution of each feature can be scaled so as to optimise

translation quality?

RQ4 Can we exploit this combination of features by incorporating new ones which

lead to increased translation quality?

The comparisons we have made between DOT and PB-SMT are summarized

in Table 1.1. In a bid to bridge the gap between DOT and the state-of-the-art

approach, in this thesis we address each of the shortcomings in DOT by investigating

the research questions we have raised.
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1.1 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 provides a review of work which is relevant for the work carried out

in this thesis. An overview of different approaches to MT is presented, which is

followed by detailed descriptions of the two models most relevant to this thesis: PB-

SMT and DOT. The chapter finishes by explaining how the evaluations performed

in our experiments were carried out.

Chapter 3 addresses the problem of inconsistency between the objective set for

training MT systems and the criteria used to evaluate them. We formulate a gen-

eral algorithm which is able to take an arbitrary MT system satisfying a few simple

assumptions and use it to estimate a feature which relates to the expected transla-

tion quality of a particular translation rule. We demonstrate the flexibility of this

algorithm by instantiating it both for PB-SMT and for DOT, and assess the im-

pact that it has in the translation quality of the resulting systems by translating

from Spanish into English, and comparing against the translations obtained with

the baseline systems. We show that for both DOT and PB-SMT, significant gains

in translation quality can be obtained using this method.

Having noted that DOT suffers from a limited feature set, we introduce in Chap-

ter 4 a new DOT model which is able to exploit arbitrary features of the source

sentence. We take advantage of this new model by defining a novel feature which

conditions the choice of each target word to the relevance of the source context to

which it is linked. We also explain how efficient decoding for DOT can be achieved,

allowing to significantly scale up our training data sizes. We evaluate the perfor-

mance of our new system by translating English sentences into Spanish, obtaining

significant translation quality improvements compared to the original DOT model.

The thesis concludes with Chapter 5, where we summarize the work carried out

and how it affects the state of the MT systems we used. We finish by giving our

conclusions and avenues for future work.
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Much of the contents of this thesis have been published as part of the proceed-

ings of peer-reviewed conferences. The experiments with DOT in Chapter 3 were

presented at the 2009 Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP 2009) (Galron et al., 2009). The experiments with PB-SMT in

that same chapter were presented at the Ninth Conference of the Association for

Machine Translation in the Americas (AMTA 2010) (Penkale et al., 2010b). The

content in Chapter 4 is currently under review at the Thirteenth Machine Transla-

tion Summit (MT Summit XIII).

In addition to the aforementioned publications, during the period in which the

work for this thesis was carried out the author contributed also in several research

activities which have led to publications. In (Srivastava et al., 2009) we examine

a number of approaches developed at Dublin City University (DCU) aimed at sup-

plementing the translation model of a PB-SMT system. These approaches have

been exploited by the author to contribute to successful DCU participations in

international MT campaigns, which led to world-class performance at the Fourth

Workshop on Statistical Machine Translation (WMT09) (Du et al., 2009) and at

the Fifth Workshop on Statistical Machine Translation (WMT10) (Penkale et al.,

2010a). The author also contributed to the open-source release of some of these

approaches under the OpenMaTrEx MT system (Dandapat et al., 2010).
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Chapter 2

Related Work

In this chapter we provide an overview of previous work relevant to the work carried

out in this thesis, and we detail the metrics which we use to evaluate the impact of

our methods.

We begin with a summary of syntax-based approaches to machine translation

(MT) in Section 2.1, which is followed in Section 2.2 by a description of PB-SMT,

the state-of-the-art approach, and of DOT, our syntax-based system in Section 2.3.

As part of our work focuses on integrating translation quality-oriented measures into

the scoring of MT systems, we provide an overview of previous approaches to this

problem in Section 2.4. Following this, we explain in Section 2.5 the metrics used in

our experiments to assess the performance of these systems, as well as the method

used to perform statistical significance testing.

2.1 Data-Driven Approaches to MT

Current research in Natural Language Processing, and in Machine Translation (MT)

in particular, is dominated by data-driven approaches. Data-driven MT systems ex-

ploit large bilingual corpora (parallel corpora) created by human translators. These

corpora are generally unannotated, meaning that they comprise only a set of source

sentences along with their corresponding translations, without any linguistic infor-
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mation associated with the sentences. The first to exploit statistical methods to

automatically learn translation equivalences from these parallel corpora were the

models of Brown et al. (1988, 1990, 1993). These word-based models translate each

word in a source-language sentence into a number of target-language words, and

then possibly reorder the generated target-language words to obtain a sentence.

Although all lexical translation probabilities were based on single words and thus

offered limited modelling possibilities, these models were ground-breaking at their

time, and still constitute the foundations on which most modern SMT systems are

built.

A natural evolution of word-based models was the introduction of Phrase-Based

Statistical Machine Translation (PB-SMT) (Och et al., 1999; Marcu andWong, 2002;

Koehn et al., 2003; Och and Ney, 2004), which exploits parallel corpora by extracting

a set of bilingual “phrases” (sequences of words not necessarily corresponding to the

linguistic notion of a phrase) along with a series of statistics over these bilingual

phrases, which are used to disambiguate between candidate translations. The use of

phrases as translation units instead of words allows translation equivalences to be

induced which use a larger amount of source-side context, and to directly capture

local reorderings such as the frequent swapping in adjective and noun placement

when translating from Romance languages into English. We present a detailed

explanation of PB-SMT in Section 2.2.

2.1.1 Syntax in Statistical Machine Translation

A weakness in pure word- and phrase-based models is that translation equivalences

are learnt exclusively by the use of statistical methods over the sentence-aligned

parallel corpus, with no linguistic information incorporated at any stage, which can

limit the well-formedness of output translations. For example, it has been noted that

PB-SMT often produces simple but important errors, such as omitting main verbs

in the output translation (Ma and McKeown, 2009). Another weakness in these

models is that target-side ordering is strongly driven by the language model score
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over all possible permutations of target words or phrases within a reordering window

(cf. Section 2.2.2). While the local context captured by phrases and the reordering

window search might be sufficient to capture local reordering phenomena, it is not

possible to model any reordering dependencies which span beyond this reordering

window.

A considerable amount of research effort has been made to overcome these lim-

itations, either by explicitly introducing linguistic knowledge, or by exploiting the

recursive nature of syntax to be able to model long-distance reorderings. Exam-

ples of attempts at enhancing PB-SMT systems by introducing linguistic motiva-

tion include the use of parallel treebanks to extract phrase pairs (Tinsley et al.,

2007b, 2009), using Word Sense Disambiguation techniques to aid in phrase selec-

tion (Carpuat and Wu, 2007), using supertagged language models (Hassan et al.,

2007), introducing linguistic annotations as additional factors (Koehn and Hoang,

2007) and exploiting different sources of source-context information (Stroppa et al.,

2007; Haque et al., 2009a,b).

Although the aforementioned efforts have in general met with success, an inherent

limitation of the framework in which they operate is the incapability of PB-SMT

to model long-distance reorderings. To remedy this, different models which allow

the time-efficient exploration of discontinuous phrases must be explored. One such

alternative model is that of Inversion Transduction Grammar (Wu, 1997), which

was later generalized by the Hierarchical Phrase-Based (HPB) model (Chiang, 2005,

2007). The HPB model allows the introduction of translation rules such as (1):

(1) X → 〈X1 likes X2, X2 plaît à X1〉

This kind of rule directly captures the subject and object change when translat-

ing the English sentence “John likes Mary” into the French translation “Mary plaît

à John”. However, rule extraction in HPB is just a generalization of the phrase-

extraction method used in PB-SMT, and although it allows the automatic general-

ization of recursion in language, it is equally linguistically uninformed. As was the

12



case with PB-SMT, attempts have been made at raising linguistic awareness within

this model. These include:

• (Zollmann and Venugopal, 2006), where the labels of the HPB model are

augmented using target-side syntactically motivated categories, as well as

categories representing incomplete constituents to also permit non-syntactic

phrases,

• (Marton and Resnik, 2008), where features are introduced which reward (or

penalize) the model score when the span of the source side of a rule matches

(or does not match) a constituent with a specific label in the parse tree of the

source sentence,

• (Vilar et al., 2008), where the rule extraction phase is modified so that the

count used to compute the scores for each rule is dependent on the percentage

of words in the phrase that match a constituent,

• (Chiang, 2010), where rules are extracted along with source and target syntax

information, using complex categories such as those used in (Zollmann and

Venugopal, 2006), and features are introduced which are activated when the

left-hand side of a rule used in a derivation matches the label of the rule in

which it is being substituted,

• (Haque et al., 2010), where supertag features are introduced which encode

complex syntactic information about the source side of the rules.

Although these improvements lead the baseline HPB model towards the desired

properties outlined in Chapter 1, a limitation of this framework is its context-free

nature. The work in (Chiang, 2010) does bring linguistically motivated source and

target syntax to HPB, but the internal structure of rules is ignored, with consider-

ation given only to the roots and leaves of sub-trees, and restrictions placed on the

amount of nodes in the rules. In contrast, the STSG models we discuss below allow
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the modelling of rich rules which encode subtrees of arbitrary size on both source

and target languages.

Outside of the framework of the HPB paradigm, models which explicitly exploit

the syntactic relationships present in syntactically parsed corpora have also been

proposed. These models are usually classified according to whether they exploit

syntactic information only on the source-language side (tree-to-string models), only

on the target side (string-to-tree models), or on both sides (tree-to-tree).

Yamada and Knight (2001) define a model in which a source-language parse tree

is transformed into a target-language sentence, by using stochastic operations at

each node. This model, which can be framed as a tree-to-string transducer (Graehl

and Knight, 2004), takes a parse tree as input and leads to a tree-to-string alignment.

However, this is then used in a noisy-channel-based decoder (Yamada and Knight,

2002), which models translation in the reverse direction: for every input string, the

model is used to explore all trees which could have generated the input. Since in

practice this leads to syntax being used to model the target side, decoders based

on this approach are generally regarded as string-to-tree in the MT literature. A

related approach is that of Galley et al. (2004, 2006), who present a tree-to-string

rule extraction method which leads to a set of translation rules which explain a

tree-to-string training corpus. The rule extraction algorithm takes a word-aligned

parallel corpus which has been parsed on its source side, and obtains translation

rules such as (2):

(2)

S

VP

x2V

likes

x1 x2 plaît à x1

This line of research is also followed by Huang et al. (2006), who extend the model

to a log-linear framework which is able to exploit additional features such as an n-

gram language model, and which implements a direct tree-to-string decoder, thus

using syntax to model the source language in this case. Source-language syntax is
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also exploited by Quirk et al. (2005), who employ a source-side dependency parser

to obtain a treelet translation model, where a treelet is “an arbitrary connected

subgraph of the dependency tree”, which is later used to cover the dependency parse

of an input sentence.

Although a priori the most promising approach would be that of exploiting both

source- and target-language syntax for translation, tree-to-tree models suffer both

from increased complexity, as complex structures for both source and target sides

have to be maintained when building translations, and increased language-specific

prerequisites, as both source- and target-language parsers must be available. This

has slowed the rate at which tree-to-tree models have evolved, and perhaps with

the exception of (Chiang, 2010), it has also led to little success when compared to

simpler models such as PB-SMT (Liu et al., 2009). As noted by Way (2009), the

influential articles by Brown et al. (1988, 1990, 1993) did not preclude the use of

linguistics in statistical MT:

it is not our intention to ignore linguistics, neither to replace it.

Rather, we hope to enfold it in the embrace of a secure probabilistic

framework so that the two together may draw strength from one an-

other (Brown et al., 1993)

If after the introduction of these statistical models, SMT researchers and linguists

had worked together more closely, the current interest in syntax-based models would

have arisen long ago, and these kinds of system would have matured sooner (Way,

2009).

Other tree-to-tree approaches include (Ding and Palmer, 2005), where a trans-

lation model based on dependency structures is defined, and that of Cowan et al.

(2006), who extract syntactic structures with alignment information from a paral-

lel corpus that has been bilingually-parsed, and use a perceptron-based model for

scoring.

A particularly promising tree-to-tree modelling approach is that of Synchronous

Tree Substitution Grammars (STSG) (Hajič et al., 2004; Shieber, 2004) as, unlike
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the Synchronous Context Free Grammars (SCFG) of the HPB model, they allow

an arbitrarily large source and target syntactic context to be captured. Models

which use this formalism include Data-Oriented Translation (DOT) (Poutsma, 2000;

Hearne and Way, 2003), which assumes a sub sententially-aligned parallel corpus.

We will cover DOT in detail in Section 2.3. Models which extend the tree-to-string

extraction method of Galley et al. (2004) to the tree-to-tree case also fall within

the STSG framework. These approaches include (Zhang et al., 2008), where a tree-

sequence model is defined (i.e. rules can consist of more than one tree on either side),

(Liu et al., 2009) where the impact of parsing errors is lessened and rule coverage

is improved by extracting rules from multiple parse trees (tree forests) instead of

single trees, and the previously mentioned work of Chiang (2010). DOT differs from

these approaches in that:

• Sub-sentential alignments in DOT are obtained by a sub-tree aligner (Tinsley

et al., 2007a; Zhechev and Way, 2008) in which the use of a word alignment

over the parallel corpus is avoided, unlike in (Galley et al., 2004). This has

the advantage that words in the parallel treebank can be aligned based on

information from nodes higher on the tree, where more context is available

(Tinsley et al., 2007a), and that errors in the word alignments are not prop-

agated to the sub-tree alignments, which leads to higher quality alignments

(Tinsley et al., 2007b).

• In DOT, all possible rules are extracted from the training corpus. Unlike in

Chiang (2010), differences in the internal structure of rules are not ignored,

and no restrictions are placed on the amount of nodes in a rule or on the depth

of derivations unlike in the above-mentioned tree-to-tree approaches.

Other tree-to-tree models based on the STSG formalism include (Eisner, 2003;

Hajič et al., 2004; Bojar and Hajič, 2008; Bojar et al., 2009), where in the context

of translating between Czech and English by exploiting the Prague Dependency

Treebank (Hajič, 2004), deep syntactic transfer is performed by analysing an input
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sentence up to the tectogrammatical layer and performing source-to-target transfer

of the tectogrammatical representations, to finally generate the target sentence from

the target tectogrammatical representation. Unlike in DOT, which assumes sub-

sentential alignments in the training corpus, Eisner (2003) attempts to automatically

learn a translation model from unaligned data by using the EM algorithm to explore

all possible derivations.

As regards the problem of reordering in MT, an alternative approach to those

previously mentioned is that of exploiting syntax to reorder the source sentence in a

preprocessing stage, so as to mimic the word order of the target language, e.g. (Xia

and McCord, 2004; Collins et al., 2005; Wang et al., 2007; Khalilov, 2009). In these

approaches a set of rules is used to change the order of words in an input sentence

so that the translation can be found in a monotonic way. These approaches can be

further sub-categorized according to whether reordering rules are manually created,

e.g. (Collins et al., 2005; Wang et al., 2007), or automatically learnt from translated

data, e.g. (Xia and McCord, 2004; Khalilov, 2009). These approaches have the ad-

vantage of leading to relatively faster systems than those which attempt to model

reorderings during the translation phase. However, the source-side reordering usu-

ally remains fixed or at best constrained, which limits the reordering possibilities

compared to those which would be explored by a system which explicitly models

long-distance reorderings during translation.

2.2 Phrase-Based Statistical Machine Translation

Since its introduction, PB-SMT has been the predominant paradigm in MT research.

PB-SMT is a string-to-string translation model, i.e. sequences of lexical tokens from

a source-language sentence are directly mapped to target-language lexical tokens,

with no underlying structure associated with the sentences. Despite this relative

simplicity, the most widely used form of PB-SMT (Koehn et al., 2003, 2007) contin-

ues to achieve state-of-the-art performance for many language pairs, and particularly
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NULL nunca debemos olvidar la defensa de la sociedad civil

we must never forget to defend civil society

Figure 2.1: Automatic Spanish-to-English word alignment for a sentence pair taken
from the Europarl corpus. Since this is a directional alignment, an alignment for
the reverse language direction must be obtained before extracting phrase pairs.

amongst European language pairs (Callison-Burch et al., 2010).

2.2.1 Phrase Extraction

PB-SMT uses phrase pairs as the basic units of translation. A phrase pair 〈f, e〉 con-

sists of a sequence of source-language words f along with its corresponding target-

language translation e. As a result of the phrase-extraction method used to auto-

matically obtain them, neither source nor target phrases necessarily correspond to

the linguistic notion of a phrase.

Phrase pairs are obtained with the aid of a word-aligned parallel corpus, which is

in turn obtained using models developed for word-based translation systems (Brown

et al., 1990, 1993). These so-called IBM models are unsupervised generative models

which aim at estimating the probability that a source-language word translates as

a particular target-language word. As a by-product they produce a word alignment

which relates each target word in a sentence to the source word it was generated

from. Figure 2.1 gives an example word alignment between a Spanish and an English

sentence which were taken from the Europarl corpus (Koehn, 2005). Links in this

figure indicate the source word from which each target word arose. Any target-

language word which is not related to a source word is aligned to the special source-

language word “NULL”. As the model only explains how target words were generated,

unused source words are left unaligned. The alignment used in this figure was

obtained using the freely available tool GIZA++ (Och and Ney, 2003), using IBM
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debemos ||| we must
nunca debemos ||| we must never

nunca debemos olvidar ||| we must never forget
nunca debemos olvidar la ||| we must never forget

defensa de la sociedad civil ||| to defend civil society
olvidar ||| forget

olvidar la ||| forget
olvidar la defensa de ||| forget to defend

la sociedad civil ||| civil society

de ||| to
defensa de ||| to defend

la defensa de ||| to defend
defensa ||| defend
nunca ||| never

la defensa ||| defend
civil ||| civil

la sociedad ||| society

Figure 2.2: Phrase pairs extracted from the word-aligned sentences in Figure 2.1,
after obtaining word alignments for both language directions and performing the
heuristic merge.

model 4. This model generates the target-language sentence by first conditioning

each word in the source sentence to the number of words in the target sentence

that it will generate (referred to as the fertility of the source word), and then the

particular target-language words to be generated, and finally the positions in the

target-language sentence in which these words will be placed (the model which

accounts for target-language reordering of words is referred to as the distortion

model). The probability of an alignment depends on:

• the source and target positions that it connects,

• the lengths of the source and target sentences,

• the particular source and target words being aligned,

• and the positions of any other target words aligned to the same source word

(Brown et al., 1993).

Phrase-Based SMT aims at relating sequences of contiguous source words (source

phrases) to their corresponding target-language translation (target phrases). How-

ever, using the IBM models it is only possible to relate a target word to an individual

source word. To obtain the required many-to-many relationships, it is common prac-

tice to obtain word alignments for both the source-to-target and the target-to-source

language directions, and to later combine these alignments by obtaining a compro-

mise between the intersection of the alignments (which results in a set of highly
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accurate phrase alignments) and the union (which results in a larger set of phrases

which increase the coverage of the system, although possibly with a lower accuracy).

Koehn et al. (2003) investigate multiple heuristics to perform this merging, and find

that the heuristic they call “diag-and” gives the best performance. All phrase pairs

consistent with this combined word alignment are then extracted. A phrase-pair is

considered consistent if all of its source words are aligned only to words in the target

phrase, and vice versa (Och et al., 1999). Figure 2.2 lists all phrases that can be

extracted from the sentence pair in Figure 2.1, after performing the word alignment

in the opposite direction and the heuristic merge. This example shows phrase pairs

of up to 5 words in length, although in our experiments we use the standard length

of 7 words during phrase extraction.

2.2.2 Decoding

The process of determining the target-language sentence that maximizes the model

score given a source-language sentence is known as decoding. To perform translation,

an input sentence s = w1 . . . wn composed of n words is segmented into I phrases

f I1 = f1 . . . fI . Using the set of phrase pairs that were extracted during training,

which are stored in a phrase table, each source phrase fi in f I1 is translated into a

corresponding target phrase ei, resulting in a target sentence t = eI1.1

During the search for the best-scoring translation, all possible segmentations of

the input sentence are considered, and target sentences are generated left-to-right.

Source phrases might be translated in any order, allowing in this way for reorder-

ing to take place in the target sentence. However, most implementations place a

limit (typically, 5 to 8 words) on the amount of words that can be skipped between

the previously translated phrase and the following phrase. This limit, called the

reordering window, allows us to avoid an exponential growth in the amount of alter-

native translations that are considered, and is key to lowering decoding complexity
1The notation used is as follows: we use the letters s and t when referring to source and target

sentences, the letters f and e in the context of phrases, and the letter w when considering individual
words.
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to linear on the length of the input string.

Partial candidate translations (or hypotheses) are stored in stacks, which main-

tain a beam of k-best hypotheses by discarding lower-scoring ones. There are n

such stacks, where hypotheses are grouped according to the amount of source words

covered so far in translating the input sentence.

The decoding algorithm used by standard PB-SMT is able to output not only

the best translation according to the model, but also the k-best translations. In

addition, we assume that the decoder is able to keep track of the phrases used to

build each of the candidate translations. For each output translation in the k-best

list, this will allow us to obtain an alignment a. For each target phrase ei used to

generate each of the candidate translations in the k-best list, this alignment specifies

a pair of integers a(ei) = (l,m) which indicate that the target phrase ei is translated

from the source sentence span wl . . . wm.

2.2.3 Scoring

To select among the many phrase translation options, and among the possible input

sentence segmentations into phrases, the target sentence t that maximises P (t|s) is

chosen. In state-of-the-art PB-SMT this posterior probability is modelled directly

by a log-linear model (Och and Ney, 2002) as in (2.1):

P (t|s) = P (e1 . . . eI |f1 . . . fI) = exp(
M∑
i=1

λihi(e
I
1, f

I
1 )) (2.1)

Here each hi(eI1, f I1 ) is a feature function and each λi the corresponding feature

weight. These weights are estimated by Minimum Error Rate Training (MERT)

(Och, 2003). This is an efficient procedure which maximizes the score of a particular

translation quality metric (typically Bleu (Papineni et al., 2002)) on a small held-

out set.

The log-linear model of equation (2.1) is a framework in which arbitrary features

can be incorporated. The standard features present in most PB-SMT systems are:
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• The product of the conditional phrase translation probabilities p(fi|ei) and

p(ei|fi), for all phrase pairs 〈ei, fi〉 involved in the sentence and its translation.

These probabilities are estimated using relative frequency over the multiset of

phrases extracted from the parallel corpus, as in (2.2):

p(fi|ei) =
count(fi, ei)∑
f ′ count(f ′, ei)

(2.2)

• An n-gram language model over the target translations, which is usually esti-

mated using improved Kneser-Ney smoothing (Chen and Goodman, 1998).

• A “lexical weighting” feature for each language direction. This is used to

smooth phrase translation probabilities by considering how often words within

a phrase pair were aligned in the parallel corpus. For each phrase pair extracted

from the word-aligned corpus, an alignment a is also extracted, which contains

a tuple (l, j) for every target word tl aligned to a source word sj within the

phrase pair (fi, ei). The lexical weight is computed as in (2.3):

lex(fi|ei, a) =

len(ei)∏
l=1

1

|{j|(l, j) ∈ a}|
∑
∀(l,j)∈a

w(tl|sj) (2.3)

where w(tl|sj) is estimated by the frequency whereby tl was aligned to sj in

the word-aligned parallel corpus, relative to the frequency of any other target

word aligned to sj (Koehn et al., 2003).

• Penalty features which count the amount of words and phrases in the candidate

translation.

2.2.4 Reordering Model

As previously mentioned, source phrases can be translated in any order (although

the reordering window limits the amount of source words that can be skipped be-

tween a phrase and the next). State-of-the-art PB-SMT incorporates lexicalised
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Source
Target 1 2 3 4 5 6 7

1

2

3

4

5

6

Figure 2.3: Lexicalized reordering orientations: monotone (m), swap (s) and discon-
tinuous (d). Adapted from Koehn (2009) (original Figure 5.8, page 143).

reordering features (Koehn et al., 2005). Once a source phrase has been translated,

the location in the source sentence from which the next phrase to be translated is

taken is influenced by the score assigned by these features. To avoid data sparseness

problems, the features model only three kinds of orientations between a phrase and

the previously translated phrase. The modelled orientations (illustrated in Figure

2.3) are: monotone (a phrase directly follows the previous phrase), swap (a phrase is

swapped with the previous phrase) and discontinuous (neither monotone nor swap).

In the example in Figure 2.3, the second target phrase (which spans the second

and third target words) translates the source word directly adjacent to the word

translated by the first target phrase, and therefore receives a monotone orientation.

Relative to the second target phrase, the third target phrase translates source words

which are neither adjacent nor swapped, and is therefore considered a discontinuous

translation. Finally, the fourth target phrase is swapped relative to the previous

phrase. When extracting phrases from the parallel corpus, the orientation used by

each phrase is also extracted. Counts of these events are obtained, which are used

to estimate the probability of an orientation given a phrase pair. Analogous features

which consider the following phrase (as opposed to the previously translated phrase)

are also introduced.
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2.3 Data-Oriented Translation

DOT (Poutsma, 2000; Hearne and Way, 2003, 2006), which was inspired by the

the Data-Oriented Parsing (DOP) model (Bod, 1992), potentially overcomes the

shortcomings in PB-SMT by explicitly modelling syntax, both in the hierarchical

structure and the linguistic sense.

2.3.1 Parallel Treebanks

As a training corpus, DOT assumes a parallel treebank, which consists of a parallel

corpus (a set of sentences with their corresponding translation) where each sentence

has been augmented with its parse tree, and each pair of nodes in the source and

target trees whose yields convey the same meaning have been aligned (Volk and

Samuelsson, 2004). Figure 2.4(a) gives an example English and French sentence

pair which has been syntactically parsed and sub-sententially aligned.

Initial experiments with DOT were carried out using manually-aligned corpora

(Poutsma, 2000; Hearne and Way, 2003). Although this ensures that training exam-

ples are obtained from a high-quality source, requiring the use of manually-aligned

corpora either prohibitively raises the costs of training new systems, or limits train-

ing data-set sizes and domains to the few existing parallel treebanks, e.g. (Han

et al., 2002; Čmejrek et al., 2004; Hansen-Schirra et al., 2006; Ahrenberg, 2007;

Megyesi et al., 2008; Volk et al., 2010). Fortunately, over the past few years major

improvements have been made in the area of automatic parallel treebank genera-

tion. In particular, in this thesis we automatically build parallel corpora for DOT

by exploiting the automatic tree aligner introduced in (Tinsley et al., 2007a) and

extended in (Zhechev and Way, 2008). This is an efficient greedy-search algorithm

which allows all possible alignments to be considered. Using initial word-alignment

probabilities (obtained using GIZA++, cf. Section 2.2.1), it iteratively selects the

highest-scoring alignment, discarding all other alignments that conflict with it. As

explained by Zhechev (2009) and Tinsley (2010), the advantages of this approach
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include:

• independence of language pair,

• independence of linguistic representation,

• computational efficiency,

• preservation of the tree structures,

• minimal requirement for external resources.

Although such an automatic generation process will inevitably lead to alignment

errors in the parallel treebank, Tinsley et al. (2007a) and Zhechev and Way (2008)

report good precision and recall figures when directly evaluating the alignments

they obtain, and improvements in Machine Translation evaluation metrics when

using this algorithm to train a DOT system, compared to the results obtained when

training with a manually generated parallel treebank.

2.3.2 Fragment Extraction

The basic units of translation in DOT are subtree pairs (or fragment pairs). The

process by which each fragment pair can be extracted from a tree pair in the parallel

treebank is described in terms of the root and frontier operations. Given a tree pair

in the parallel treebank, we can extract a new fragment pair by the following process:

1. Choosing a linked node of the original tree pair to be the root of the new

fragment pair. We then create a new fragment pair which initially consists

of this node pair along with the source and target subtrees they dominate,

and with links between source and target nodes as in the original tree pair.

For example, if choosing as new root pairs the nodes labelled “S” from the tree

pair in Figure 2.4(a), our new fragment, which we will modify in the next step,

initially consists of an exact copy of the original tree pair.
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S

VP

N

Mary

V

likes

N

John

S

VP

PP

N

John

P

à

V

plaît

N

Mary

(a) Sub-sententially aligned tree pair

f1 S

VP

NV

likes

N

S

VP

PP

NP

à

V

plaît

N

f2

N

John

N

John

f3 S

VP

NV

likes

N

John

S

VP

PP

N

John

P

à

V

plaît

N

f4

N

Mary

N

Mary

f5 S

VP

N

Mary

V

likes

N

S

VP

PP

NP

à

V

plaît

N

Mary

f6 S

VP

N

Mary

V

likes

N

John

S

VP

PP

N

John

P

à

V

plaît

N

Mary

(b) All possible fragment pairs extracted from (a)

Figure 2.4: Example tree and fragment pairs
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2. Choosing a (possibly empty) set of linked nodes on the new fragment pair and

removing from our newly created fragment pair source and target descendants

of nodes in this set. For example, if from our newly created fragment pair we

choose the two source nodes labelled “N” (along with their target-side coun-

terparts), after removing descendants of these nodes we obtain the following

fragment pair:

S

VP

NV

likes

N

S

VP

PP

NP

à

V

plaît

N

Nodes with no descendants are called frontier nodes, and linked nodes which are

frontier nodes are called substitution sites, e.g. the nodes labelled “N” in the above

fragment pair. Note that we assume that only non-terminals nodes can be linked in

the original tree pair.

Figure 2.4 further illustrates this fragment-pair extraction process, by listing in

(b) all the fragment pairs that can be extracted from the tree pair in (a).

2.3.3 Composition

Fragment pairs can be combined by using the DOT composition operator, denoted

◦. To ensure that each derivation is unique, we define composition in terms of the

leftmost substitution site. A fragment pair 〈f1, e1〉 can be composed with a fragment

pair 〈f2, e2〉 if three conditions are met:

a) 〈f1, e1〉 has at least one substitution site,

b) the label A on the leftmost substitution site in f1 (e.g. the leftmost N in fragment

pair f 1 in Figure 2.4) equals the root label in f2,

c) the label of the target-side node linked to A (e.g. the rightmost N in fragment

pair f 1) equals the root label in e2.

27



S

VP

NV

likes

N

S

VP

PP

NP

à

V

plaît

N
◦ N

John

N

John

◦ N

Mary

N

Mary

=

S

VP

N

Mary

V

likes

N

John

S

VP

PP

N

John

P

à

V

plaît

N

Mary

(a) Derivation involving three fragment pairs

S

VP

NV

likes

N

John

S

VP

PP

N

John

P

à

V

plaît

N
◦ N

Mary

N

Mary

=

S

VP

N

Mary

V

likes

N

John

S

VP

PP

N

John

P

à

V

plaît

N

Mary

(b) Different derivation for the same string pair, using only two fragment pairs

Figure 2.5: Two different DOT derivations for the same string pair

The resulting fragment pair consists of a copy of 〈f1, e1〉 where, on the source

side A has been replaced by f2, and on the target side the node linked to A has been

replaced by e2 (e.g. fragment pair f 3 in Figure 2.4).

A sequence of fragment compositions is called a derivation. When we have such

a sequence of composition operations, we will follow the convention that composi-

tion is left-associative. Figure 2.5(a) shows fragment pairs which are involved in a

derivation of the English “John likes Mary” which results in the French translation

“Mary plaît à John”. It is important to note that there might be more than one

derivation yielding the same source and target sentences. For example, if we were to

begin a new derivation by composing the fragment pair f 3 in Figure 2.4 with frag-

ment pair f 4, we would obtain a different (shorter) derivation for the same string

pair, as shown in Figure 2.5(b).
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2.3.4 Scoring

During training, we extract all possible fragment pairs from the parallel treebank.

By considering |〈df , de〉|, the count of times that the fragment pair 〈df , de〉 was

extracted from the parallel treebank, we assign to each fragment pair a probability

equal to the frequency in which it was extracted, relative to the frequency in which

fragment pairs with the same root pairs were extracted, as in (2.4):

P (〈df , de〉) =
|〈df , de〉|∑

{〈uf ,ue〉|root(uf )=root(df )∧root(ue)=root(de)}
|〈uf , ue〉|

(2.4)

Then, with the assumption that fragment pairs are composed conditionally in-

dependently of each other, the probability of a derivation is the product of the

probabilities of the fragments it is composed of, as in (2.5):

P (d〈s,t〉) = P (〈df , de〉1 ◦ . . . ◦ 〈df , de〉N) =
N∏
i=1

P (〈df , de〉i) (2.5)

Given an input source-language sentence s,2 DOT searches for all possible deriva-

tions resulting in a tree pair whose source-side yield is equal to s. The yields of the

target-side trees in these derivations constitute the set of candidate translations,

from which the output translation is chosen so as to maximize the (string) transla-

tion probability in (2.6):

P (s, t) =
∑

d〈s,t〉∈D

P (d〈s,t〉) (2.6)

Hearne and Way (2006) explored the effects of using criteria different to the

translation probability in order to choose the final translation, such as the most

probable derivation or the shortest derivation, and found that in some cases transla-

tion quality remains the same or improves when using the shortest derivation or the

most probable derivation, compared to using the most probable translation. In this
2To avoid confusion, we use a notation similar to the one used in Section 2.2: we use the letters

s and t when discussing source and target sentences, and the letters f and e in the context of
fragments.
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work we experiment with using the most probable translation and the most probable

(Goodman) derivation (cf. next section) methods to select the output translations.

2.3.5 Efficient Fragment Representation

As previously mentioned, DOT extracts all subtrees in the parallel treebank. Since

the amount of subtrees grows exponentially with the size of the training corpus

trees, this presents computational challenges because enumerating all subtrees in a

reasonably-sized corpus is intractable. Fortunately, there are efficient representa-

tions for such collections of trees. Goodman (1996) introduced a method to reduce

a DOP model to a Probabilistic Context Free Grammar (PCFG) yielding the same

trees with the same probabilities, and Hearne (2005) extended this reduction to the

bilingual case of DOT. Although in (Hearne, 2005) the complete details needed to

compute bilingual translation probabilities using the Goodman reduction for DOT

are not given, Hearne (p.c.) did manage to obtain an efficient mapping from source-

language trees to their corresponding target-language counterparts, which we now

explain.

The process of obtaining a Goodman PCFG grammar for DOT involves pre-

processing the parallel treebank in many ways. Firstly, the reduction assumes the

parallel treebank to be in Chomsky Normal Form (CNF), i.e. all nodes except those

directly dominating a terminal leaf must have exactly two children, while nodes

directly dominating terminal leaves (pre-terminal nodes) must have exactly one

child. Since this is not necessarily true for a general parallel treebank, we binarize

both source and target trees in the training corpus. Throughout this thesis, we use

right binarization, as explained in Figure 2.6, although any standard binarization

method could be used.

Once the parallel treebank has been binarized, we modify it in two ways:

a) For every pair (X, Y) of linked nodes in the treebank, we replace both labels X

and Y with the new label “X=Y”.
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LHS

RHS3

c

RHS2

b

RHS1

a

LHS

RHS1%1

RHS3

c

RHS2

b

RHS1

a

Figure 2.6: Right binarization of a non-CNF parse tree. The non-CNF tree in the
left is converted to the CNF tree in the right by introducing a new binarization node
which contains the special symbol % and a binarization index. Binarization nodes
are left unaligned.

b) We then annotate the label of each node in the parallel treebank with a unique

index (its Goodman index ).

We note that when performing fragment extraction, each binary-branching node

and its two children can either be: an internal (i.e. neither root nor frontier) node

in a fragment, a fragment root, or a fragment frontier. Accordingly, we add rules to

the grammar reflecting the role that each node can take, keeping unaligned nodes

and nodes introduced during binarization as fragment-internal nodes. Keeping these

considerations in mind we generate two PCFG grammars, a source and a target one.

Rules on the grammars and their associated probabilities are generated as in the

standard Goodman reduction for monolingual DOP (Goodman, 1996). For the case

where a node and both of its children are aligned, as in Figure 2.7:

LHS

RHS2RHS1

T_LHS

T_RHS2T_RHS1

Figure 2.7: Fully-external fragment pair

we add 8 rules with their corresponding probabilities to the source grammar, as

follows:
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LHS→ RHS1 RHS2 1/a LHS+j → RHS1 RHS2 1/aj

LHS→ RHS1+k RHS2 bk/a LHS+j→ RHS1+ RHS2 bk/aj

LHS→ RHS1 RHS2+l cl/a LHS+j→ RHS1 RHS2+l cl/aj

LHS→ RHS1+k RHS+l bkcl/a LHS+j→ RHS1+k RHS2+l bkcl/aj

(2.7)

where aj represents the number of subtrees headed by the node LHS with Goodman

index j (respectively bk for RHS1 with index k and cl for RHS2 with index l),3 and

a is the number of subtrees headed by nodes with non-terminal LHS (i.e. a =
∑

j aj,

with analogous definitions for b and c).

A category label which ends in a ‘+’ symbol followed by a Goodman index is

fragment-internal and all other nodes are either fragment roots or frontier nodes.

In this representation, a fragment pair is then a pair of subtrees in which the root

does not have an index, all internal nodes have indices, and all the leaves are either

terminals or unindexed nodes. We give an example Goodman PCFG reduction in

Figure 2.8, where the tree pair is shown after the appropriate modifications have

been carried out.

We store the source and target grammars separately, and keep track of the align-

ment correspondences between source and target Goodman indexes. This means

that when parsing a source sentence using the source Goodman grammar, for each

source rule which contains a Goodman index we can always uniquely identify the

corresponding target rule and thus build the translations using the target PCFG

grammar.4 To handle the case where a source derivation contains an external rule

(a binary rule in which the LHS, the RHS1 and the RHS2 are aligned, i.e. as in

Figure 2.7), we also maintain a list of source external rules along with their alterna-

tive corresponding target-side rules. The method of annotating linked nodes in the
3As noted by Goodman (1996), aj can be efficiently computed by the recursive formula aj =

(bk + 1)(cl + 1).
4In practice we only need to identify the root and substitution sites of each source fragment,

along with one of the Goodman indexes in its highest level rule. Using this information and the
alignments between source and target Goodman indexes, we can deduce the corresponding target
fragment.
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S=S1

VP2

N=N5

Mary

V4

likes

N=N3

John

S=S1

VP2

PP3

N=N7

John

P6

à

V5

plaît

N=N4

Mary

(a) A tree pair where linked nodes have been relabelled to include both
source and target labels, and all nodes have been indexed.

Source PCFG Target PCFG

S=S → N=N VP+2 0.5 S=S → N=N VP+2 0.5
S=S → N=N+3 VP+2 0.5 S=S → N=N+4 VP+2 0.5
S=S+1 → N=N VP+2 0.5 S=S+1 → N=N VP+2 0.5
S=S+1 → N=N+3 VP+2 0.5 S=S+1 → N=N+4 VP+2 0.5
N=N → John 0.5 N=N → Mary 0.5
N=N+3 → John 1 N=N+4 → Mary 1
VP+2 → V+4 N=N 0.5 VP+2 → V+5 PP+3 1
VP+2 → V+4 N=N+5 0.5 V+5 → plaît 1
V+4 → likes 1 PP+3 → P+6 N=N 0.5
N=N → Mary 0.5 PP+3 → P+6 N=N+7 0.5
N=N+5 → Mary 1 P+6 → à 1

N=N → John 0.5
N=N+7 → John 1

(b) Source and target Goodman grammars corresponding to the tree pair in (a).

Figure 2.8: A parallel tree and its corresponding Goodman reduction.
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source grammar with their target-side counterparts ensures that (with the excep-

tion of derivations which contain source external rules), we can compute bilingual

derivation scores using just the score determined by the source grammar rules. To

obtain bilingual derivation probabilities for the general case of derivations which

might contain source external rules, we first multiply, for every source external rule

in a derivation, the relative frequency probability of the target-side rule given the

source external rule, and finally multiply this score by the source-grammar score.

2.4 Translation Quality-driven Scoring in MT

As can be observed from our descriptions in Section 2.2 and 2.3, both the state-of-

the-art PB-SMT approach and the DOT model disambiguate between alternative

translations by using scores which are obtained from different sources, such as the

log-linear features of PB-SMT or the fragment-pair probabilities in DOT. Although

the ultimate goal when determining the best translation from a set of alternative

candidates is to select the one that will maximize the perceived translation quality of

the system, these scores are computed using methods that maximize the likelihood

of the training data. While maximizing the likelihood of the training corpus can

be usually done with efficient methods, such as the use of relative-frequency proba-

bilities, this objective does not directly takes into account the expected translation

quality of the system.

There has been a range of research on the subject of translation quality-based

scoring in MT. As mentioned in Section 2.2, MERT (Och, 2003) is the standard

way to assign the weights λi in equation (2.1). While this scales the components of

the model in an optimum way so as to maximise translation quality on a held-out

corpus, the features themselves rely heavily on relative frequencies of phrase pairs

on the training corpus, a statistic that might improve the likelihood of the training

corpus, but that does not necessarily maximise translation quality. A well-known

limitation of MERT is its difficulty to scale to a larger amount of features than
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the ones present in a standard PB-SMT system (Och et al., 2003). There has been

research carried out on methods that seek to overcome this problem, e.g. (Watanabe

et al., 2007) and (Chiang et al., 2008) improve on MERT by using the Margin

Infused Relaxed Algorithm (MIRA) (Crammer et al., 2006) to estimate a large

amount of syntactic and distortion features from a small held-out corpus, which

led to significant translation quality gains in the Hierarchical Phrase-Based SMT

framework (Chiang, 2005).

In another line of research, (Liang et al., 2006), (Tillmann and Zhang, 2006)

and (Arun and Koehn, 2007) use perceptron-like algorithms to introduce a large

number of binary features globally trained to increase Bleu score. These approaches

have the drawback that training procedures —including in some cases decoding—

have to be redeveloped. In addition, these approaches do not report significant

improvements over state-of-the-art PB-SMT systems trained with standard features.

2.5 Evaluation Metrics

To assess the quality of translations output by our systems, and the difference in

performance between the various methods we investigate, a metric must be defined.

Ideally one or more evaluators would examine input sentences and output trans-

lations and assess how fluent the translations are, i.e. how grammatically correct

they are and how naturally they read in the target language, and how adequate they

are, i.e. how well the meaning in the input sentence is preserved in the output trans-

lation. Alternatively, given the output from two systems the relative ranking could

be determined, i.e. whether one of the system’s output is better or whether they are

of the same quality. In addition, we would desire that having established the criteria

used to evaluate, two different evaluators would rate the same translations in the

same way, i.e. we want a high inter-annotator agreement. We would also desire the

intra-annotator agreement to be high, i.e. an evaluator should be consistent in their

ratings.
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Candidate: the the the the the the the
Reference: The cat is on the mat

Figure 2.9: Example candidate translation and reference. From (Papineni et al.,
2002).

Unfortunately, such manual evaluations are both costly and time-consuming.

As an alternative we follow standard practice in most MT research, and employ

automatic evaluation metrics which have shown high correlation levels with hu-

man judgements. However, we do manually inspect sample sentences and provide

example output translations, so as to gain insights into the actual effects of our

modifications.

The following sections provide a description of the automatic evaluation metrics

we employ, as well as the method used to perform statistical significance testing

once these scores have been obtained.

2.5.1 Bleu

Bleu (Papineni et al., 2002) is the most widely used metric in MT research. It uses

the geometric average of the (modified) precision of n-grams between a candidate

translation and the references, together with a brevity penalty to account for recall.

Precision is defined as the percentage of words in the candidate sentence which

match a word in a reference translation. Typically, precision is not used alone, but

is instead accompanied by a recall figure, which amounts to the percentage of words

in the reference translation which are present in the candidate sentence.

For example, the (implausible) candidate sentence in Figure 2.9 has a high preci-

sion of 7/7. Usually, attempts to game the precision metric in this way are punished

with a low recall score, which would amount to 2/6 in this case. However, com-

puting a recall score in the context of MT is troublesome, as it is often desirable

to compare translations against multiple references instead of only one. For this

reason, Bleu introduces the concept of modified precision, which first counts the

36



maximum number of times a word occurs in any single reference translation, and

then truncates the total count of each candidate word by its maximum reference

count (Papineni et al., 2002). The modified precision of the candidate in Figure

2.9 is, therefore, just 2/7. This concept of modified precision is then generalized

to cover the case of n-grams. As described so far, we have only taken into account

unigram precision. We can compute analogous scores for bigrams, i.e. sequences of

two contiguous words in the candidate sentence which match sequences of two con-

tiguous words in the references, and similar for any n-gram size. When computing

the modified precision, statistics are gathered not on a sentence-level basis, but over

the entire test corpus. Truncated n-gram matches are obtained and added for each

sentence, and divided by the number of candidate n-grams in the test corpus.

Since, as we mentioned, computing recall is troublesome, Bleu introduces a

brevity penalty which penalizes sentences which are shorter than the best-matching

reference. Like modified precision, this penalty is computed over the entire test

corpus by first computing r, the sum of the lengths of the references that are closest

to each candidate translation, and then c, the sum of the lengths of all candidate

sentences in the test corpus.

Let pn be the precision of n-grams between the candidates in the test corpus and

the reference set. Then the Bleu score can be computed as in (2.8):

BleuN = BP· exp(
1

N

N∑
n=1

log pn) (2.8)

where the brevity penalty BP is defined as in (2.9):

BP =

 1 if c > r

e1−r/c if c ≤ r
(2.9)

Typically, up to 4-grams are considered, i.e. Bleu4 is used.
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2.5.2 NIST

Doddington (2002) noted that some aspects of Bleu could be improved, and decided

to formulate a modified version of Bleu. The changes introduced include:

• use of the arithmetic average of n-gram counts instead of the geometric aver-

age, in order to minimize harsh behaviour when there are low counts for larger

values of N ,

• introduction of “information” weights which favour those n-grams which occur

less frequently,

• modification of the brevity penalty to minimize the effect of small variations

in length.

The modified formula is given in (2.10), where β is chosen so as to make the

brevity penalty factor equal to 0.5 when the translation length is 2/3rds of the average

reference length, L̄ref is the average over all reference translations of the number of

words in a reference translation, Lsys is the number of words in the translation being

scored, and Info(w1 . . . wn) is computed in the reference document as in (2.11):

NIST =
N∑
n=1


∑

all w1 . . . wn
that co-occur

Info(w1 . . . wn)

∑
all w1 . . . wn in sys output

1

 · exp

{
β log2

[
min

(
Lsys
L̄ref

, 1

)]}
(2.10)

Info(w1 . . . wn) = log2

(
number of occurrences of w1 . . . wn−1

number of occurrences of w1 . . . wn

)
(2.11)

2.5.3 Meteor

In contrast with NIST, Meteor (Banerjee and Lavie, 2005; Lavie and Agarwal, 2007;

Lavie and Denkowski, 2009) is not a modification of the original Bleu formula, but
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instead attempts to improve the potential weaknesses of Bleu by a complete new

formulation.

Meteor computes a score by first obtaining an alignment between the candidate

sentence and a reference translation. This alignment, which maps individual words

in any of the strings to at most one word in the other string, is incrementally obtained

by a series of stages. In the first stage, exact matching of words is used to determine

mappings. The second stage uses the Porter stemmer (Porter, 1980) to map two

unigrams if they are the same after they are stemmed. Finally, the third stage maps

two unigrams together if at least one sense of each word belongs to the same synset

in WordNet (Miller and Fellbaum, 2007).

Once an alignment has been obtained, unigram precision and recall are com-

puted, and the final score is computed as in (2.12):

Meteor = (1− Pen) · Fmean (2.12)

where Fmean is computed as in (2.13), and Pen as in (2.14):

Fmean =
Precision · Recall

α · Precision + (1− α) · Recall
(2.13)

Pen = γ · fragβ (2.14)

α, β and γ are parameter constants, and frag is the number of contiguous match-

ing “chunks” divided by the number of matching words.

2.5.4 F-Measure

The last metric we consider uses the notions of precision and recall and combines

them into the F-Measure, to allow for a more intuitive interpretation of the scores

than Bleu or NIST. This metric is implemented by the General Text Matcher

(GTM) (Turian et al., 2003).
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Turian et al. (2003) define precision and recall as in (2.15) and (2.16), respec-

tively:

precision(C|R) =
MMS(C,R)

|C|
(2.15)

recall(C|R) =
MMS(C,R)

|R|
(2.16)

Here C is the candidate sentence, R the corresponding reference, andMMS stands

for the maximum match size, a concept from graph theory which is computed by

considering the maximum amount of candidate words that match a word in the

reference, avoiding the double-count of words which match more than one word.

Having defined precision and recall, the final metric is obtained by the use of the

standard f-measure, as in (2.17):

f-measure(C|R) =
2 · precision(C|R) · recall(C|R)

precision(C|R) + recall(C|R)
(2.17)

2.5.5 Statistical Significance

When performing experiments using two different systems (or when introducing

modifications to a system) and evaluating on a test corpus, we wish to be able

to determine with some confidence whether the difference shown by the automatic

evaluation metrics is due to a significant improvement in a system’s behaviour,

or whether the difference in the scores is simply due to random variations in our

particular test corpus.

Standard statistical methods to perform statistical significance testing are trou-

blesome to implement in an MT context, given that the ability to assess the quality

of an individual sentence would be required, while metrics such as Bleu or NIST

were designed to be used at document level. To solve this we use a widely used

method known as paired bootstrap resampling (Koehn, 2004).

Paired bootstrap resampling makes the assumption that estimating a confidence

interval from a large number of test sets, each consisting of n sentences drawn with

replacement from an original set of n test sentences, is as good as estimating the
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interval with the sentences being drawn from an infinite source of test sentences.

Under this assumption, which is made in order to avoid having to evaluate our

systems on an implausibly large amounts of sentences, the method is as follows: we

translate a set of sentences, consisting of (say) 300 sentences, using the two systems

that we wish to compare. We then proceed to create a large number (e.g. 1000)

of new test sets by taking sentences from the original test set, with replacement.

For each of the newly created test sets, we compute the automatic evaluation scores

using the output from both systems, and determine which system has a higher score.

If one system is better on at least an x% of cases (e.g. 950 samples if creating 1000

new test sets), then it is deemed to be statistical significantly better at the p ≤ 1−x

p-level, e.g. 0.05.

In our experiments we perform statistical significance testing by using paired

bootstrap resampling to create 10,000 new test sets.

2.6 Summary

In this chapter we gave an overview of different approaches to machine translation.

In particular we provided an overview of PB-SMT which, while being an arguably

simple model which does not exploit any structural or linguistic information, still

achieves state-of-the-art performance. We also provided an overview of different

approaches which attempt to define models in terms of richer structures. In par-

ticular, we gave a detailed description of DOT, a tree-to-tree system on which our

efforts to overcome the limitations we perceive in the state-of-the-art approach are

focused. We finished the chapter with an overview of work carried out to bring

translation-quality awareness into MT scoring, and with an introduction to the

evaluation metrics which we use to determine the differences in translation quality

between our systems.

In the next chapter, we address our research questions RQ1 and RQ2 by formu-

lating an algorithm which can relate the translation units used by an MT system to
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their expected impact on translation quality. We experiment with adapting this al-

gorithm for PB-SMT and for DOT, reporting significant gains in translation quality

for a Spanish-to-English translation task.
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Chapter 3

Translation Quality-Oriented

Parameter Estimation

In this chapter we present a scoring algorithm which allows an MT system to take

decisions based on the notion of the expected impact on translation quality.

We motivate our approach in Section 3.1, and then introduce our scoring algo-

rithm in Section 3.2. This algorithm takes an arbitrary MT system satisfying certain

properties, and uses it to obtain the list of candidate translations for a corpus. From

this list, the sentences which maximize translation quality (the oracles) are deter-

mined, and a score is obtained for each translation unit according to how similar

they are to units used in the oracle translations. We provide two instantiations

of this scoring method, one for the DOT translation system (in Section 3.3) and

one for PB-SMT in Section 3.4. We empirically evaluate the performance of this

method on Spanish-to-English translation, and provide insights into the benefits of

this approach.

3.1 Motivation

In Chapter 2, we presented an overview of PB-SMT, the state-of-the-art approach

to Machine Translation, and of DOT, a syntax-based tree-to-tree system. We can
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consider the workflow used to build and test a PB-SMT system as consisting of three

phases:

1. Phrase extraction and feature estimation.

2. Tuning of feature weights.

3. System testing and evaluation.

The ultimate goal is to obtain a system that performs as well as it can in the

third phase, where system performance is determined by a translation quality met-

ric such as Bleu (Papineni et al., 2002). For this reason, in the second phase

the weight that each feature receives is set via MERT (Och, 2003) in such a way

that the score assigned by such a metric when translating a development corpus

is maximized. However, in the first phase there is no direct relation between the

way in which features are estimated and the score assigned by translation quality

metrics. In particular, there is no notion of the expected impact that using a partic-

ular phrase pair has on translation quality. The main features in PB-SMT are the

phrase translation probabilities which, in an attempt to maximize the likelihood of

the training corpus,1 are estimated by counting the frequency of occurrence of a tar-

get phrase as a translation of a source phrase, relative to the alternative translations

for that source phrase. The remaining features either aim at smoothing the phrase

translation probabilities (as is the case with the lexical weighting features), or at

controlling the length of the output sentence (phrase and word penalty features).

Maximizing the likelihood of the training corpus is a reasonable objective which can

lead to good results, as evidenced by the relatively good performance of the MT

systems which incorporate these features. However, this objective is only indirectly
1It should be noted that, since many phrases can overlap and nest in the parallel corpus, leading

to many possible derivations for a single sentence pair, the phrase extraction method in PB-SMT
does not necessarily maximise the likelihood of the training data, and is instead a heuristic which
has been shown empirically to perform well (DeNero et al., 2006). Similarly, given that DOT
extracts the complete tree pairs in the parallel treebank as fragment pairs, the trivial maximum
likelihood estimator for DOT would assign all of the probability mass to the complete tree pairs
in the treebank and none of it to smaller fragments, with the corollary that the model would not
be able to generalize over unseen data (Johnson, 2002).
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Phase Objective to Maximize

Training/Feature Estimation Likelihood
Feature Weights Tuning Translation Quality
Evaluation Translation Quality

Table 3.1: Phases in PB-SMT workflow, along with the objective that each phase
aims at maximizing.

related to translation quality.

This lack of a translation quality-oriented feature in the model presents an incon-

sistency with the goal used to evaluate the system, which is clearly shown when we

list the criterion that is used in each phase to determine the quality of the models,

as in Table 3.1.

A similar situation arises in DOT, where derivations are scored according to

the relative frequency of the fragment pairs they are composed of. In this case

the situation is worse, as this is the only source of information considered in the

scoring (cf. Chapter 4, where we address this issue). This is also the case with a

wide range of MT systems, e.g. (Yamada and Knight, 2001; Galley et al., 2004,

2006), where probability distributions are estimated via maximum likelihood over

each decision type, or (Chiang, 2005, 2007), which inherits the feature set used in

standard PB-SMT (Koehn et al., 2003).

Given such a wide range of systems lacking in this regard, it would be desirable to

come up with a translation quality-oriented estimation method that would be general

enough to be adopted by a variety of MT systems. We propose such a method in the

next section. We instantiate this approach in Section 3.3 by obtaining an accuracy-

based DOT system, and we demonstrate the flexibility of the formulation presented

in the next section by adapting it to a PB-SMT setting in Section 3.4.

3.2 Accuracy-Based Scoring

Previous approaches aimed at incorporating translation-quality awareness into MT

scoring (Liang et al., 2006; Tillmann and Zhang, 2006; Watanabe et al., 2007; Blun-
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som et al., 2008) attempt to globally optimize translation quality by estimating the

weights of millions of features, thus replacing the original feature set. However, rel-

ative frequency-based features have the property of being efficient to estimate: only

the counting of occurrences of events is required. In addition, in some cases these fea-

tures have been shown to outperform purely translation quality-oriented approaches

(Arun and Koehn, 2007). This is perhaps a consequence of the complexity of these

approaches: their use requires the redevelopment of the training procedures, and the

decoders need to be reengineered so that this kind of features can be used, which

leads to prototypes being used as opposed to fully fledged systems. For example,

(Liang et al., 2006) provide results using a system which only implements a limited

distortion model, which underperforms compared to a standard PB-SMT system.

For these reasons, in our bid to incorporate translation quality-oriented features

into MT, we do not aim at replacing current scoring models; rather, we aim to

complement them by incorporating (a few) new features that provide a notion of

the expected translation quality of the decisions the system takes.

3.2.1 Preliminaries

We assume that an MT system contains a set of translation units which it uses

to build a translation given an input sentence, e.g. phrase pairs in PB-SMT and

fragment pairs in DOT. From a scoring point of view, these translation units are

atomic, meaning that a score can be assigned to them, but they cannot be further

decomposed into other smaller units which can be scored.

We assume that translation quality is measured by a function E(s, t̃,~t) which

assigns a score between 0 and 1 to a translation t̃, measuring how “good” it is as

a translation of the sentence s, taking the sentences in the vector ~t as references.

Examples of these functions are the translation quality metrics defined in Section

2.5, namely Bleu, NIST, the F-Measure and Meteor.

Given an input sentence s, let Ts be the set of target translations that the

system is able to produce by composing its translation units. In the case of PB-
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He runs the company

El dirige la empresa

(a)

He runs the marathon

El corre la maratón

(b)

Figure 3.1: Different translations for the word “runs”, depending on different source
contexts.

SMT, Ts contains all combinations of the target sides of phrase pairs whose source

sides appear in s. This set is, therefore, really large, and as a result of the pruning

techniques employed by the decoders, in practice MT systems do not consider all

of the candidate translations contained therein. However, theoretically our ultimate

goal is to score phrases in such a way that the output of the system is the sentence

t̂ that maximizes E over Ts, as in (3.1):

t̂ = argmax
t̃∈Ts

E(s, t̃,~t) (3.1)

Accomplishing this is extremely difficult, since the quality E of a translation

depends not only on the quality of each individual translation unit involved in it, but

on the entire series of translation units that constitute the translation. This means

that while using a translation unit can be completely adequate when translating

some source words in one sentence, the same translation unit translating the same

source segment can be completely inadequate when taking a different source (or

target) context into account. For example, when translating the English word “runs”

into Spanish, if we consider the context of a sentence such as the one in Figure

3.1(a), we would obtain a different translation than if considering the source context

in Figure 3.1(b). Since in most formulations (with the exception of global features

such as language model scores), translation units are scored independently of each

other, the approach that we take is to attempt to differentiate between units that

on average lead to good translations from units that typically do not. We encode

this information as a function Acc(f, e) that quantifies how similar a translation unit
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〈f, e〉 is on average to a translation unit involved in a candidate translation that was

shown to maximize the translation quality metric E.

3.2.2 Estimation Corpus

We estimate the function Acc by determining how similar (or dissimilar) a translation

unit is compared to translation units which were deemed to be of high quality when

translating a particular input sentence. These input sentences are taken from a

special corpus which we call the estimation corpus. The estimation corpus behaves

as a large test set. Sentences in this corpus will be translated, and evidence (both

positive and negative) for the quality of translation units used during translation

will be collected. Note that the amount of preprocessing required for these sentences

is only that which would also apply to test sentences, e.g. for the case of DOT there

is no need for these sentences to be parsed and sub-sententially aligned.

In order to be able to observe translation units in as many contexts as possible,

and to be able to score as many units as possible, this corpus should be large (i.e. in

the order of the sizes used for translation unit extraction). To alleviate the need for

large amounts of additional parallel data, parallel corpora used to extract translation

units (i.e. training data) can be included in the estimation corpus.2 However, a

significant amount of unseen data (i.e. held-out data) should also be included in this

corpus. In our experiments, the percentage of held-out data in estimation corpora

is at least 50%.

3.2.3 Source Spans

We assume that an MT system can generate a list (which we denote TN) of the

N best-scoring translation candidates for an input sentence. Since it is infeasible
2Translating a sentence in the training data will likely result in the translation observed during

training to be output as the most probable translation, and in few (but large) translation units to
be used. However, our use of the training data as estimation corpus is possible because for every
input sentence we will consider all possible translations explored by the system (and not just the
most probable one), which will cause many different translation units to be observed.
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John | loves | Mary

Mary | plaît à | John

1 2 3

(a)

S

VP

N

Mary

V

likes

N

John

S

VP

PP

N

John

P

à

V

plaît

N

Mary

1 2 3

(b)

Figure 3.2: Determining the translation units used to translate a sentence, and the
source span of each unit.

to explore the entire set Ts, we approximate this by only considering the target-

language sentences present in this N -best list. Furthermore, we assume that we

are able to determine the translation units used to build each of the translations

in the N -best list, a feature most decoders incorporate. Finally, we assume that

we can deduce the source-sentence span associated to each translation unit involved

in the generation of a translation. For example, in PB-SMT we can obtain the

segmentation used and the corresponding source phrase for each target phrase, as

in Figure 3.2(a). From this information we can obtain the list of phrase pairs used,

and we can determine the source sentence span associated with each phrase pair

by considering the position in the source sentence of the source side of each phrase

pair. For the case of DOT, Figure 3.2(b) gives the derivation used by indicating

substitution sites using boxed nodes. From this we can determine the fragment pairs

used, and we can deduce the source span for each fragment by considering the span

covered by the root of each source-side fragment. We denote the source-sentence

span associated to each translation unit as source_span(u) = (l,m), meaning that

the translation unit u has a source span starting at the source-sentence position l

and ending at source position m (e.g. in Figure 3.2, source_span( N

Mary

N

Mary
) = (3, 3)).

Note that for the case of DOT, the source span of a fragment pair in a derivation is

determined by the root of the source side of the fragment pair, regardless of whether
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the fragment pair contains substitution sites or not. For example, in Figure 3.2(b)

source_span(

S

VP

NV

likes

N

S

VP

PP

NP

à

V

plaît

N
) = (1, 3)).

Using this information, a function Ω indicating the mapping between a source

sentence span (l,m) and the associated set of translation units in the oracle trans-

lations O can be defined, as in (3.2):

ΩO(l,m) = {ẽo|∃ t ∈ O : ẽo ∈ t ∧ source_span(ẽo) = (l,m)} (3.2)

3.2.4 The Algorithm

Our accuracy-based scoring procedure takes an MT system which satisfies our as-

sumptions and associates its translation units with a new score. We refer to this

original MT system as the baseline system.

The estimation procedure is as follows. For each source-language sentence s in

the estimation corpus, we obtain an N -best list of translation hypotheses TN using

the baseline system, and we use the metric E to determine the translation in TN that

maximises translation quality. Noting that many target translations may receive the

same highest score under E, we define the set O as in (3.3):

O = argmax
t̃∈TN

E(s, t̃,~t ) (3.3)

We refer to the candidate translations in O as oracle translations. Obtaining

oracles from an N -best list (as illustrated in Figure 3.3 (a)) is referred to as local

updating by Liang et al. (2006) (as opposed to what they call bold updating, where the

decoder is forced to produce the reference translation). In the context of perceptron-

based training for MT, Liang et al. (2006) find that local updating significantly

outperforms bold updating (possibly due to the forcing of the alignments between the

source sentence and the reference, which might produce unreasonable alignments).
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Source Sentence N -Best Candidates Reference Sentence

(a) Using a translation quality metric, an oracle translation
is chosen from the N -best list.

Source Sentence N -Best Candidates Reference Sentence

(b) For each unit used in the oracle, its corresponding source
sentence span is determined.

Source Sentence N -Best Candidates Reference Sentence

(c) All translation units in the N -best list associated with
the source span in (b) are determined. These translation
units will later be compared with the oracle unit associated
with this source-sentence span.

Figure 3.3: Sketch of our proposed accuracy-based scoring algorithm
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However, in the future it would be interesting to measure the effects of directly

using the reference sentence as an oracle. This would require obtaining an alignment

between the reference and the words in the input sentence, which could be performed

using word-alignment methods, e.g. (Brown et al., 1993), or methods similar to

forced alignments in speech recognition, e.g. (Bahl et al., 1983). A further possibility

for improving oracle selection is to search for the sequence of target units in the N -

best list which produce a target sentence which maximizes translation quality, or

alternatively the sequence of target words in the N -best list which produce the best

target sentence. As in the case of directly using the reference as an oracle, this

would require an alignment phase which finds the correspondence between this best

sentence and the source segmentation needed to generate it.

Once oracles have been obtained, we consider the translation units which were

used to build them (the oracle units). As the use of these units led to the high-

est translation quality according to some automatic evaluation metric, we assume

them to be of high quality, and assign them a high score. To allow for a degree of

flexibility, we compare the remaining units in the N -best list with the oracle units,

which allows a larger amount of units to receive a score rather than only oracle units.

For this comparison to be meaningful, we only compare candidate translation units

with oracle translation units that translate the same source span, as illustrated in

Figure 3.3(b). Then, for each translation unit u in the oracle sentences, we consider

all translation units in the N -best list which are associated with the same source-

sentence span (l,m) (as indicated by the function source_span(u) (cf. equation (3.2))

and as illustrated in Figure 3.3(c)), and we compare them with the oracle units asso-

ciated with this same source-sentence span (l,m) (i.e. the units in ΩO(l,m)). This

comparison between translation units is performed by a unit-similarity metric δ,

which assigns a score to a translation unit representing the similarity between the

candidate unit and the oracle unit. There might be more than one oracle unit associ-

ated with the same source span in the case where more than one candidate sentence

receives the same best score under E when selecting oracles. When this happens,
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Algorithm 1 Accuracy-Based Scoring
Input: Estimation corpus: {(s1, ref1) . . . (sH , refH)}
1: count← assign 0 to all units
2: score← assign 0 to all units
3: for i = 1 . . . H do
4: TN ← decode(si)
5: O ← argmax

c∈TN
E(si, c, refi)

6: for all c ∈ TN do
7: for all u ∈ c do
8: U ← ΩO(source_span(u))
9: if U 6= ∅ then
10: score(u)← score(u) + argmin

uo∈U
δ(u, uo)

11: count(u)← count(u) + 1
12: end if
13: end for
14: end for
15: end for
16: for all u such that count(u) 6= 0 do
17: ABS(u)← score(u)

count(u)

18: end for
19: return ABS

we choose to compare a candidate unit with all of the oracle units associated with

its same source span, and keep the score obtained from the unit it is most similar

to.

By repeating this process over all sentences in the estimation corpus, and aver-

aging the similarity scores obtained by each unit, we obtain a notion of how different

on average a particular unit is to oracle units. We can then exploit this score by

augmenting our baseline system so that these scores are taken into account when

choosing between alternative translations. The scoring method we have just outlined

is summarized in Algorithm 1.

Note that a translation unit needs to appear in an N -best list translating the

same source span as an oracle unit in order for it to receive an accuracy-based score

using Algorithm 1. As discarding units which do not receive a score could lead

to a system with a reduced coverage, or might be technically challenging (e.g. the

Goodman reduction for DOT implicitly encodes all possible fragments), the question
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of how to deal with unscored units arises. A possible solution is to assign unscored

units a default score equal to the median of all of the scores observed. This is one

of the solutions that we implement here, although other methods could be used

depending on the particular MT system we are using. In particular in the future

more sophisticated methods for assigning this default weight could be developed,

for example the average score obtained by units of the same size (or some other

property such as labels used in fragments) can be found, and units can receive a

default score according to these properties.

Note also that in Algorithm 1, except possibly for line 5,3 only one sentence in

the estimation corpus is taken into account at a time, with the other sentences in

the corpus playing no role in the estimation. This means that in the case where

E is a sentence-level metric, the estimation of our accuracy-based feature can be

performed in parallel at least up to the sentence level, enabling significant increases

in estimation speed to take place.

As our scoring method takes a baseline system and produces a new score distri-

bution for its translation units which might replace or modify the original scoring

model, in the following we refer to this process as rescoring.

The particular unit-similarity metric δ we use depends on the nature of the

translation units. Details of these metrics and of the precise way in which these

accuracy-based scores can be incorporated into a particular MT framework are given

in the following sections.

3.3 Accuracy-Based Scoring for DOT

As explained in Section 2.3, DOT scores derivations using exclusively the relative

frequencies of the constituent fragments involved therein. Our goal is to bring

translation-quality awareness into the DOT model. However, unlike in PB-SMT,
3Some sentence-level approximations of Bleu might lead to dependencies between sentences

in the estimation corpus. For example in (Watanabe et al., 2006, 2007) the Bleu score for a
particular sentence depends on the entire estimation corpus.
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DOT is not currently able to exploit features other than the relative-frequency of

fragment pairs. We address this issue in Chapter 4, where we define a log-linear

version of DOT which is able to exploit not only additional features of the fragment

pairs, but also features which include information not available at training time,

such as the particular input sentence we are translating. This new model will allow

features of the kind present in PB-SMT to be incorporated into DOT, allowing for

the gap between the two systems to be bridged.

For the moment, for the purpose of demonstrating the adaptability of the scoring

method outlined in the previous section to the case of DOT, we reformulate DOT

scoring as log-linear but at the fragment level, making it possible to directly incor-

porate our new scores into the grammar. For all tree fragment pairs 〈df , de〉, let

l(〈df , de〉) be the logarithm of the probability of the fragment pair (equation (2.4)

in Section 2.3), as in (3.4):

l(〈df , de〉) = log(P (〈df , de〉)) (3.4)

The general form of a fragment pair will now be as in (3.5):

S(〈df , de〉) = α0l(〈df , de〉) + α1Acc(〈df , de〉) (3.5)

That is, the score S of a fragment will be a weighted linear combination of the

relative-frequency score and the accuracy-based score. The score of a derivation is

now given by (3.6):

S(d) = S(〈de, df〉1 ◦ . . . ◦ 〈de, df〉N) =
∑
i

S(〈de, df〉i) (3.6)

Although our approach is formulated in terms of DOT fragments, in practice

it is infeasible to score only those fragments seen during the scoring process. The

Goodman reduction for DOT (Goodman, 1996; Hearne, 2005) allows the efficient

representation of fragments and their probabilities by assuming that probabilities
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S=S1

VP2

N=N5

Mary

V4

likes

N=N3

John

S=S1

VP2

PP3

N=N7

John

P6

à

V5

plaît

N=N4

Mary

(a) A training tree pair, where the annotations required by the Goodman
reduction have been made.

S=S

VP2

N=NV4

likes

N=N3

John

S=S

VP2

PP3

N=N7

John

P6

à

V5

plaît

N=N

S=S

VP2

N=N5

Mary

V4

likes

N=N3

John

S=S

VP2

PP3

N=N7

John

P6

à

V5

plaît

N=N4

Mary

(b) Two of the possibly extracted fragment pairs, as they would be represented by the indexed
Goodman PCFG

Source PCFG
S=S → N=N VP+2 0.5
S=S → N=N+3 VP+2 0.5
S=S+1 → N=N VP+2 0.5
S=S+1 → N=N+3 VP+2 0.5
N=N → John 0.5
N=N+3 → John 1
VP+2 → V+4 N=N 0.5
VP+2 → V+4 N=N+5 0.5
V+4 → likes 1
N=N → Mary 0.5
N=N+5 → Mary 1

(c) Source side of the PCFG generated by the Goodman reduction.

Figure 3.4: A parallel tree and its corresponding Goodman reduction.
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are conditioned only on fragment root pairs. This allows it to reduce the amount of

grammar rules needed to represent fragments by using the same rules to represent

the portion of two fragments which share the same root pair. For example, in Figure

3.4(a), a tree pair is given. Two of the fragment pairs which can be extracted from

this tree pair are shown in Figure 3.4(b). These two fragments differ only in the

inclusion the word “Mary” in the second one. Although in the DOT formulation these

are two completely independent fragments, since they share the same root pairs the

Goodman reduction (given in Figure 3.4(c)) allows us to reduce the number of rules

needed to represent them, by representing shared portions of the fragments using a

single grammar rule. Consider for example the rule in (3.7):

S=S → N=N+3 VP+2 (3.7)

As both fragments differ only in portions not relevant to this rule, the rule is stored

only once in the grammar. The probabilities in the remaining rules accommodate

for any differences in probabilities between the two fragments.

If we were to assign a new score to each individual fragment, we could face the

situation where the two fragments in Figure 3.4(b) have different scores. In this case,

new rules would need to be added to the grammar to differentiate the fragments and

to allow for a different score to be assigned to each. Since the amount of fragments

extracted from the parallel treebank is exponential in the amount of nodes in the

trees, this would lead to a substantial increase in grammar size. Instead, we score the

individual PCFG rules resulting from the Goodman reduction which the fragments

are composed of. We evenly divide the total amount of scoring mass among the

PCFG rules used to represent a particular fragment. After running our scoring

method over the whole estimation corpus, an individual PCFG rule would have

received several different scores as a result of it being used in different fragments

translating different input sentences. We assign to each of these rules the average of

the rule score obtained over all fragments in which it appears. That is, if ∆(〈df , de〉)
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is a list of all the accuracy-based scores received by a fragment pair 〈df , de〉, and

size(de) represents the amount of PCFG rules in the target side de of the fragment

pair, then the score of a rule r is as in (3.8):

S(r) =

∑
〈df ,de〉:r∈de

∑
δ∈∆(〈df ,de〉)

δ/size(de)∑
〈df ,de〉:r∈de

len(∆(〈df , de〉))
(3.8)

As a side-effect, fragments which were unseen during the scoring process will

receive a score according to fragments which share common PCFG rules. For ex-

ample, if during scoring we assign an accuracy-based score to the first fragment in

Figure 3.4(b), but the second fragment never appears in an N -best list translating

the same source span as an oracle fragment and so a score is not assigned to it,

the fact that these fragments share common PCFG rules means that the second

fragment is indirectly scored according to the score received by the first. This raises

the question of whether this phenomenon is beneficial or not. As the assignment of

an individual score to each fragment would require a complete reimplementation of

our system, and as we show in our experiments in Section 3.3.6 that this solution

is not an impediment for significant improvements to be obtained with our scoring

method, in this thesis we do not aim at assigning an individual fragment score.

3.3.1 Oracle Selection Metric

After translating a sentence in the estimation corpus using the baseline system, we

obtain a target-language chart which efficiently stores all of the candidate transla-

tions, along with information about the bilingual fragments which were used in the

derivations that generated these candidate translations. From this chart we select

oracles by using the metric E. Although Bleu is the most widely used metric in

MT research, which would make it the natural choice for E, this metric was designed

to evaluate the output of an MT system when translating a document consisting of

a collection of sentences. Evaluation at the sentence level as required in equation
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(3.3) is troublesome for Bleu, as it will assign a score equal to 0 to most sentences.

We investigate the performance of a sentence-level approximation of Bleu (which

we call sBLEU, and which was proposed by (Liang et al., 2006)) in Section 3.4 when

performing experiments with PB-SMT. Here we choose to use the F-Measure as our

metric E. This metric has the property of being efficient to compute, which renders

it suitable for large-scale estimation. In addition, it has been found to have good

correlation with human judgements at the sentence level (Sun, 2010).

3.3.2 Structured Fragment Rescoring

We now define the similarity measure δ used in line 10 of Algorithm 1 to compare a

candidate fragment pair with an oracle. Our comparison will only take into account

the target side of fragments. For a given target-side tree e of a fragment pair, let

root(e) be the root of the target tree, let rhs1(e) be the left subtree of root(e), and

let rhs2(e) be the right subtree, and let yield(e) be the list of frontiers in e. The

difference between a candidate fragment ec and an oracle fragment eo is given by

the recursive equations in (3.9) and (3.10). The base case, where both ec and eo are

unary subtrees or substitution sites, is given in (3.9):

δ(ec, eo) =


0 if ec = eo

1 if ec 6= eo

(3.9)

The inductive case where at least one of ec and eo are not unary trees is given in

(3.10). In the case where one of the fragments is unary, only those terms which are

defined are considered, i.e. only those terms which do not attempt to use the rhs1

or rhs2 operators on the unary tree:
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δ(ec, eo) = min



δ(rhs1(ec), rhs1(eo)) + δ(rhs2(ec), rhs2(eo)),

δ(rhs2(ec), rhs1(eo)) + δ(rhs1(ec), rhs1(eo) + 1,

δ(ec, rhs1(eo)) + |yield(rhs2(eo))|,

δ(ec, rhs2(eo)) + |yield(rhs1(eo))|,

δ(rhs1(ec), eo) + |yield(rhs2(ec))|,

δ(rhs2(ec), eo) + |yield(rhs1(ec)|

(3.10)

These equations define a minimum edit distance between two fragment trees, al-

lowing sub-fragment order inversion (second argument of the min function in (3.10)),

deletion (arguments 3 and 4) and insertion (arguments 5 and 6) as edit operations.

This contrasts with other tree edit-distances in the literature, e.g. (Tai, 1979; Zhang

and Shasha, 1989; Emms, 2006), in which edit operations are defined over nodes (as

opposed to our use of sub-fragments). This means that our metric is able to capture

the swapping between the children of a node with a single operation, as is the case

with DOT translation rules. If we consider the target fragments in Figure 3.5:

S

NP

. . .

VP

. . .

(a)

S

VP

. . .

NP

. . .

(b)

Figure 3.5: Target sides of two fragment pairs

our metric can assign an edit operation of 1 to the reordering needed to transform

tree (a) into (b). In comparison, the metric in (Tai, 1979) would need insertion and

substitution operators to be applied to each node in each of the subtrees, leading to

the swapping operation being dependant on sub-tree size.

Figure 3.6 further illustrates our edit distance metric. The only difference be-
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D
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f
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Figure 3.6: Comparing trees (a) and (b) with our distance metric yields a value of 1.
The difference between trees (a) and (c) is 2, and for trees (b) and (c) the distance
is 3.

tween trees (a) and (b) in this figure is that their children have been inverted. To

compare these trees using our distance metric, we first compute the first argument

of the min function in equation (3.10), directly comparing the structure of each

immediate subtree. We then compute the second argument, obtaining the cost of

performing an inversion, and finally compute the remaining arguments, assessing

the cost of allowing each tree to be a direct subtree of the other. The result of

this computation is 1, representing the inversion operation required to transform

tree (a) into tree (b). If we compare trees (a) and (c) in Figure 3.6, we obtain a

value of 2, given that the minimum operations required to transform tree (a) into

tree (c) are inserting an additional subtree at the top level and then substituting

the subtree rooted by C for the subtree rooted by F. If we compare tree (b) with

tree (c) then the distance is 3, since we are now required to also replace the subtree

rooted by C by the one rooted by B. To efficiently compute these differences, we

implement the recursion using dynamic programming, which allows us to evaluate

each sub-structure only once.

We directly use our tree edit distance of equation (3.10) as accuracy-based scores

for fragments. To define the function Acc of equation (3.5), we compare each frag-

ment against the set of oracle fragments associated with the same source span and

select the lowest edit cost, assigning to the candidate the negative difference between
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it and the oracle fragment it is most similar to, as in (3.11):

AccSFR(〈df , de〉) = max
〈dof ,doe〉∈Do:doe∈ΩO(source_span(〈df ,de〉))

−δ(de, doe) (3.11)

As previously explained, given the Goodman reduction for DOT, in practice we

divide the fragment score by the number of rules in the fragment, and assign to

each rule the average rule score obtained across all rescored fragments in which it

appears.

We refer to this as Structured Fragment Rescoring (SFR) as, in contrast with

the metric defined in Section 3.3.4, the internal structure of the fragment pairs is

taken into account to compute edit distances.

3.3.3 Normalised Structured Fragment Rescoring

When comparing fragment pairs using the edit distance δ, on average we would

expect a larger amount of edit operations to be needed to transform trees composed

of a large amount of rules, compared to the case of computing the difference between

“small” fragments. When assigning the edit distance as a direct score as in the

AccSFR feature of equation (3.11), this might lead to an unwanted bias against larger

fragments, as on average those will have a larger edit distance score. To avoid

this, we experiment with a feature that normalises the absolute edit distance by

the maximum possible edit distance, i.e. the amount of frontier nodes in the larger

fragment. The normalised score is given in (3.12):

AccNSFR(〈df , de〉) = max
〈dof ,doe〉∈Do:doe∈ΩO(source_span(〈df ,de〉))

log(1− δ(de, d
o
e)

max


|yield(de)|,

|yield(doe)|

) (3.12)
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(a) Candidate fragment pair
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(b) Oracle fragment pair

Figure 3.7: Candidate fragment pair which differs with the oracle only in its align-
ments.

3.3.4 Fragment Surface Rescoring

The above similarity metrics compare the target side of two fragments by computing

the tree edit distance between them. If the candidate and oracle fragments have the

same (or similar) list of frontiers, but differ in their internal structure, this metric

would penalize the candidate fragment by assigning it a low score. However, our

ultimate goal is to produce sentences which are as close as possible to the oracle

translations. It would, therefore, be appealing to consider a metric which assigns

a high score to a candidate fragment if it has lexical nodes and substitution sites

similar to the oracle, regardless of its internal structure.

We experiment therefore with a metric which computes the standard Damerau-

Levenshtein string edit distance δdl(de, doe) (Damerau, 1964) between the yields of

the target fragment pairs. The case of fragments having more than one substitution

site with the same label represents a problem because we wish to penalize fragments

whose links differ from those in the oracle fragments. For example, the fragment

pairs in Figure 3.7 differ only in their alignments, and share the same frontier yield.

However, using the candidate fragment will result in an incorrect ordering of the

target sentence. We account for this situation by representing substitution sites

by the source span which they cover in the derivation that generated the oracle

sentence. We refer to this metric as fragment surface rescoring (FSR), as opposed
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to the structured fragment rescoring (SFR) of equation (3.11). The correspond-

ing accuracy-based estimator is given in (3.13), where the string edit distance is

represented by δdl(de, doe):

AccFSR(〈df , de〉) = max
〈dof ,doe〉∈Do:doe∈ΩO(source_span(〈df ,de〉))

−δdl(de, doe) (3.13)

As with the previous estimators, the target side of a fragment pair is compared

to all oracle fragments associated with its same source span, and the chosen score is

the one obtained when comparing to the fragment it is most similar to.

It should be noted that to compare the yield of the target side of a candidate

fragment to that of an oracle fragment, a standard string-based evaluation metric

could be used, such as Bleu (Papineni et al., 2002) the F-Measure (Turian et al.,

2003) or TER (Snover et al., 2006). We chose to use the string edit distance for

efficiency reasons: estimating the Bleu or F-Measure score for all of the fragments

involved in the rescoring process would be too computationally expensive. In ad-

dition, the yields which we are comparing are significantly shorter than an entire

sentence, which means that these evaluation metrics (which in the case of Bleu

were designed to work at the document level) might not be suitable for this task. In

particular, TER consists of a metric which computes the edit distance of the string,

allowing an additional edit operation which moves large contiguous sequences of

words to another location in the string (“phrasal shifts”). We feel that the added

benefit of this edit operation would not be fully exploited when comparing short

strings such as fragment yields, and that the use of the standard string edit distance

is a suitable substitute.

3.3.5 Experimental Setup

We evaluated the impact on translation quality of our new scoring method by

performing Spanish-to-English translation, and comparing the performance of the

accuracy-informed system with the baseline DOT system which only uses fragment
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relative frequencies for scoring.

To create a parallel treebank to train our systems, we randomly selected 10,000

sentences from the Europarl corpus (Koehn, 2005). We should note that this data set

size is relatively small. However, this is an order of magnitude increase compared

to previously published experiments with DOT (Hearne and Way, 2006). As we

explain in Chapter 4, DOT has difficulties scaling up to larger training data sizes

because of the computational challenge of managing the large amount of fragments

which are extracted from the parallel treebannk. We develop in Chapter 4 (Section

4.4) methods to further improve DOT’s scalability, enabling one additional order of

magnitude increase in training data size.

We parsed the target side of the parallel corpus using the Berkeley parser (Petrov

and Klein, 2007), and the source side using a Spanish version (Chrupała and van

Genabith, 2006) of Bikel’s parser (2002), trained on the Cast3LB Spanish treebank

(Civit and Martí, 2004).

The Cast3LB treebank contains a rich set of part-of-speech tags which provide

detailed morphological information, such as number, gender, person, etc. We found

this tag set to be too fine-grained for our purposes: with the training data sizes

we are using, the large amount of different tags leads to poor grammar coverage.

Therefore, after obtaining the Spanish parse trees (using the unmodified original

parser), we modified the part-of-speech labels in the trees that we obtained so that

only the first sub-categorization of the tag was included, and the rest was discarded.

For example, for the case of nouns, the sub-classification as proper or common was

kept, but we discarded gender and number information. The list of POS tags we

obtained is given in Appendix A. The remaining non-POS tags are as defined by

Chrupała and van Genabith (2006). For both Spanish and English, we removed

unary chains by keeping the uppermost label in the chain and discarding the rest.4

After obtaining constituency parse trees for both sides of our parallel corpus,
4As our training corpora are not of a very large size, the more traditional solution of creating a

new label by concatenating the labels of all nodes involved in a unary chain resulted in labels that
were too fine-grained.
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we sub-sententially aligned source and target parse trees using a tree-to-tree aligner

(Tinsley et al., 2007a).5 From this parallel treebank we obtained the source and tar-

get PCFG used by the Goodman reduction of DOT, as described in (Hearne, 2005)

and explained in Section 2.3.5, although on an order of magnitude larger amount

of training data than on previous experiments with (supervised) DOT (Hearne and

Way, 2003, 2006).

To perform the rescoring, an estimation corpus is required, as explained in Sec-

tion 3.2.2. To create this corpus, we use the 10K sentence pairs from which the

grammars were extracted (i.e. the training data6), with an additional 10K randomly

selected and previously unseen sentence pairs. Our estimation corpus is therefore

composed of 20K sentence pairs, 50% of which were seen during training, with the

remainder being composed of previously unseen sentences. To investigate the im-

pact that the amount of additional unseen data has on the estimation method, we

also obtained 20K additional previously unseen sentence pairs, and perform experi-

ments where our feature is estimated using the combined 40K sentence pairs as the

estimation corpus. As explained in Section 3.2.2, the sentence pairs used as an esti-

mation corpus do not require parsing or sub-sentential alignment. However, this is

a substantial amount of parallel sentences which need to be obtained in addition to

those used for training. We explain in Section 3.4.4 (when performing experiments

with PB-SMT) a technique which can be exploited to lessen the need for additional

unseen data, and leave the adaptation of this technique for DOT as future work.

While developing our system, we repeatedly evaluated its performance on a small

test set comprising 200 sentences, which we call our development test set. We

evaluated the performance of our final systems on a larger test set, consisting of

2000 randomly chosen sentences. To allow for a reasonably quick experimental

turnaround time, all sentences (including the 10K sentence pairs from which we
5http://www.ventsislavzhechev.eu/Home/Software/Software.html
6As previously explained in Section 3.2.2, the use of training data as estimation corpus is

possible due to our use of N -best lists during estimation, rather than just considering the most
probable translation.
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extract our grammars, the additional 30K sentence pairs used as estimation corpus,

and the test and development test sets) were restricted to a length of up to 20 words.

Our system translates an input sentence by first obtaining a chart representation

of the N -best parses of the input sentence using the source Goodman grammar,7

and then using the target Goodman grammar to obtain translations for each sub-

stitution site in the source chart (cf. Section 4.4 in Chapter 4 for a more detailed

explanation of the architecture of our system). A beam is maintained in which at

most k translations are considered for each substitution site. In our experiments,

we use N = 10, 000 and k = 5, and obtain the final translations from the target-side

yield of the most probable derivation.

Statistical significance was tested by paired bootstrap resampling (Koehn, 2004).

In our discussion, absolute scores for Bleu and the F-Measure are reported as

percentages.

3.3.6 Experimental Results

In this section, we evaluate the impact that our accuracy-based features have on

translation quality when incorporated into a baseline relative frequency system. We

used the baseline system to translate our estimation corpus, scoring fragments which

occurred in the N -best lists using the metrics defined in Sections 3.3.2–3.3.4. Once

accuracy-based scores were obtained, we integrated them into the baseline system by

using equation (3.5). As this requires every fragment to receive an accuracy-based

score, and as fragments which were not observed during scoring cannot obtain one,

we compute a default score equal to the median of all accuracy-based scores observed.

Unscored fragments were then assigned this default score.

To integrate our new scores in the model, values for α0 and α1 in equation

(3.5) must be determined. Although in future work an automatic method (such

as Minimum Error Rate Training (Och, 2003)) could be used to determine these
7To obtain the N -best parses, our system implements the algorithm described by Jiménez and

Marzal (2000)
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0.2-0.8 0.4-0.6 0.5-0.5 0.6-0.4 0.8-0.2

Bleu SFR 10.30 10.31 10.32 10.27 10.08
NSFR 8.31 9.37 9.53 9.66 9.90
FSR 10.19 10.25 10.18 10.19 9.93

Nist SFR 3.792 3.805 3.808 3.800 3.781
NSFR 3.431 3.638 3.661 3.693 3.722
FSR 3.784 3.799 3.792 3.795 3.764

F-Measure SFR 40.92 40.82 40.86 40.84 40.78
NSFR 37.53 39.50 39.93 40.38 40.78
FSR 40.83 40.85 40.87 40.91 40.67

Baseline

8.78

3.582

38.21

Table 3.2: Results on test set. Estimation corpus of 20K sentences. SFR stands
for Structured Fragment Rescoring, NSFR for Normalized SFR and FSR for Frag-
ment Surface Rescoring. A column labelled i-j indicates the corresponding system
was trained with α0 = i and α1 = j in (3.5). Underlined results are statistically
significantly better than the baseline at p = 0.01.

weights, in the present experiments we set them manually, investigating the impact

of different weightings for each feature.

In order to understand the strength of our baseline DOT system, a comparison

to a standard system such as the the Moses PB-SMT system (Koehn et al., 2007)

would be beneficial. However, a direct comparison between these systems would be

unfair, since unlike PB-SMT, DOT is not able to exploit multiple features whose

weights are optimized with MERT. In particular, DOT lacks a language model, one

of the key features in PB-SMT. To provide a fairer comparison, we train the Moses

system using the training corpus from which our grammars were obtained, using no

language model and using uniform feature weights. We used this system to decode

our development test set, and as a result we obtained a Bleu score of 10.72, which

is comparable to the 10.82 Bleu score obtained by our baseline on the same set

(cf. Table 3.4 for the complete set of results in the development test set). The score

obtained by the PB-SMT system when allowing it to exploit a language model and

when tuning feature weights using MERT is 23.59 Bleu points.8

Table 3.2 gives translation quality results on our test set for the case of an esti-
8As we consider these results more a guide to the reader than part of our main results, these

scores were not included in our tables.
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mation corpus of 20K sentences. In this table, columns labelled i-j indicate that the

corresponding system was trained using parameters α0 = i and α1 = j in equation

(3.5). The baseline DOT system achieves a score of 8.78 Bleu points. As can be

observed in Table 3.2, all of the metrics we investigated are able to bring statistically

significant improvements over the baseline. The best result for Bleu and NIST is

obtained by the absolute tree edit distance (SFR), at α0 = 0.5 and α1 = 0.5. This

system achieves an improvement over the baseline of 1.54 Bleu points, a 17.53%

relative improvement. The best result for the F-Measure is also obtained by SFR,

although using the weights α0 = 0.2 and α1 = 0.8. Although the normalised tree

edit distance (NSFR) obtains statistically significant improvements over the base-

line, it underperforms compared to the unnormalised metric (the difference between

SFR and NSFR is statistically significant at p = 0.01 for most weight assignments).

In addition, the scores obtained using NSFR decrease as the weight α1 assigned to it

increases. We believe this to be caused by the difference in magnitude between the

NSFR scores and the likelihood scores. Most of the likelihood scores we observed are

quite small numbers, while the normalized edit distance scores have a wide range of

values which go from zero9 to one, and which makes the differences in magnitude too

large. The weights assigned to each score must be set accordingly to compensate

for the difference in magnitudes, but it appears that the manual setting of these

weights fails to do so (cf. Section 3.4, where we automatically assign these weights

when adapting our scoring method to PB-SMT).

For most configurations the difference between SFR and FSR was not statistically

significant at p = 0.05. Our analysis indicated that surface differences tended to co-

occur with structural differences. We hypothesize that as we scale up to larger

and more ambiguous grammars, the system will infer more derivations with the

same yields, rendering a larger difference between the quality of the two scoring

mechanisms.

When we increase the estimation corpus size from 20K to 40K sentence pairs
9As directly assigning a score of zero is too harsh, in practice we assign a small minimum score.
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0.2-0.8 0.4-0.6 0.5-0.5 0.6-0.4 0.8-0.2

Bleu SFR 10.59 10.58 10.41 10.38 10.08
NSFR 8.61 9.71 9.90 9.96 9.93
FSR 10.49 10.48 10.35 10.38 10.06

Nist SFR 3.841 3.835 3.810 3.807 3.785
NSFR 3.515 3.694 3.713 3.734 3.727
FSR 3.834 3.833 3.820 3.816 3.784

F-Measure SFR 41.12 40.99 40.86 40.88 40.75
NSFR 38.16 40.39 40.69 40.90 40.75
FSR 41.03 41.02 41.01 40.98 40.72

Baseline

8.78

3.582

38.21

Table 3.3: Results on test set. Rescoring on 40K sentences. Underlined are statis-
tically significantly better than the baseline at p = 0.01.

(Table 3.3), we obtain results which follow a similar pattern than those observed in

Table 3.2, with all our evaluation metrics following a similar trend. The best results

are again obtained using SFR, which brings a 1.81 absolute Bleu points compared

to the baseline (a 20.71% relative improvement). The best Bleu result in Table 3.3

(SFR with α0 = 0.2 and α1 = 0.8) is statistically significantly better than the best

result in Table 3.2 (SFR with α0 = 0.5 and α1 = 0.5) at p = 0.02.

We note that out of the 655,000 PCFG rules in the grammar, 275,000 of them

receive an accuracy-based score when estimating our feature over 20K sentence pairs,

while the remainder are assigned the default score. This number goes up to 280,000

rescored rules when using 40K sentence pairs as an estimation corpus. With such a

small difference in the percentage of rescored rules, and the 20K estimation corpus

being included in the 40K one, we are inclined to believe that the differences in

performance seen between Table 3.2 and Table 3.3 are due to more accurate estimates

rather than to an increased number of fragments obtaining an accuracy-based score.

In addition, it is interesting to note that, although the differences between the scores

obtained by different weights assignments for α0 and α1 are low, when using the

more reliable estimates obtained by estimating over 40K sentence pairs, translation

quality scores seem to improve as our new feature is given a higher weight than the

relative frequency feature.
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0.2-0.8 0.4-0.6 0.5-0.5 0.6-0.4 0.8-0.2

Bleu SFR 11.34 12.12 11.94 11.97 11.78
NSFR 9.68 10.99 11.38 11.63 11.30
FSR 11.40 11.49 11.72 11.91 11.72

Nist SFR 3.653 3.727 3.723 3.708 3.694
NSFR 3.376 3.530 3.554 3.616 3.572
FSR 3.655 3.675 3.698 3.701 3.675

F-Measure SFR 44.84 45.47 45.36 45.33 45.08
NSFR 41.44 43.38 44.18 44.79 44.26
FSR 44.68 44.91 45.15 45.19 44.82

Baseline

10.82

3.493

42.31

Table 3.4: Results on the development test set used to obtain examples for discus-
sion. Rescoring on 40K sentences.

3.3.7 Discussion

To understand the impacts that the introduction of our accuracy-based feature has

on output translations, we investigate the derivations used to translate our 200-

sentence development test set with the systems estimated over 40K sentences. The

results obtained in this set are provided in Table 3.4. These results follow a pattern

roughly equal to the ones in Tables 3.3 and 3.2.

Figure 3.8(a) gives a sentence from our development test set, along with its

reference and the translations produced by the baseline system and our best-scoring

system. As can be observed, the translation produced by the rescored system is of

better quality than the one generated by the baseline. To understand the way in

which each translation was generated, we give in Figure 3.8(b) and (c) the highest-

scoring derivation which generates both translations (we omit the first part of the

derivation, which generates the first words shared by the translations output by both

systems). Boxed nodes denote substitution sites, and scores in superscripts denote

the score of the sub-derivation according to the baseline (score on the left) and to

the SFR system (score on the right). We see that the rescoring procedure brings not

only changes in lexical choice, but the structure of the derivation presents differences

as well, with the rescored system preferring a longer derivation than the one used

by the baseline system. Of special interest is the score assigned to the translation of
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Source: Estoy de acuerdo con el ponente en dos cuestiones
Reference: I agree with the rapporteur on two issues

Baseline: I agree with the rapporteur in to make
SFR: I agree with the rapporteur in both questions

(a) A sentence from our development test set, along with its reference trans-
lation and the translations produced by the baseline system and the system
with SFR rescoring.

sn=NP

grup.nom

sp=PP

sn=SBAR

nc=TO

cuestiones

dn=VP

dos

s=IN

en

nc=NN

ponente

da=DT

el

sn=NP −1.97/−5.66

sp=PP

sn=SBAR −1.39/−1.90

dn=VP 0/−0.49

make

nc=TO

to

s=IN −0.48/−0.37

in

NP

nc=NN 0/−0.04

rapporteur

da=DT

the

(b) Best-scoring derivations for the translation produced by the baseline system. Superscripts give
the score of a subderivation according to the baseline system (left score) and to the SFR system
(right).

sn=NP

grup.nom

sp=PP

sn=NP

nc=NNS

cuestiones

dn=DT

dos

s=IN

en

nc=NN

ponente

da=DT

el

sn=NP −5.89/−5.09

sp=PP

sn=NP

nc=NNS −1.03/−0.81

questions

dn=DT 0/−0.58

both

s=IN −0.48/−0.37

in

NP

nc=NN 0/−0.04

rapporteur

da=DT −0.13/−0.32

the

(c) Best-scoring derivations for the translation produced by the system rescored by SFR .

Figure 3.8: Best-scoring derivations for the translations of a sentence, according to
the baseline system (b) and the SFR system (c). Boxed nodes are substitution sites.
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“dos” (Spanish for “two”) to the word “make”. While the relative frequency baseline

assigns a very high log-score of 0 to this translation, the rescored system assigns it a

lower score of −0.49, which causes the more appropriate translation “both questions”

to be preferred in the rescored system.

3.3.8 Conclusions

In this section we have adapted the scoring method outlined in Section 3.2 to the

particular case of DOT. Our results show that significant improvements in transla-

tion quality can be achieved by enhancing a DOT system so that translation quality

is taken into account in the scoring. Our experiments indicate that taking the in-

ternal structure of fragments into account is beneficial, although the difference with

the metric that only takes fragment frontiers into account is small, and extracting

grammars from larger parallel treebanks might reduce this difference. Obtaining

accuracy-based scores from a larger estimation corpus leads to better scores. The

improvement seems to be caused by more reliable estimates, rather than by a larger

amount of fragments receiving a score.

3.4 Accuracy-Based Scoring for PB-SMT

As was apparent from our exposition in Section 2.2, and as we noted in Section

3.1, PB-SMT scores alternative translations by combining the score assigned to

phrases by multiple model components, such as phrase translation and language

model probabilities, which are induced in the training stage by the use of relative

frequencies. Although the contribution of each component to the final score is

weighted so as to optimise translation quality on held-out data via Minimum Error-

Rate training (MERT) (Och, 2003), the individual components themselves only

attempt to increase the likelihood of the training corpus, and only indirectly impact

in translation quality. Since our ultimate goal in training a PB-SMT system is to

maximize the quality of its translations when confronted with unseen data, we now
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adapt the scoring method presented in Section 3.2 to the case of PB-SMT, which

enables us to introduce a new feature which indicates how likely a phrase pair is to

contribute to good translations.

In this section we investigate the effects of accuracy-based scoring specifically

for PB-SMT systems. We use a baseline PB-SMT system (Koehn et al., 2007) to

obtain N -best lists, and then choose oracle translations according to a range of

evaluation metrics. We then compare each phrase pair in the N -best list against

phrases present in the oracle translations, and assign a score to each phrase pair

according to how similar they are to those oracle phrase pairs.

Unlike most previous work related to translation quality-driven scoring in the

context of (hierarchical) phrase-based MT, e.g. (Liang et al., 2006; Watanabe et al.,

2007), our approach has, as mentioned in Section 3.2, the benefit of simplicity.

This means that it can be easily performed using off-the-shelf decoders and tuning

algorithms like MERT, and is therefore readily available to PB-SMT practitioners.

In addition, the estimation of our feature is easily parallelizable, as sentences are

processed independently of each other. Our experiments show that our approach

leads not only to translation quality improvements, but also to improvements in

translation speed and memory consumption.

Unlike in the experiments in Section 3.3, we do not require large amounts of

additional held-out data here, as we estimate the new features using only the parallel

data used to train the baseline system. Furthermore, unlike in the experiments with

DOT, we evaluate the impact of different evaluation metrics when selecting oracles

(namely Bleu and the F-Measure).

The scoring model in PB-SMT is —unlike the default one in DOT— a log-

linear framework explicitly formulated to allow the inclusion of additional features.

Once we have estimated the accuracy-based function Acc(fi, ei), this will allow us to

directly incorporate a new feature hAcc into the log-linear model of equation (2.1),
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as in (3.14):

hAcc(e
I
1, f

I
1 ) =

I∏
i=1

Acc(fi, ei) (3.14)

3.4.1 Oracle selection

As previously explained (Sections 2.2.2 and 3.2), we assume that we can recover

the phrase alignment a used to generate each candidate translation. We repeat the

function Ω defined in (3.2) here for convenience. This function uses the alignment a

to indicate the mapping between a source sentence span (l,m) and the corresponding

set of target phrases in the oracle translations O (oracle phrases), as in (3.15):

ΩO(l,m) = {ẽo|∃ t ∈ O : ẽo ∈ t ∧ a(ẽo) = (l,m)} (3.15)

We experiment with two translation-quality metrics E, namely Bleu and the F-

Measure, which the following two subsections describe. In the future we will consider

evaluating the effects of additional evaluation metrics, such as TER (Snover et al.,

2006).

Bleu

As we explained in Section 2.5.1, the Bleu score (Papineni et al., 2002) computes a

geometric mean of the unigram to N -gram precisions between a candidate sentence

and a set of references (typically N = 4). If there is not at least one N -gram match

between the candidate sentences and the reference set, Bleu is undefined. In those

cases, we define Bleu to be 0. Since our aim is to use Bleu not at the document

level where this phenomenon would be rare, but at the sentence level in equation

(3.3), this is problematic because in practice Bleu will be 0 for most sentences. We

thus follow (Liang et al., 2006) and approximate Bleu by a smoothed version that

combines the scores of Bleu for various N , as in (3.16):

sBLEU =
N∑
i=1

Bleui
24−i+1

(3.16)
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Note that the direct use of document-level approximations of Bleu such as those

used in (Watanabe et al., 2007) would be impractical in our approach, as it would

introduce dependencies across sentences which would limit parallelisation.

F-Measure

The General Text Matcher (GTM) (Turian et al., 2003) computes the F-Measure

between a candidate translation and a reference using the notions of precision and

recall. This computation is parameterised by an exponent, which adjusts the weights

of longer n-grams in the score. For the purpose of obtaining oracle translations,

in these experiments we use the F-Measure with an exponent of 1.5, which was

estimated by evaluating the quality of the oracles obtained on held-out data.

3.4.2 Similarity Metrics

To estimate the function Acc in (3.14), we need a notion of similarity between the

target phrases present in a candidate translation ẽc and the ones present in an oracle

translation ẽo. We relate target phrases in candidate translations to phrases in oracle

translations by considering the source-sentence span they translate. To achieve

this, the mapping a between the source-sentence span and the target phrases as

determined by the decoder is required. The estimation of Acc will be limited to those

phrases in a candidate translation for which oracle phrases exist which translate the

same source span, i.e. we only score target phrases for which Ω(a(ẽc)) 6= ∅.

Edit distance scoring

To compare two phrase pairs with the same source side and different target trans-

lations, we use the (word-level) Levenshtein distance δdl(ẽc, ẽo) (Damerau, 1964)

between the target side of the phrase pairs. This measures the amount of insertions,

deletions, or substitutions of words needed to transform the candidate phrase into

the oracle phrase. For a phrase ẽc (in the candidate translation) which is translated

from a source span a(ẽc), we assign as a score the exponential of the negative edit
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distance between ẽc and the oracle phrase ẽo it is most similar to, as in (3.17):

Acced(fi, ẽc) = max
ẽo∈Ω(a(ẽc))

exp(−δdl(ẽc, ẽo)) (3.17)

Note that after repeating this for all sentences in the held-out set, the score

assigned to a phrase pair is the average of the scores it obtained.

Normalised Edit Distance

As was the case with the metric in Section 3.3.2, a potential problem with the

metric in (3.17) is that we would expect that on average the edit-distance between

a candidate phrase ẽc and an oracle phrase ẽo would grow with phrase length. Since

this could introduce an unwanted bias against long phrases, we also experiment

with a score that normalises the edit distance by the amount of words in the target

phrase, as in (3.18):

Accnorm(fi, ẽc) = max
ẽo∈Ω(a(ẽc))

1− δdl(ẽc, ẽo)

max(|ẽc|, |ẽo|)
(3.18)

3.4.3 Reordering Model

We also re-estimate the lexicalised reordering model by considering the order be-

tween phrases involved in oracle translations. For each phrase pair involved in an

oracle translation, we obtain the orientation by considering both the previous and

next phrases as in (Koehn et al., 2005). We thus obtain a list of triples (fi, ei, o),

where (fi, ei) is a phrase pair and o ∈ {monotone, swap, discontinuous}, which we

use to estimate pAcc(o|fi, ei).

To incorporate this information into the model, phrases for which we did not

extract orientation information are assigned a default score equal to the median

score for a particular orientation of the scored phrases. Then, for some constant

q, we interpolate this new reordering score with the original score p(o|fi, ei), as in
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(3.19):

pr(o|fi, ei) = q· p(o|fi, ei) + (1− q)· pAcc(o|fi, ei) (3.19)

3.4.4 Estimation Corpus

In our experiments with DOT in Section 3.3.5, we created an estimation corpus (as

explained in Section 3.2.2) by combining the training data with previously unseen

data. Since this increases the amount of parallel resources required by the system,

a way to avoid the need of additional parallel data would be desirable.

We propose to avoid the need of additional unseen data to estimate the accuracy-

based feature by using Deleted Estimation (Jelinek and Mercer, 1985), a technique

that has successfully been used in Data-Oriented Parsing (Zollmann and Sima’an,

2005) and a wide range of machine learning approaches such as decision tree induc-

tion (Breiman et al., 1984).

In a similar way to 10-fold cross validation, we create a new training corpus T by

keeping 90% of the sentences in the original training corpus, and a new estimation

corpus H by using the remaining 10% of the sentences. Using this scheme we make

10 different pairs of corpora (Ti, Hi) in such a way that each sentence from the

original training corpus occurs in exactly one Hi for some 1 ≤ i ≤ 10, which ensures

that each sentence is observed during estimation. We train 10 different systems

using each Ti, and use each system to estimate Acc on its corresponding held-out

set Hi. We then consider all of the scores obtained by each phrase pair in any Hi,

and assign the average of those scores (Jelinek and Mercer, 1985) as a final estimate

to each phrase pair. The new feature is then added to the baseline system, trained

on the whole original training set.

Note that if we were to adapt this technique to the case of DOT, care should

be taken to avoid overlaps between the Goodman indexes assigned to nodes in

each of the smaller systems. When creating each of the systems using 90% of the

training data, Goodman indexes should be assigned in a way such that when finally

combining all of the scored fragments, they match those assigned to the original
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baseline system.

3.4.5 Experimental Setup

We empirically evaluate the impact of our new feature by performing Spanish-to-

English translation and comparing against a baseline system trained using standard

parameters.10 In all of our experiments we use the Moses toolkit (Koehn et al.,

2007). We train on the training section of the Spanish–English Europarl corpus as

provided for the Fourth Workshop on Statistical Machine Translation (WMT09).11

We discarded sentences with more than 40 words,12 which left us with 1,083,773

sentences for training. We use the first 500 sentences of dev2006 as a tuning set

for MERT. We use test2006 as a development test set, and test2008 as the final

test set (each containing 2,000 sentence pairs). We use the 5,000-best translations

returned by our decoder to select oracles and perform the scoring (note that on our

experiments with DOT in Section 3.3.6, we obtained oracles from the 10,000-best

parse trees of the input sentence).

As in our previous experiments, statistical significance was tested by paired boot-

strap resampling (Koehn, 2004), and absolute scores for Bleu, Meteor and the

F-Measure are reported as percentages.

3.4.6 Dealing with Unestimated Phrase Pairs

As mentioned in Section 3.4.4, each sentence will appear in one held-out set, and

will be decoded by a system which was trained on a reduced section of the training

corpus which does not include this sentence. Even though this ensures that all of

the training sentences will be considered in the estimation process, this does not
10The features we use are those introduced in Section 2.2 (i.e. phrase translation probabilities

in both language directions, lexical weighting in both language directions, language model, word
and phrase penalties, and lexicalized orientation-based reordering model). The maximum phrase
length used was 7, and the reordering window was set to 6.

11http://statmt.org/wmt09/
12Note that our experiments with DOT used sentences of up to 20 words. The efficiency of the

PB-SMT model allows us to increase the length of the sentences while still achieving reasonable
decoding times.
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guarantee that every phrase pair will receive a score according to Acc, as a phrase

pair needs to occur in an N -best list translating the same source span as an oracle

phrase pair in order to receive a score. In fact, out of the 46,994,471 phrase pairs

in the baseline phrase table, only 6,056,274 of them can obtain an accuracy-based

score when using the F-Measure to select oracles, and just 5,994,142 when using

sBLEU.

We experiment with two ways of dealing with unscored phrases. Firstly, we use

the same technique used in our experiments with DOT, and calculate a default score

equal to the median score among phrase pairs that receive a score, and assign this

score as the Acc estimation for phrase pairs for which no accuracy-based score was

obtained. Secondly, we build a system which uses only the phrase pairs that receive

some score, namely just 13% of the phrase table in the baseline system.

3.4.7 Experimental Results

In this section, we evaluate the effect that our phrase-distance metrics have, the

impact of rescoring the reordering-model, and the effects of using different oracle se-

lection metrics. While developing our system, we repeatedly tested our incremental

improvements on a development test set (reported as scores between squared brack-

ets), and then performed our evaluation on the test set to obtain our final results.

Results with single underlines are statistically significantly better than the baseline

at p = 0.05 and those with double underlines are significantly better at p = 0.01.

Unless specifically mentioned, the oracle selection metric in our experiments is the

F-Measure.

Accuracy-Based Feature and Reordering Model Rescoring

We used the methods described in Section 3.4.2 to assign new scores to phrase pairs

and to rescore the reordering model. Our Accuracy-Based (AB) feature encoding

the average similarity between a phrase in a candidate translation and a phrase in an

oracle translation was calculated using two metrics, namely the edit-distance (“ed”)
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System Bleu Nist Meteor F-Measure

Baseline 32.72 [32.29] 7.7941 56.55 64.88

AB feature + default reordering (F-Measure Oracles)
ed 32.64 [32.41] 7.7962 56.55 65.04
norm 33.16 [32.76] 7.8449 56.97 65.30

AB feature + rescored reordering (F-Measure Oracles)
ed 33.03 [32.71] 7.8582 56.77 65.18
norm 33.41 [32.83] 7.8879 57.14 65.43

AB feature + rescored reordering (sBLEU Oracles)
ed 33.11 [32.56] 7.8379 56.97 65.30
norm 33.11 [32.65] 7.8513 56.91 65.28

Table 3.5: System performance with accuracy-based features and default score for
unscored phrases. “ed” and “norm” represent the metrics of equations (3.17) and
(3.18), respectively.

in equation (3.17), and the normalised edit-distance (“norm”) of equation (3.18).

To single out the contribution of our accuracy-based feature, we first conducted

experiments with this feature and a default reordering model, assigning a default

score to unscored phrase pairs. The first five rows in Table 3.5 show the perfor-

mance of the baseline system (without our AB feature) and the system with the

baseline features and the addition of our new feature. The effect of using two differ-

ent similarity metrics (ed and norm) is also presented. As expected, the normalised

edit-distance metric (5th row in Table 3.5) yields higher translation quality com-

pared to the (absolute) edit-distance. While the “ed” metric is not able to produce

significantly better translations, using “norm” leads to statistically significant gains

over the baseline across all evaluation metrics we used. Using this setup, there is

a 0.44 absolute improvement in Bleu, corresponding to a 1.34% relative improve-

ment. This contrasts with the results from our experiments with DOT in Section

3.3.6, where the normalised edit-distance underperforms when compared to the ab-

solute edit-distance. We believe this might be a result of our use of MERT, which

can determine a weight for our feature that properly scales it to the magnitudes of

the other model components, while with DOT we resorted to arbitrarily assigning
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Feature Baseline Default Reordering Rescored Reordering

Accnorm - 0.4513 0.4707
Language Model 0.2512 0.1756 0.1895
p(f | e) 0.1600 0.0818 0.0952
lex(f | e) 0.1498 0.0939 0.1252
p(e | f) 0.1166 0.0274 0.0822
lex(e | f) 0.0064 0.0309 0.0118
Phrase Penalty 0.3687 0.2732 0.1405
Word Penalty -0.0530 -0.1344 -0.1152

Table 3.6: Weight assigned by MERT to each (non-reordering) feature in the models
of the baseline system, the system with our AB feature + default reordering, and
the system with the AB feature + rescored reordering

a weight for our feature on a manual basis.

To investigate the combined effect of using both the Accuracy-Based feature and

a rescored reordering model, we estimated a new reordering model using q = 0.5

in equation (3.19). Clearly we see the added value of this, as gains are observed

across all evaluation metrics. The best system, i.e. using both an AB feature and

a rescored reordering model with “norm” as the similarity metric, outperforms the

baseline by 0.69 Bleu points, corresponding to a 2.11% relative improvement. We

note also that the 0.25 absolute Bleu points improvement between the system with

rescored reordering (8th row in Table 3.5) and the system with default reordering

(5th row) is statistically significant at p = 0.01. The remaining evaluation metrics

present a similar pattern compared to Bleu.

We give in Table 3.6 the normalised weights assigned by MERT to each of

the (non-reordering) features, for the baseline system and for the systems with

an accuracy-based feature estimated using the normalised edit distance. We see

that after adding the AB feature, most of the original features have ceded their

contribution to the overall scoring, which is now dominated by this feature. This

shows that the translation quality improvements observed in Table 3.5 are due to

the introduction of our feature. Interestingly, while 30% of the contribution of the

language model feature to the overall score has been given away to our new feature,

the phrase translation probabilities on each direction cede 48% and 76% of their
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weight. The greater loss in weight for the source-to-target direction is expected, as

this is the direction our technique assumes. An experiment using a system with our

accuracy-based feature and no phrase translation or lexical weighting probabilities

(i.e. using also phrase and word penalties, features which are not estimated during

training) results in a Bleu score of 31.26 when decoding our development test set.

While this is a significant drop of 1.03 Bleu points, we nonetheless find it remark-

able that the system is able to perform at a level not so distant from the baseline

while ignoring relevant features such as phrase translation probabilities, especially

considering that these features have been considered integral components in both

word- and phrase-based SMT since their inception.

Oracle Selection Metric

The last two rows in Table 3.5 show the effect of using sBLEU (equation (3.16)) in-

stead of the F-Measure to select oracles. As can be seen, the systems with F-Measure

oracle selection consistently outperform those using sBLEU across all evaluation

metrics, where the best system using the F-Measure has a gain of 0.3 absolute Bleu

points over using sBLEU, corresponding to a 0.9% relative improvement. While this

gain appears to be modest, it is statistically significant at p = 0.01, demonstrating

the advantage of using the F-Measure over sBLEU for oracle selection. This is not

surprising given that, as noted in Section 3.4.1, Bleu is specifically designed for

document-level evaluation while the F-Measure is more suitable for evaluation at

sentence-level.

We collected oracle selection statistics in order to further investigate this process.

It turned out that 92.24% of the oracles are not the top hypothesis in the N-best

list. In fact, if we evaluate the score obtained by using the 1-best hypotheses when

decoding the training set to obtain the N-best lists, we obtain a Bleu score of 40.46,

while using the oracle translations obtained by the F-Measure yields a score of 52.86

in Bleu. The corresponding score for sBLEU oracle selection is a Bleu score of

53.39. Given that the top hypothesis in the N-best list is the most likely translation
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Figure 3.9: Oracle rank frequencies (logarithmic scale)

according to the current model parameters, it is clear that there is plenty of space

for improving the model to allow for the best translation in the N-best list (the

oracle) to be scored the highest. This confirms the rationale of our methods which

can improve the model parameterisation and subsequently the translation results.

In order to show the rank of the oracle in the N-best lists, we plotted the fre-

quency distribution of the ranks as shown in Figure 3.9. We can see that oracles are

very frequently selected from the top 100 hypotheses of the N-best list. Hypotheses

with a rank above 1000 may still be selected as the oracle, but with a much lower

frequency (corresponding to the dense tail on the right of the graph). As a matter

of fact, 7.76% of the oracle translations are the 1-best hypothesis (corresponding

to the point at the top left corner of the graph), 11.41% are selected from the

top-10 hypotheses, 19.88% from the top-100 hypotheses, 45.34% from the top-1000

hypotheses, and the remaining 54.66% are selected from hypotheses ranking from

1000 to 5000. It is clear that a large N-best list is crucial in order to select a better
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System Bleu Nist Meteor F-Measure

Baseline 32.72 [32.29] 7.7941 56.55 64.88

AB feature + rescored reordering (F-Measure Oracles)
ed 33.04 [32.66] 7.8665 56.93 65.29
norm 33.23 [32.60] 7.8835 57.21 65.58

AB feature + rescored reordering (sBLEU Oracles)
ed 33.35 [32.56] 7.8590 57.20 65.42
norm 33.25 [33.19] 7.9236 57.06 65.54

Table 3.7: System performance using only scored phrases

oracle translation. Given the behaviour observed in Figure 3.9, we would expect a

large number of oracles to be found in ranks below 5000, which would indicate that

if time constrains are not an issue, using an n-best list even larger than 5000 could

be beneficial.

Discarding Unscored Phrases

The previous results were obtained by assigning a default score to phrases which

were not able to receive an AB score during the scoring process. Unlike in DOT,

where the Goodman reduction encodes all of the possible extracted fragments, in

PB-SMT it is straightforward to discard those phrases which did not receive a score.

From Table 3.7, we can see that using only those phrases that received a score yields

improvements over the baseline across all evaluation metrics. There is an improve-

ment of 0.63 absolute Bleu points over the baseline using sBLEU for oracle selection

and “ed” as the similarity metric, corresponding to a 1.93% relative improvement

over the baseline. We also observe a modest gain over using all phrases (Table 3.5)

across most of the metrics (except for the Bleu score of the system using F-Measure

for oracle selection and “norm” as the similarity measure). This is remarkable given

that the system with the AB feature uses a phrase table 87% smaller than the one

in the baseline, which leads to speed increases and memory consumption reductions.

Unlike in the experiments using the complete phrase table (Table 3.5), in this

case there is a disagreement between the different evaluation metrics as to which
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System Bleu Nist Meteor F-Measure

Baseline 32.72 7.7941 56.55 64.88
Random Pruning 18.17 5.6319 47.59 55.16
F-Measure Pruning 32.61 7.7675 56.57 64.86

Table 3.8: System performance with different pruning criteria. Results on test set.

oracle selection metric is better. Bleu and NIST (two closely related metrics) deem

sBLEU to be the best method, while the best results for the F-Measure and Meteor

are obtained when using the F-Measure to select oracles. We believe that the cause

of this concordance between the method used to select oracles and the evaluation

metric which achieves best results is the lack of a default score. When using the

full phrase table, the majority (87%) of phrase pairs receive the same default score,

which dilutes the impact of our feature. In this case, the accuracy-based score

assigned to each phrase pair is more closely related to the scores that maximized a

particular oracle selection metric, which leads to this concordance.

In order to confirm that the improvements observed in Table 3.7 are indeed due

to our rescoring method and are not for some unknown reason a consequence of

the reduced phrase table size, we performed an additional experiment in which the

phrase table in the baseline system was pruned so that only 13% of its phrases were

kept. We randomly selected 6,056,274 phrases from the baseline system (i.e. the

same amount of phrases used by the system which used the F-Measure to select

oracles) and allowed only these phrases to be used during decoding. The resulting

system, as shown in Table 3.8, achieved a score of only 18.17 Bleu points, a 44.46%

decrease compared to the baseline. Table 3.8 also gives, in its last row, results for a

system which uses only those phrases which received a score when obtaining oracles

using the F-Measure. However, our accuracy-based feature was not incorporated in

this system, which instead uses the baseline feature set for scoring. This results in a

system that performs at a level statistically insignificantly worse than the baseline,

but which uses only 13% of the phrases present in the baseline phrase table. The

remaining evaluation metrics follow a similar pattern, with the exception of an
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Systems System 1 Better Equal System 2 Better

B vs. AB 558 739 703
B vs. AB+O 515 793 692
B vs. R 633 555 812
AB vs. AB+O 482 1006 512
AB vs. R 616 712 672
AB+O vs. R 660 667 663

Table 3.9: Pairwise comparison of different systems via sentence-level evaluation

insignificant improvement in Meteor when using the F-Measure to filter the phrase

table. These results confirm that our scoring method is able to determine a subset

of phrase pairs from which the same performance can be achieved as when using

the complete set of phrase pairs in the baseline system, and that incorporating

our accuracy-based scores into this reduced system can lead to significant gains in

translation quality. In the future it will be interesting to compare this phrase-table

filtering method with techniques specifically designed for this purpose, e.g. (Johnson

et al., 2007; Sánchez-Martínez and Way, 2009).

Sentence-level evaluation

In addition to the document-level automatic evaluation, we conducted a sentence-

level evaluation using Meteor. Pairwise comparison was performed for four systems

including the Baseline system (B), the system with the AB Feature and default

reordering (AB), the AB Feature and rescored reordering (AB+O), and the system

using only the rescored phrases (R). In the pairwise comparison, we count the num-

ber of sentences in the test set where one of the systems is better or both systems

are equal.

The results in Table 3.9 are consistent with the document-level evaluation in

Tables 3.5 and 3.7. We see that with AB-Scoring (B vs. AB), sentences with im-

proved translations are far more numerous than those whose translations become

worse (703 vs. 558). Adding both the AB feature and a rescored reordering model

(B vs. AB+O and AB vs. AB+O) further improves system performance, with more
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Source: la comunidad internacional no puede contentarse por más tiempo con es-
conder la cabeza como el avestruz (. . . )

Reference: the international community can no longer content itself with burying
its head in the sand (. . . )

Baseline:
523092

the |
1385

international community |
2

cannot be satisfied |
31382

by |
233

more time |
9965
to |

8

bury our |
3

heads in the sand | (. . . )

Rescored:
1

the international community can no |
7

longer |
8

be content |
72416

with |
1

burying one ’s head in the sand | (. . . )

Figure 3.10: Example output translation from the baseline and our best-scoring
system

sentences receiving better translations. Using only rescored phrases yields substan-

tial improvements over the baseline (B vs. R), and encouragingly, using only the

rescored phrases does not result in any decrease in translation quality; there is in-

stead a marginal gain of 3 sentences (AB+O vs. R).

In order to qualitatively assess some of the improvements to which our method

leads, we give in Figure 3.10 some example output from the baseline system and

from our best-scoring system, when translating a sentence in our development test

set. In this figure, vertical bars represent the target-side phrase-segmentation used

to build the sentence, and the numbers above the phrases indicate the amount of

times that the corresponding phrase pair was extracted from the training corpus.

We see that the baseline system uses short phrases which are very frequent in the

training corpus. In contrast, the rescored system uses fewer (but longer) phrases,

which do not occur as frequently in the training corpus, but which yield a better

translation. This might be explained by the weights given in Table 3.6: the rescored

system does not have to heavily rely on the amount of times a phrase pair occurs in

the corpus, allowing it to use longer (and more infrequent) phrases when evidence

has been observed that such a phrase typically leads to a good translation. We
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note that while the baseline system uses 32,728 phrase pairs to translate the whole

development set, the rescored system can translate it using only 26,272 phrase pairs,

an indication that this phenomenon might not be unique to this particular sentence.

3.4.8 Conclusions

In this section, we introduced additional features for PB-SMT which bring trans-

lation quality-related knowledge into the scoring of phrase pairs. On the WMT09

Spanish-to-English translation task, significant gains over the baseline are obtained

across many evaluation metrics. Encouragingly, our method can also lead to a sub-

stantial reduction (87%) in phrase-table size without significant loss in translation

quality. Given the size of the weight associated with our AB feature (Table 3.6), it

is not an exaggeration to conclude that gains in MT quality and efficiencies in speed

and memory usage are due almost entirely to our new feature. Although discarding

key features such as phrase-translation probabilities and using only our feature leads

to a loss in translation quality, doing so results in a system that performs nearly

as well as the baseline, which suggests that a purely accuracy-based system could

eventually be developed.

3.5 Summary

In this chapter we introduced a scoring method which is able to relate the translation

units used by an MT system to a score representing the average edit distance between

this unit and a unit which has been shown to maximize translation quality.

We adapted this general scoring method to the DOT translation system, which

led to translation quality improvements compared to a baseline DOT model. We

also showed that the usefulness of this scoring method is not limited to the case of

DOT, by adapting it for use with the PB-SMT model. Results with this model are

also positive, obtaining translation quality improvements compared to a standard

PB-SMT system and providing more evidence for the usefulness of our method. For

89



the case of PB-SMT our method not only leads to translation quality improvements,

but we can also achieve such improvements with a system which is significantly faster

and uses significantly fewer resources than the baseline.

In the following chapter we tackle our remaining research questions (RQ3 and

RQ4 in Chapter 1). We address the issue of the limited feature set in DOT, by

defining a log-linear model which can exploit arbitrary features of the source sen-

tence. We take advantage of this log-linear model by introducing lexical features

and a language model.
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Chapter 4

Log-Linear Scoring and Lexical

Selection for DOT

In this chapter we turn to the difficulty of incorporating additional features into

DOT. We identify weaknesses in DOT’s method of scoring and define features which

we believe would be beneficial for DOT, and investigate their effect. We then in-

corporate these features into a new DOT model which is able to exploit both the

original structural and reordering model and a new feature-based log-linear model.

We begin by motivating our approach in Section 4.1. We then introduce our new

log-linear model in Section 4.2, which we exploit by defining features which condition

a target word to the source lexical items it is aligned to, and by incorporating an n-

gram language model. In Section 4.3 we explore the effects of two different estimation

methods for our feature: Maximum Entropy and improved Kneser-Ney. Section 4.4

explains how our new model is integrated into the original DOT model, and how fast

decoding speeds can be achieved. We evaluate the performance of our new system

in Section 4.6 and give example translations in Section 4.7, and finally conclude in

Section 4.8.
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4.1 Motivation

As explained in Section 2.3, finding the most probable translation in DOT involves

summing over all derivations with the same target yield. This is akin to finding

the most probable sentence from an input lattice under DOP and other models,

e.g. (Bod, 1992; Sima’an, 2004), which has been shown to be intractable (Sima’an,

1996). Given this, one has to resort to approximations such as sampling (Hearne

and Way, 2006) or constraining the computation to the n-best derivations.

The Goodman reduction for DOT assigns to a particular fragment extracted

from the parallel treebank a probability as in (4.1):

1

subtrees(A,B)
(4.1)

where (A,B) is the pair of roots of the fragment pair, and subtrees is a function

which counts the number of fragment pairs rooted by (A,B) which were extracted

from the treebank. If we compare (4.1) with the fragment pair probability in (4.2):

P (〈df , de〉) =
|〈df , de〉|

subtrees(root(df ), root(de))
(4.2)

this is not necessarily equal to the probability assigned by the model to the fragment

pair, as the number of times that this particular fragment pair was extracted from

the parallel treebank is not taken into account, i.e. |〈df , de〉| is missing. In theory

this is not a problem, since when summing over derivations to compute the (string)

translation probability, the probabilities assigned by the Goodman reduction end

up being equal to the ones defined by the model, as each of the fragments rooted by

(A,B) will add 1/subtrees(A,B) to the overall probability, and the amount of times

that a fragment pair was extracted will be implicitly incorporated into the score.

However, this means that when using the n-best DOT derivations to approximate

the most probable translation (as in the experiments in this thesis), if n is not large

enough, fragment probabilities will tend to be approximately 1/subtrees(A,B) rather
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than the correct probability. This means that a large fragment which is observed

only a few times during fragment extraction might compete using a probability

roughly equal to the probability of a smaller (and more frequent) fragment pair,

just because they happen to share the same root pair.

In addition to this, DOT’s relative frequency estimator is inherited from the

probability estimator used in DOP, which has been shown to be inconsistent (John-

son, 2002) and biased toward the use of larger subtrees (Bonnema et al., 1999). We

argue that DOT’s bias and our inability to explore the complete derivation space,

having instead to resort to approximations to obtain the most probable translation

probabilities, mean that in practice DOT derivation probabilities are driven mainly

by properties of the derivation structure (such as the size of the fragment pairs

used), rather than by lexical equivalences: derivations which use a few fragments

of large size will tend to be preferred, regardless of the words associated with these

fragments. Some evidence for this can be seen in the findings of Hearne and Way

(2006) who, despite using sampling instead of the n-best derivations, observe that

in many cases the translation quality remains the same or improves when using the

shortest derivation compared to the most probable translation to select translations.

The scoring method introduced in the previous chapter indirectly addresses this

issue by assigning a score to fragments which is independent of the frequency in

which fragments with the same root pair were extracted. Although this is desirable,

we feel that a model that explicitly considers the relations between lexical entries

is beneficial and if possible should be exploited alongside an accuracy-based model

such as that introduced in Section 3.3 (page 54). We find empirical motivation for

this in our experiments in Section 3.4.7 (page 80), where the translation quality of

a PB-SMT system decreases when phrase translation probabilities are completely

replaced by accuracy-based scores.

When attempting to introduce new scoring sources into DOT, we face the prob-

lem that this model does not easily allow the introduction of additional scores. In the

previous chapter we introduced accuracy-based scores into DOT by reformulating
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the model as log-linear, but we did so at the fragment level. Therefore, we remain

unable to exploit non-local features to the fragments —such as n-gram language

models– or features which are not possible to be encoded in the grammar, such as

features of the particular sentence we are translating.

In this chapter we address these issues by proposing a new DOT model whose

scoring is driven by a log-linear combination of features. Given a translation search

space constrained by the original DOT model, our new model is able to exploit

features of the complete source sentence while maintaining the advantage of exploit-

ing DOT’s strong structural and reordering models. This new model represents a

framework in which different features can be explored, of which we take advantage

by introducing a bilingual lexical feature and an n-gram-based language model. Our

lexical feature conditions the choice of a target word to the source words it is linked

to, as well as the source context in which these source words occur. We investi-

gate different estimation methods for this feature (namely MaxEnt and interpolated

smoothing) and report on their empirical performance, as well as on the impact of

source-context information when incorporated into the LM-augmented system.

4.2 Log-Linear Data-Oriented Translation

As previously mentioned, DOT’s scoring model is heavily driven by derivation struc-

ture rather than by lexical choice. To alleviate this, we take a novel log-linear for-

mulation of DOT, in which we introduce features of each target word in a fragment

pair, given the source sentence and the fragment pair. In our new model we assign

a score to a target-language sentence given the source as in (4.3):

P (t|s) = exp(
N∑
i=1

λihi(t, s)) (4.3)

where each hi is a feature function and each λi its corresponding weight. The

feature hrf(s, t) = log(
∑

d〈s,t〉
P (d〈s,t〉)) accounts for the original relative-frequency
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probability in DOT (Section 2.3 in Chapter 2).

To define our lexical features, we need to associate a fragment in a derivation

with the source sentence span that it covers. Given a derivation d = 〈df , de〉1 ◦ . . . ◦

〈df , de〉M , let span(〈df , de〉i,d) be a function which maps a fragment pair 〈df , de〉i

belonging to a derivation to a pair of numbers indicating the starting position in the

source sentence of the span covered by the source fragment df , and the length (i.e.

amount of words) of this span.

Our source lexical features take the form of (4.4):

hsc(s, t) =
∑
d〈s,t〉

∏
〈df ,de〉∈d〈s,t〉

score(〈df , dt〉, s, span(〈df , de〉i,d〈s,t〉)) (4.4)

where

score(〈df , de〉, s, i, j) =
∏

tk∈lex(de)

p(tk|sc(df , s, i, j)) (4.5)

and where lex(de) denotes the list of words in the target fragment de, and sc denotes

a source-context function which associates individual target words with the source-

side context of the source fragment they are linked to (cf. Section 4.2.1 for a precise

definition of this function).

For each target fragment in each derivation with source side s and target side

t, equation (4.4) takes the product of the source context from each target word in

the fragment. For example, when considering the fragment pair in Figure 4.1, we

evaluate the source contexts of both ti and ti+1. This ensures that every target word

is supported by source-side evidence. Although from the example in Figure 4.1 it

might appear redundant to condition on each target word, in large fragments which

include substitution sites this prevents the introduction of words not related to the

source side of the fragment pair.

In principle any information from the source-language sentence words and its

parse tree can become part of the context. In this work we focus on the lexical

window features we define in the following section, although in the future many
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A

D

sh+1 . . .

CHead

sh

B

. . . sh−1

E

G

ti+1 . . .

F

. . . ti

Figure 4.1: Lexical window feature

other sources of context information could be considered, such as head word of the

sentence, recursiveness of the parse tree, POS tag windows (Stroppa et al., 2007) or

even dependency information (Haque et al., 2009b).

4.2.1 Lexical-Window Feature

Given the source side of a fragment pair and the source-sentence span that this

source fragment covers, we obtain a source context for a target word ti by first

determining sh, the first source word dominated by the head1 child of the source

fragment. We then take a window of a predetermined size consisting of an ordered

tuple of source-sentence words, introducing end-of-sentence or beginning-of-sentence

symbols in cases where the window spans the sentence boundaries. If the window

size is odd, windows are centred at sh, otherwise we centre the window so that it

includes an additional word to the right of the head.2

As these windows consist of a fixed amount of purely lexical items, we anticipate

data-sparseness problems for large window sizes. We avoid this problem by also con-

sidering all possible sub-windows within the original window. The source contexts

we consider thus consist of a list of tuples of words. The first tuple is the original

window, of size n, followed by 2 tuples of size n− 1, then 3 of size n− 2, and so on.

In total, if the window size is n, there are n∗(n+1)
2

tuples in a source context.

For example, when translating the target word ti using the fragments in Figure
1In our experiments translating from English, we use the head-finding rules defined by Collins

(1999).
2In right-branching languages, on average we would expect words to the right of the head to be

more related to it.
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4.1, if the head child of A is C and we are using a window size of 3, the source con-

text sc is composed of the following source word tuples: (sh−1, sh, sh+1), (sh−1, sh),

(sh, sh+1), (sh−1), (sh), (sh+1).

Note that if we used a window of size 4 or more in this particular case, the

context information would include words which lie outside of the span covered by

A, the node linked to ti. As we discuss in Section 4.6.1, this situation is frequent

and beneficial.

4.2.2 Language Model

In addition to the previous feature, which acts locally on the target side, we also

incorporate an n-gram language model (LM) which takes the complete target sen-

tence into account. As standard DOT exclusively uses its grammar for scoring, this

is a novel feature. Although it could be argued that no LM should be necessary

given that the DOT system is syntax-based, in practice obtaining the effects of a

LM using a DOT grammar would require this grammar to be highly lexicalised (by

percolating words to the labels of fragment roots), increasing even more the com-

plexity of the model. In addition, the beams used for pruning do not allow all of

the possible combinations to be explored. We therefore believe that a LM will be

beneficial to DOT even when large training data sizes are used, as it allows fluency

to be maintained across the boundaries of fragments without the need for a highly

lexicalized grammar.

Our current implementation computes this feature only when a complete tar-

get sentence has been generated, i.e. when translating the grammar’s TOP sym-

bol. During search, however, we multiply (as a heuristic) both the derivation score

and the language model score of a particular fragment’s target-side yield to prune

derivations. For example, when incorporating the fragment pair in Figure 4.1 into a

derivation, we consider the score assigned to the fragment pair by the model an the

language model score of the target span of the fragment pair, i.e. the sequence of

words ti ti+1. During decoding, a beam is maintained for each source substitution
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site (cf. Section 4.4), in which at most k translations are allowed. When more than

k translations of a source substitution site are found, we consider this heuristic score

and keep the highest-scoring translations, pruning the remaining ones.

In the future we expect to see further improvements by properly computing this

feature’s score in an incremental manner while building the translations. To this

end a technique (such as cube pruning (Chiang, 2007)) which allows the efficient

computation of language model scores when combining entries stored in a chart will

have to be implemented.

4.3 Context Score Estimation

The scores in equation (4.5) rely on computing the conditional probability of a target

word given a source context, which consists of a list of tuples of words of various

sizes. Such a parameter space is prone to data sparseness, and a sound estimation

method is therefore crucial for these features to prove useful.

We propose two alternative methods for estimating this conditional probability,

namely MaxEnt (Berger et al., 1996) and improved Kneser-Ney smoothing (Chen

and Goodman, 1998). We evaluate the performance of both and report on their

strengths and weaknesses.

4.3.1 Maximum Entropy

MaxEnt is a framework which is particularly well-suited to tasks of this kind, and

it has successfully been used in similar situations (Bangalore et al., 2007; He et al.,

2008).

In this framework we directly estimate the distribution of p(t|sc(df , s, i, j)) by

using an exponential model as in (4.6):

p(t|sc(df , s, i, j)) =
1

Z(sc(df , s, i, j))
exp

[
n∑
k=1

λkfk(sc(df , s, i, j), t)

]
(4.6)
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where Z is a normalization constant to ensure that
∑

t p(t|sc(df , s, i, j)) = 1, and

each fk is a binary feature indicating the presence or absence of a particular lexical

tuple in the source context list sc, as in (4.7):

flex_window,t′(sc, t) =


1 if t = t′ and lex_window ∈ sc

0 otherwise
(4.7)

The feature weights λk are estimated using the limited memory variable metric

(or L-BFGS) algorithm (Malouf, 2002).3

4.3.2 Interpolated Smoothing

Given that the windows that we use are composed purely of lexical items, there will

be a huge number of features (in the order of millions) whose weights will need to

be estimated under the MaxEnt approach. Even when using efficient algorithms like

L-BFGS, the use of MaxEnt on such a highly lexicalised model could prove to be

prohibitively slow (cf. Section 4.6.1 for more discussion on the efficiency of MaxEnt).

As an alternative, we propose to maximize the likelihood of the contexts occur-

ring in the training data by using relative frequencies. In a similar setting, Gimpel

and Smith (2008) avoid the data-sparseness problem of this method by introducing

a different feature for each of the relative-frequency estimates of contexts of various

sizes. Here we choose to directly interpolate the likelihood of increasingly larger con-

text sizes. For every context-window list sc(df , s, i, j) = c1, . . . , cn where every ck is a

tuple of source-language words of decreasing size, we estimate p(t|c1, . . . , cn) by con-

sidering the count of occurrences of the event c1, . . . , cn, t in the training data, and

backing-off to p(t|c2, . . . , cn) when this count is below a certain threshold. We use

improved Kneser-Ney (IKN) smoothing to perform this estimation, as implemented

by the IRSTLM language modelling toolkit (Federico and Cettolo, 2007).

The features in the maximum entropy framework only test for membership of
3In our experiments we use the MaxEnt toolkit implemented in C++ by Le Zhang, available

at http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
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Figure 4.2: Obtaining a target-language chart from the substitution sites in a source-
language chart.

a particular lexical tuple in the source context list, and the order in which these

tuples appear in the list is, therefore, irrelevant. However, when using IKN as an

estimation method, it is crucial to order contexts in such a way that when backing

off, contexts which are both more frequent and more related to the target word ti

are kept, and more infrequent and less relevant contexts are discarded.

For example, if we were to use the order listed in Section 4.2.1 when extracting

contexts for Figure 4.1, we would be left with the situation in which for larger

window sizes, the smaller back-off model p(ti|cn) would be conditioned on a word

that is of dubious relation to ti, as it might have appeared outside the span covered

by the node A linked to ti. Instead, we take an ordering that places first (and

therefore discards first when backing-off) sub-windows whose centre is as far from

the head word sh as possible. When the centres of two sub-windows are the same

distance from sh, we choose to place windows which contain more words to the left

of sh first.4 For the case discussed in Section 4.2.1, this would give the following

ordering: (sh−1, sh, sh+1), (sh−1, sh), (sh, sh+1), (sh−1), (sh+1), (sh).

100



4.4 System Architecture

Since the scores used by our features depend on the particular source sentence we

are translating, it is infeasible to encode them in a Goodman PCFG grammar. This

poses a problem, since on the one hand we wish to introduce our new features,

which is not allowed by the grammars, and on the other hand we do wish to con-

tinue exploiting the rich structural and reordering model that using these grammars

provides. We solve this problem by taking the approach of using the original DOT

model to bootstrap the new one.

Using the original DOT grammar, we parse the source sentence and compute

the n-best source derivations, obtaining a forest of source parses which we efficiently

store in a chart. Since we keep track of the alignment between source and target

Goodman indexes, using this source chart we can create a target chart which, for each

source substitution site, stores translations obtained with the target DOT grammar,

as illustrated in Figure 4.2. Using this method we obtain a large collection of

bilingual derivations. If we were using the original DOT model, we would assign to

each of these the score indicated by the grammar, and determine the best translation

by summing over derivations which yield the same target sentence. Instead, we take

the source chart given by the source grammar and then proceed to build the target

chart for each source substitution site bottom up, but using the model of equation

(4.3) to perform the scoring instead of the one defined by equation (2.6) and encoded

in the original grammars. In practice, in our implementation, whenever the grammar

is queried for probabilities we replace the score of unary (and therefore preterminal

to word) rules by the score of our new model, and replace the score of binary rules

by 1, as illustrated in Figure 4.3. The standard translation procedure then takes

care of propagating the lexical scores up in the tree when multiplying the scores of

sub trees.

By doing this, we are using our new model over a translation search space con-
4This decision is again motivated by properties of right-branching languages, although we would

not expect to observe a significant change in behaviour should we decide to discard words to the
right first. This remains an avenue to pursue in future work.
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(b) New probability assignment

Figure 4.3: Target side of a fragment pair, with labels indicating the probability
assignment for each rule. The probability of the tree equals the product of the
probabilities of all of its rules.

strained by the DOT grammars, benefiting both from our lexical features and the

strong DOT structural model.

4.4.1 Efficient Decoding

Although the Goodman reduction produces grammars of size linear in the number

of nodes in the treebank, these are still considerably large and their direct use on

large training data sets is problematic, as using the standard implementations of

parsing algorithms such as CYK (Younger, 1967) is in practice too time-consuming.

We take two measures to speed up decoding: multilevel coarse-to-fine parsing,

and constituent constraining. We now describe these methods in detail.

Multilevel Coarse-to-Fine Parsing

Our source-side parser is implemented in a multilevel coarse-to-fine (CTF) fashion

(Goodman, 1997; Charniak et al., 2006). We avoid directly parsing with the com-

plete source Goodman grammar by defining a series of incrementally more coarse-

grained grammars. Each label in one of the coarser-grained grammars is a projection

of a finer-grained label. This means that if we are unable to obtain a parse tree for a

sentence (or a constituent of a sentence) using one of the coarse grammars, we can be

certain that it would not be possible to obtain a parse tree using the finest-grained

grammar. The opposite of this is not true, as even if we are able to parse a sentence
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S → L2 R2

L1 → a
L2 → b
R1 → b
R1 → c

(a) Original grammar

S

R1

b

L1

a

S

R2

c

L2

b
(b) The only two strings accepted
by the grammar.

S → L R
L → a | b
R → b | c

(c) Grammar obtained
using a projection which
removes any index in a
label.

S

R

c

L

a
(d) The projected gram-
mar accepts the string
“a c”, which was not ac-
cepted by the original
grammar.

R

c

L

a
(e) The projected gram-
mar correctly predicts
that a complete parse
will not be obtained for
the string “c a”.

Figure 4.4: Effects of projecting a grammar into a more coarse-grained one.

with a coarse-grained grammar, the new constraints imposed by the specialization

in finer-grained labels could prevent us from obtaining a parse tree. However, we

can take advantage of knowing which constituents will not be able to be parsed by

the finest-grained grammar to speed up the parsing process. The effects of obtaining

a more coarse-grained grammar can be observed in the example of Figure 4.4. Fig-

ure 4.4(a) gives the original grammar, which accepts only two strings, as shown in

Figure 4.4(b). Although the projected grammar of Figure 4.4(c) accepts strings not

accepted by the original (Figure 4.4(d)), it correctly predicts that using the original

grammar a parse will not be obtained for the string “c a” (Figure 4.4(e)).

Given an original PCFG, we obtain a projection of it by applying to each of the

labels the function π, which maps original labels into a new label from a reduced

set of labels. We can also obtain a function π−1, which maps a coarser-grained label

into the set of all possible finer-grained labels that it could have been mapped from.

We define a series of projection levels in a way such that the labels obtained in one

level are the labels which the next projection maps, as illustrated by Figure 4.5.

We define three projection levels π1, π2 and π3. The first level is the identity

function, taking a label from the original Goodman grammar and returning the same
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Level 1 Level 2
π2

Level 3
π3

Figure 4.5: Sketch of the domain sets for the different projections. Dots represent
labels which are mapped (by dashed lines) to the domain of the following projection.

label. The second-level projection takes a Goodman grammar label and removes

any Goodman indexes from it, as illustrated in Figure 4.6 This projection is similar

to the one used by Bansal and Klein (2010) for monolingual DOP parsing. The

projection in the third level takes a label returned by the second-level projection.

Its behaviour depends on whether the label is a preterminal or not. If the projected

label (as obtained by π2) was observed in a preterminal rule in the grammar obtained

by π2, the label is left intact, i.e. π2 and π3 share the same preterminal label sets.

If the label is not a preterminal, then any target-grammar category after the “=”

symbol is removed, as in Figure 4.6.

A=B+1234
Level 3
Level 2
Level 1

Figure 4.6: Transformations made by the different projection levels to an original
Goodman grammar label.

To parse an input sentence with this series of grammars, the coarsest-grained

grammar (i.e. the one obtained by π3) is used to obtain an initial chart encoding all

possible parses of the sentence (using a standard CYK algorithm). Once a chart is

obtained with this simplified grammar, a second-level chart is obtained by using π−1
3

to map each symbol in the chart to the possible labels in the second-level grammar,

and removing those labels which would not be allowed by binary rules in the second-

104



Method Bleu Time (seconds) Backoffs

CYK 12.57 387,171 -
CTF 12.43 162,943 -
CTF+1best 11.80 3,655 14
CTF+2best 12.43 3,732 12
CTF+3best 12.40 4,058 8

Table 4.1: Translation time and Bleu scores for a 200-sentence development set
using different source-language parsing algorithms: standard CYK, and multilevel
coarse-to-fine (CTF) with and without constituent constraining. When using con-
stituent constraining, the amount of sentences that required backing off to basic
CTF is also presented.

level grammar. Finally, using π−1
2 a chart is obtained using this same process, leading

to a chart encoding all possible parses with the original Goodman grammar. We do

not prune when obtaining a chart given the previous-level chart and so in theory

obtain the same results as if directly using the full grammar, although technical

differences between the original parsing algorithm and the CTF algorithm lead to

(minor) variations in the (translation) scores.

Table 4.1 gives results for an experiment where a small development test set

consisting of 200 sentences was translated using the standard CYK algorithm (1st

row) and the CTF method (2nd row). As can be seen, a 57.91% improvement

in translation speed can be achieved (a 2.37 times speedup), with little loss in

translation quality (the difference is not statistically significant). All times were

measured on a 2.67GHz Xeon CPU.

Although the speed obtained with the CTF method is still relatively slow, we

will show next how combining this method with constituent constraints leads to ac-

ceptable translation speeds. However, if desired, greater speed improvements could

be achieved by the use of this method alone, if we prune constituents when obtain-

ing a chart from a previous-level chart using their inside and outside probabilities

(Goodman, 1997), or if we employ techniques such as beam and global thresholding

(Goodman, 1997). While taking this approach could avoid using an external parser

before translation (cf. next section), this would have the drawback that multiple
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threshold values would need to be estimated, as well as the possible alteration of

translation scores as a result of the pruning.

Constituent Constraints

The second measure taken to improve decoding time is to use a state-of-the-art

parser (Charniak and Johnson, 2005) in a preprocessing stage to obtain a parse

tree for the input sentence. This parse tree is used by our decoder to constrain the

constituents that are allowed to be considered: only constituents spanning portions

of the source sentence which were deemed to be constituents by the monolingual

parser are allowed to be created. Constituent labels are ignored in this constraint.

We translated our development test set using this method combined with the

coarse-to-fine approach as previously described, and obtained the results in row 3

of Table 4.1. As can be observed, a significant speedup is achieved, although at

the expense of translation quality: the difference with standard CYK is statistically

significant at p = 0.05. The loss in translation quality is due to this constraint

being too strict, and therefore not allowing alternative derivations which could yield

better translations to be considered. In a bid to soften the restrictions on constituent

creation, we consider using the aggregated constituents taken from the n-best trees

returned by the parser. When we do this, we observe in the 4th row of Table 4.1

that using the aggregated constituents from the 2-best parse trees is enough to

regain the lost translation quality, while maintaining the improvements in speed.

The last column in Table 4.1 gives the amount of sentences for which we detected

(by counting the empty cells in the chart) that the constraining was overly strict,

forcing us to back off to using CTF parsing and lifting the constituent constraints.

Since this is something that could potentially bring parsing times up which is clearly

something we would like to avoid, we stay on the safe side by using the 3-best parse

trees to constrain the parsing. Using this setup (which is the one employed in our

experiments in Section 4.6), we obtain a 98.95% improvement in total decoding time,

corresponding to an impressive 46.12 times speedup. The loss in translation quality

106



compared to standard CYK is not statistically significant (as determined by paired

bootstrap resampling (Koehn, 2004)).

4.5 Experimental Setup

We evaluate the performance of our new model by translating English sentences

taken from the Europarl corpus (Koehn, 2005) into Spanish, and comparing perfor-

mance against a baseline DOT system. We created a parallel treebank for training

in a similar way to that in the previous chapter, although we parsed the source side

of the parallel corpus using Charniak and Johnson’s (2005) parser, the same parser

used to obtain the 3-best trees for our test set, used for the previously mentioned

constituent constraints (cf. Table 4.1). The target side of the parallel corpus was

trained using the same parser used for our experiments in Section 3.3.5, i.e. Bikel’s

parser with a Spanish language pack (Chrupała and van Genabith, 2006). As noted

in Section 3.3.5, this parser produces POS tags which are too fine-grained for our

purposes. The set of tags we use is as described in the aforementioned section, and

as listed in Appendix A. The parallel treebank was then created using the same

tree-to-tree aligner (Tinsley et al., 2007a) used in our previous experiments.

We extract the DOT grammar from 80K randomly selected sentences. This is

an increase of almost an order of magnitude compared to our experiments in the

previous chapter, which in turn represent an order of magnitude increase compared

to previously published results (Hearne and Way, 2003, 2006). We also use the

IRSTLM toolkit (Federico and Cettolo, 2007) to train a 5-gram language model on

200K randomly selected sentences which include the target side of the corpus section

used to extract the grammar.

Our development test set and our test set contain 200 and 2K randomly selected

sentences respectively, and we use an additional 200 sentences to tune the weights

in equation (4.3) using Minimum Error Rate Training (Och, 2003), as implemented

by Z-MERT (Zaidan, 2009). The length of the sentences in these sets (and on the
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corpus used to extract our grammars) does not exceed 20 words.

In the experiments in this chapter we translate by first obtaining the 200-best

parse trees of the input sentence and then obtaining the 50-best target trees for each

source substitution site. From the resulting collection of bilingual derivations, we

approximate the most probable translation by summing over all derivations which

yield the same target translation.

As in previous experiments statistical significance is tested by paired bootstrap

resampling (Koehn, 2004), and absolute scores for Bleu and the Meteor are reported

as percentages.

4.6 Experimental Results

In this section we evaluate the translation quality of our new model compared to a

baseline DOT system based on the relative frequency estimator.

We begin by determining the best window size for our source lexical windows,

and by determining which estimation method is more suitable for obtaining scores

for the source lexical contexts. This is followed by experiments in which our best-

performing lexical window setup is used alongside the language model feature.

4.6.1 Lexical Window Size

For the purposes of evaluating the impact of the source context window features of

equation (4.4), we consider a system whose only feature is hsc, effectively replacing

the original DOT probabilities.

Experimental results for Bleu on our development test set are given in Figure

4.7. The baseline system obtains a Bleu score of 12.25. In our experiments in Sec-

tion 3.3.6 we noted that a similar DOT system was comparable to a phrase-based

system which uses no language model and uniform feature weights. Although trans-

lating in the opposite direction and training our systems with almost an order of

magnitude larger amount of data, we have found this to be the case here also, with
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Figure 4.7: Window size vs. Bleu (development test set)

the phrase-based system obtaining a statistically insignificantly worse score: 11.57

Bleu. We should note that although in the present chapter we incorporate a lan-

guage model into DOT and estimate feature weights via MERT, this still represents

preliminary work, as our language model feature is not computed incrementally, and

our log-linear model exploits only one additional feature. A proper comparison with

PB-SMT would require the maturing of these features and the further optimization

of our system, as well as further research orthogonal to that carried out in this thesis

such as finding the optimal grammar tag-set or treebank binarization. However, as

a guide to the reader we note that when the PB-SMT system is allowed to exploit

a language model and to tune its feature weights using MERT, it obtains a Bleu

score of 23.47.
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System Bleu Nist Meteor

Baseline 12.25 3.5482 38.30
MaxEnt Window Size 1 12.64 3.9985 39.70
MaxEnt Window Size 2 13.64 4.1750 40.80
MaxEnt Window Size 3 14.85 4.2062 41.06
MaxEnt Window Size 4 15.53 4.3303 41.50
MaxEnt Window Size 5 15.91 4.3536 42.13

Table 4.2: Results on development test set using Maximum Entropy models trained
on 80K sentence pairs with different window sizes. Underlined results and results in
italics are statistically significantly better than the baseline at p < 0.01 and p < 0.05
respectively.

Maximum Entropy Model

When considering the system with source context windows estimated using MaxEnt

over 80K sentence pairs, it can be observed in Figure 4.7 that increasing window

sizes has a direct impact on translation quality, with Bleu increasing along with

window size, and the best system having a score of 15.91 (a 3.66 Bleu points in-

crease, 29.87% relative). Except for the system with window size 1, whose improve-

ment is statistically insignificant, and the system with window size 2 which brings

a statistically significant improvement at p = 0.05, all other results are statistically

significantly better than the baseline at p = 0.01. The remaining evaluation metrics

(shown in Table 4.2) present a similar pattern.

Although the improvement curve is decreasingly steep, it appears that we could

achieve even better results by continuing to increase the window size, or by training

these models using additional training data. Nevertheless, the training time for the

MaxEnt system with window size 5 is over 33 hours.5 Increasing window or training

data sizes beyond this point brings training times to the order of days, or even

weeks. If we consider that in the future we will continue optimizing our systems

so that training corpora of larger sizes can be used, a more efficient alternative for

the estimation of this feature would be desirable. We therefore investigate in the

following section how the improved Kneser-Ney models, which can be estimated
5All times in this section were measured on a 2.93GHz Xeon CPU.
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System Bleu Nist Meteor

Baseline 12.25 3.5482 38.30
IKN 80K Window Size 1 13.73 4.1633 40.73
IKN 80K Window Size 2 15.62 4.3332 41.75
IKN 80K Window Size 3 15.47 4.3430 41.90
IKN 80K Window Size 4 15.25 4.3075 41.41
IKN 80K Window Size 5 15.33 4.3146 41.63

Table 4.3: Results on development test set using improved Kneser-Ney models
trained on 80K sentence pairs with different window sizes. Underlined results and
results in italics are statistically significantly better than the baseline at p < 0.01
and p < 0.05 respectively.

significantly faster, compare to the MaxEnt models.

Improved Kneser-Ney

Figure 4.7 also shows results for the system which uses improved Kneser-Ney (IKN)

smoothing for context score estimation over the same 80K tree pairs. Although at a

window size of 2 it gives a statistically significant improvement over the correspond-

ing MaxEnt system, increasing window sizes has a negative effect on translation

quality, indicating that data-sparseness might be a problem.

However, the estimation method used by this model is significantly simpler than

MaxEnt and it can thus be trained significantly faster, scaling more gracefully to

larger training data sizes. We exploit this fact by making use of 200K tree pairs

from our parallel treebank to train this model (our grammars extracted from 80K

parallel trees remain unchanged). The results in Figure 4.7 show that although IKN

does not scale as smoothly as the MaxEnt model when increasing window sizes, the

additional training data is enough for it to outperform both the baseline and the

MaxEnt system. The best result is obtained at a window size of 3, with a Bleu

score of 17.1 which is statistically significantly better than the MaxEnt model with

window size 5 (p < 0.03). The difference with the baseline system is of 4.85 absolute

Bleu points, corresponding to a 39.59% relative improvement.

We note that the toolkit used to estimate our feature (Federico and Cettolo,
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System Bleu Nist Meteor

Baseline 12.25 3.5482 38.30
IKN 200K Window Size 1 14.72 4.2184 41.19
IKN 200K Window Size 2 16.53 4.4373 42.43
IKN 200K Window Size 3 17.10 4.5449 43.31
IKN 200K Window Size 4 16.59 4.5450 43.36
IKN 200K Window Size 5 16.48 4.5210 43.05

Table 4.4: Results on development test set using improved Kneser-Ney models
trained on 200K sentence pairs with different window sizes. Underlined results and
results in italics are statistically significantly better than the baseline at p < 0.01
and p < 0.05 respectively.

2007) is able to split the training data so that training can be performed in parallel,

allowing larger amounts of training data to be used as more CPUs are available.

Furthermore, we note that this model was trained in under 2 hours.

Tables 4.3 and 4.4 give the results obtained by the IKN systems using our re-

maining evaluation metrics. NIST and Meteor show a behaviour similar to the one

presented by Bleu, with the exception that the scores obtained with window sizes

3 and 4 show little difference (particularly when training on 200K sentence pairs).

Alignment-Constrained Windows

When taking the source context of a target word ti, we note that the median size of

the span covered by the corresponding source-side node (e.g. node A in Figure 4.1)

is 1 word. This means that when taking window sizes of 2 or more, on average we

are including not only the words that ti is aligned to, but also the lexical context

in which they appear. This is reminiscent of the use of context-informed features in

phrase-based MT, e.g. (Stroppa et al., 2007; Haque et al., 2009a).

To isolate the benefit of exploiting source-context information in our windows,

we experimented with limiting windows to only include words dominated by the

fragment-root node we are currently considering. That is, whenever a window would

include words outside of the span covered by the fragment-root node, we ignored

those words lying outside of the span. For example, if considering a window of
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Figure 4.8: Impact on Bleu (development test set) of constraining lexical windows
to the aligned span

size 4 for the example in Figure 4.1, the window would be limited to the words

(sh−1, sh, sh+1).

Results are given in Figure 4.8. We used our best-performing models for these

experiments, i.e. the ones estimated using improved Kneser-Ney over 200K sen-

tence pairs. While the constrained system consistently outperforms the baseline,

it also consistently underperforms compared to the unconstrained one, indicating

that the inclusion of source-context information is beneficial and can lead to sig-

nificant gains in translation quality. The statistical significance of the differences

in Bleu is p < 0.04 for the difference between the improved systems at window

sizes 2 and 5, and p < 0.01 for all other differences. Table 4.5 gives results for

the remaining evaluation metrics, from which we arrive at the same conclusions:

the constrained windows significantly outperform the baseline, but significantly un-

derperform compared to the unconstrained ones. Note that although this result

shows that scoring fragments by taking into account their context is beneficial, this
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System Bleu Nist Meteor

Baseline 12.25 3.5482 38.30
IKN 200K Window Size 1 (constrained) 14.72 4.2184 41.19
IKN 200K Window Size 2 (constrained) 15.49 4.2294 41.20
IKN 200K Window Size 3 (constrained) 14.94 4.2342 41.16
IKN 200K Window Size 4 (constrained) 14.93 4.2156 40.89
IKN 200K Window Size 5 (constrained) 15.32 4.2551 41.16

Table 4.5: Results on development test set constraining windows to only include
words aligned to the current target word, and using improved Kneser-Ney on 200K
sentence pairs for estimation. Underlined results and results in italics are statistically
significantly better than the baseline at p < 0.01 and p < 0.05 respectively.

does not give sufficient evidence to conclude that limiting translation rules to satisfy

syntactic constrains is detrimental. However, this does suggest that incorporating

translation rules which directly capture a context which spans the linguistic notion

of a constituent could be desirable, as suggested in some of the syntax-based MT

literature, e.g. (Marton and Resnik, 2008; Chiang, 2010).

4.6.2 Log-linear Model

Having explored different estimation methods and sizes for the lexical context win-

dows, in this section we integrate them with our remaining features, estimating the

λ weights required in equation (4.3) using MERT.

In particular we are interested in whether the source-context window feature is

able to give an improvement over the stronger baseline of the system which uses the

hrf and the hLM features. However, as a sanity check we first investigate whether

the improvement we observed in the previous section when using hIKN to translate

our development test set carries over to the case of translating the larger test set.

Table 4.6 gives experimental results using different combinations of features. For

these experiments we used the context-window setups which led to the best results

when translating the development test set, namely the system with a window size of

5 estimated using MaxEnt over 80K tree pairs (denoted hME in Table 4.6), and the

one estimated using improved Kneser-Ney over windows of size 3 from 200K tree
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Features Bleu Nist Meteor

hrf 12.44 3.9407 37.21
hME 14.72 4.7889 40.10
hIKN 15.11 4.8996 40.90
hrf + hLM 16.70 4.6484 39.53
hrf + hLM + hIKN 17.27 4.9658 41.25

Table 4.6: Results on test set. Underlined results and results in italics are sta-
tistically significantly better than the ones above them at p < 0.01 and p < 0.03
respectively.

pairs (hIKN). Note that, unlike in the preceding tables, underlined and italic results in

Table 4.6 denote statistical significance compared to all of the preceding rows and not

only to the baseline. As can be observed, using hME instead of the relative-frequency

baseline (hrf) gives a significant improvement across all evaluation metrics. The

difference in Bleu is 2.28 absolute points (18.32% relative). However, as expected,

using hIKN brings further improvements, which are statistically significantly better

than the results obtained with hME. In this case the difference with hrf is of 2.67

Bleu points, corresponding to a 21.46% relative improvement.

A language model is an important component in MT which has proved to be

useful in a wide range of different MT engines. It is no surprise then that combining

the hrf feature with an LM (hrf + hLM) leads to a dramatic increase in translation

quality compared to using only hrf . Interestingly, although this system improves in

terms of Bleu compared to hIKN, it falls short in our remaining evaluation metrics.

Given this discrepancy, we set aside these two systems and perform a pairwise com-

parison between them. We use the smoothed sentence-level Bleu metric defined in

Section 3.4.1 (page 75) to determine the amount of sentences in which one of these

systems is better, and the amount of sentences in which both systems obtain the

same sentence-level score. From these subsets of sentences we also obtain the aver-

age of the sentence-level scores. Results for this evaluation are given in Table 4.7.

As can be observed, the amount of sentences in which hIKN receives a better score

is far larger than the amount of sentences in which the opposite is the case. This is
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Metric hrf + hLM better Equal hIKN better

Sentences 780 349 871
hrf + hLM avg. Bleu 21.03 18.69 10.65
hIKN avg. Bleu 11.43 18.69 17.06

Table 4.7: Sentence-level evaluation using smoothed Bleu to determine the sen-
tences in which hrf + hLM or hIKN is better.

consistent with the document-level scores assigned by the metrics NIST and Meteor

in Table 4.6. However, the Bleu score received by hrf + hLM over the (smaller)

subset of sentences in which this system is better is larger than the corresponding

score assigned to hIKN when that is the best system. These differences in scores are

probably what leads to an overall better Bleu score for hrf + hLM . The average

sentence-level score over the entire test set is 15.62 for hrf +hLM and 14.37 for hIKN,

which is consistent with the document-level scores in Table 4.6.

Finally, we used our best-performing context-window setup along with the LM

and the hrf feature. The result is a system which benefits from each of these compo-

nents, improving over any single feature across all our evaluation metrics. Compared

to hrf +hLM , this system achieves a difference of 0.57 Bleu points (3.41% relative),

while the difference with hrf is 4.83 Bleu points (38.82% relative).

Our training corpora are of a relatively small size, which leads to baseline systems

which obtain rather low absolute translation quality scores. The question arises then

as to whether the improvements we have observed when incorporating a language

model and source-context features would be maintained if training our systems using

larger training data sizes. The DOT system extracts a large amount of fragments

whose size is not restricted. This means that this system is prone to data sparseness

problems, and that increasing training data sizes should see the absolute scores of

the baseline system increase. However, when also increasing the training data sizes

of our context windows and of the language model (which, if desired, can be trained

using a larger amount of data than the one used to extract the grammars) we would

expect the relative differences between the systems which we have observed to be
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maintained, and the conclusions to which we arrived to hold. The reason for this

is that the behaviour observed in Figure 4.7 for the IKN system, where translation

quality starts to decrease when increasing the window size beyond 2 (when training

with 80K sentence pairs), and beyond 3 when training with 200K sentence pairs,

can also be attributed to data sparseness problems. The maximum entropy model

treats each lexical window as a separate feature, and is therefore less prone to data

sparseness problems, as it can assign a low feature weight to windows for which

no enough data has been obtained. This results in the smooth improvement curve

observed in Figure 4.7. In contrast, the IKN system needs to estimate scores for

each list of context windows, which results in large amounts of training data to be

needed. We would expect therefore that as training data increases, the behaviour

of the IKN model would approach that of the MaxEnt one, with translation quality

improving as window sizes do. As regards the language model feature, translation

quality is known to continue improving as the size of the LM training data does,

even for very large training data sizes (Brants et al., 2007), which would indicate

that we should continue to observe an improvement in translation quality as we

increase both our system and our LM training data sizes.

4.7 Discussion

We give in Figure 4.9 example translations from the relative frequency-based system

(hrf) and the system whose only feature consists of the source-context windows

estimated using improved Knesser-Ney over 200K sentences (hIKN). hrf produces a

poor translation: the verb “condemn” has not been translated, and there are spurious

words which make it hardly understandable. In contrast, hIKN produces a sentence

which is both fluent and an acceptable translation of the source (it reads: “we must

condemn the human rights violations in burma”):

To understand the reasons for the differences in performance, we examine in

Figure 4.10 the best derivation yielding the corresponding translation from each
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Source: we must continue to condemn human rights abuses in burma
Reference: debemos continuar condenando los abusos contra los derechos humanos
en birmania

hrf: debemos continuar rodeos las violaciones de los derechos humanos y estas ac-
ciones en birmania
hIKN: debemos condenar las violaciones de los derechos humanos en birmania

Figure 4.9: Output translations from our systems

system. In the baseline system, the first derivation obtains the highest score because

it uses few fragments whose roots are fairly frequent, obtaining a log-score of -44.91

under the Goodman PCFG model, while the second derivation obtains a lower score

of -51.43. The reason why the second derivation is chosen in hIKN is because under

this model, every target word must not only fit in the structure imposed by the

grammar, but it must also be evaluated against the source words it is aligned to.

Every one of the target words the second derivation generates is highly related to

the source context it is aligned to. On the other hand, the first derivation introduces

many target words (under the node rooted by NP=sn.co) which have no source-side

counterpart. While this goes unpenalized in hrf , it is poorly scored by hIKN, which

assigns a log-score of -57.15 to the whole derivation. The corresponding score for

the second derivation is a much higher -28.92.

Note that in this example, although the translation produced by hIKN is of good

quality, the word “continue” in the source sentence has not been translated. This

is due to the conditioning on each target word, which will tend to generate fewer

words in the translations as each target word must be supported by source-side evi-

dence. Although our experiments show that this is not an impediment to achieving

translation quality gains, in the future this effect could be lessened by the inclusion

of features such as word or fragment counts of the translations.

We have observed that the method of relating target words to the head of source

nodes frequently leads to situations such as the one in Figure 4.10, where top-level

rules define the overall sentence structure, and substitution sites lower in the tree

are responsible for the translations. We believe this to be a good thing: lexical
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(a) Best-scoring derivation for the translation with highest probability under the baseline model
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Figure 4.10: Best scoring derivations from the hrf system (a) and the hIKN (b). “l v
d l d h” stands for “las violaciones de los derechos humanos”. Boxed nodes denote
substitution sites.
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decisions are made based on related source-side segments, and reordering is handled

by higher-level rules which might be head-lexicalized.

4.8 Conclusions

We have introduced a framework for DOT in which source information can be ex-

ploited to score translations over a search space constrained by the baseline model.

The empirical results show that when introducing lexical context windows as source

information, by conditioning every target word to the context in which its source-side

equivalences occur, significant translation-quality improvements can be achieved. In

addition, the log-linear combination of all features outperforms any individual fea-

ture.

Our experiments with MaxEnt and IKN as estimation methods show that the

former seems to scale more gracefully with context size. Although its asymptotic

properties might be better, in practice the efficiency and scalability of IKN makes

it a viable substitution, achieving our best results.

In addition to our improvements in translation quality, we have described how

efficient decoding can be achieved without any significant loss in translation quality.

This has enabled us to significantly increase the size of the training data used in our

experiments.

4.9 Summary

In this chapter we introduced a framework which allows DOT to exploit features

other than the relative frequency of its fragment pairs. We used this framework

to explore the effects of features which condition each target word to the source

context they are associated with. We explored different estimation methods for

these features, obtaining significant gains in translation quality with all of them. In

addition to these source features, we also showed that DOT can benefit from the
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inclusion of an n-gram language model, and that the combination of all of these

features leads to the best translation quality results.

We were also able to scale the size of our training corpora by defining methods

which led to faster decoding times while remaining accurate.
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Chapter 5

Conclusions

In this thesis, we have identified a number of aspects in which the state-of-the-art in

MT could be improved. We began by noticing that PB-SMT is intrinsically unin-

formed as regards the syntax and the structure of both source and target sentences,

and explained why a more syntax-aware system would be desirable. We suggested

that DOT has the potential to overcome these limitations, by explicitly modelling

the relationships between the linguistic structure of the source and target sentences.

However, we also noted a number of limitations in DOT which prevented a fair com-

parison with PB-SMT from being made. When it comes to scoring translations, at

the heart of these limitations is DOT’s exclusive reliance on the frequency in which

its translation rules were observed, lacking features which can model the relation-

ship between source and target words, and a strong language model. Additionally,

we also noted that both systems presented a mismatch between the criteria used to

estimate their features and the ones finally used to evaluate them. We summarized

this comparison in Table 1.1, which we repeat in Table 5.1 for convenience.

These observations gave rise to our research questions, which we now revisit:

RQ1 Can features which relate to expected translation quality be incorporated in

MT models?

RQ2 Can these translation accuracy-based features improve on state-of-the-art

MT?
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Criterion PB-SMT DOT

Linguistic motivation % !

Long-distance reorderings % !

Accuracy-based scoring ∼ %

Multiple features ! %

Lexical equivalences Model ! %

Table 5.1: Summary of the capabilities of PB-SMT and DOT, according to different
criteria

RQ3 Can we incorporate new features into the DOT model of translation in such

a way that the contribution of each feature can be scaled so as to optimise

translation quality?

RQ4 Can we exploit this combination of features by incorporating new ones which

lead to increased translation quality?

RQ1 was addressed in Chapter 3. We proposed a training algorithm which re-

lated the translation units of an MT system to the average impact in translation

quality when they are used. This impact is measured as the average distance be-

tween a translation unit and a unit which was observed translating the same source

span in a candidate sentence which maximized a translation quality metric. We

successfully adapted this algorithm for DOT and for PB-SMT, obtaining significant

translation quality improvements, and showing that it is indeed possible to integrate

translation quality-oriented features into an MT model. Our empirical evaluation of

the performance of this algorithm was carried out by performing Spanish-to-English

translation and comparing the performance of the rescored system with the baseline

system. This evaluation was carried out both at the document level, by using stan-

dard translation quality metrics, and at the sentence level by counting the amount of

sentences for which each system showed improvements or decreases in a translation

quality metric.

The experiments with PB-SMT in Chapter 3 address RQ2 by adapting our

accuracy-based scoring algorithm to this system. By doing this we obtained a sys-
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tem which significantly outperformed a state-of-the-art PB-SMT system over a range

of evaluation metrics. Our experiments give significant evidence to support an affir-

mative answer to RQ2. Our work regarding RQ1 and RQ2 allowed us to conclude

the following:

• Significant improvements in translation quality can be achieved by using

accuracy-based scoring.

• The incorporation of accuracy-based scores into DOT by means of evenly

spreading a fragment’s score over the PCFG rules it is composed of, instead of

assigning scores to fragments individually, is not an impediment to achieving

translation quality gains.

• The use of larger corpora for the estimation of our feature leads to significant

improvements compared to using smaller corpora. The improvement appears

to be caused by more reliable estimates, rather than by a larger percentage of

translation units receiving an accuracy-based score.

• Taking the internal structure of DOT fragment pairs into account in the

accuracy-based scores computation is beneficial on the datasets in which our

evaluation was performed.

• By means of deleted estimation, accuracy-based scores can be obtained for

a PB-SMT system using only the corpus that was used to train the baseline

system, requiring no additional parallel data.

• The use of the F-measure as oracle selection metric leads to better results than

the use of sentence-level Bleu (sBLEU), although the latter is a viable option

which also leads to translation quality gains.

• Our algorithm leads to the identification of a subset of phrase pairs which

is significantly smaller than the complete set of phrase pairs in the baseline

system (87% smaller in our experiments), but which is sufficient to obtain
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translation quality scores on a par with those obtained using the complete

phrase table.

In our description of DOT in Chapter 2 we explained how its method of scoring

exclusively relies on the relative frequency of fragment pairs. We alleviated this

situation in Chapter 4, where we developed a new DOT model which uses a log-

linear combination of features to score translations, directly addressing RQ3. RQ4

was also addressed in this chapter, by taking advantage of this model to incorporate

new features into this model, namely our lexical-window feature and a language

model. This resulted in a system which significantly outperformed the baseline

DOT system. Our conclusions as regards RQ3 and RQ4 are as follows:

• The architecture of a DOT system which is implemented as described in Chap-

ter 2 allows the incorporation of additional features by using the baseline sys-

tem to create a search space over which the new model is employed.

• The incorporation of lexical windows in the log-linear model significantly im-

proves the translation quality of the system, and the inclusion of source context

in these windows is beneficial.

• The use of n-gram language models in DOT is certainly beneficial. This is the

case even if, rather than performing an incremental computation of this feature

during translation, their use is limited to the scoring of complete sentences.

• The estimation of the weights for the different features can be performed us-

ing off-the-shelf implementations of algorithms such as MERT. The log-linear

combination of features outperforms any individual feature.

• MaxEnt presents better asymptotic behaviour than improved Kneser-Ney

(IKN), resulting in a smooth improvement curve. However, if the time taken

to train the models is an issue, and additional training data is available, IKN

is a viable alternative, obtaining improved translation quality results as the

amount of training data increases.
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Criterion PB-SMT DOT

Linguistic motivation % !

Long-distance reorderings % !

Accuracy-based scoring ! !

Multiple features ! !

Lexical equivalences model ! !

Table 5.2: Updated summary of the capabilities of PB-SMT and DOT, after taking
into account the work carried out in this thesis.

• Efficient decoding can be achieved with DOT by the use of coarse-to-fine pars-

ing and by constraining constituent creation to the constituents found by a

monolingual parser. These efficiency improvements, which are of two orders of

magnitude compared to the original system, enable us to scale up the training

data sizes used to obtain DOT’s grammars.

Having addressed some of the issues summarized in Table 5.1, we can now update

this table to reflect the current status of both DOT and PB-SMT after the work

carried out in this thesis. The updated summary is given in Table 5.2. Compared

to Table 5.1, the changes are as follows:

• PB-SMT now has a full check mark on Accuracy-based scoring. The previous

half check mark accounted for its ability to estimate its feature weights via

MERT.

• DOT now has Accuracy-based scoring.

• DOT can now exploit multiple features.

• DOT now incorporates a feature which explicitly accounts for lexical transla-

tion equivalences.

We expect that having made DOT’s scoring model more flexible, allowing the

incorporation of what we believe are the key components of the state-of-the-art

approach, will allow fairer comparisons between these models to be made, as well as
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(by the incorporation of additional features into this model) further improvements

in the performance of this syntax-aware model to be achieved.

5.1 Future Work

During the work carried out in this thesis some questions which merit further inves-

tigation arose. We now revisit these avenues for future work.

Having obtained translation quality improvements using accuracy-based scoring

on a Spanish-to-English translation task, the question of what the behaviour of this

algorithm is on different language pairs or data sets arises. Although our algorithm

is language pair-agnostic and a priori we would expect our results to be consistent

across different language pairs, we consider worthwhile an investigation of the effects

of accuracy-based scoring for language pairs other than Spanish-English.

In our experiments with accuracy-based scoring for DOT, we noted that the

normalization of the edit distance score surprisingly resulted in an underperforming

system. As we explained, we believe this to be caused by our assignment of weights

on a manual basis. The corresponding normalized feature for the accuracy-based

PB-SMT system, whose weight is automatically determined by MERT, shows the

best results for that system. Having now developed a framework in which the

weight of the features in DOT can be estimated via MERT, it would be interesting

to evaluate the performance of the normalized feature under this weight-assignment

method.

Our accuracy-based scoring experiments with DOT required the use of addi-

tional unseen data to create an estimation corpus, while we were able to avoid this

requirement when adapting the technique to PB-SMT. It would be interesting to

investigate the impact of adapting this technique to the case of DOT, and contrast

its performance to that obtained using additional data. When adapting deleted esti-

mation for DOT, a method should be developed to solve the problem of the overlap

between the unique Goodman indexes assigned to each system, so that when incor-
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porating the accuracy-based score of each fragment into the baseline system, the

Goodman index of the fragments match.

As noted in Section 3.2.4, our accuracy-based scoring algorithm could be im-

proved by searching for the sequence of target units (or words) which maximize

translation quality, as opposed to using a complete candidate sentence. In addition,

the effects of directly using the reference as an oracle could be measured.

It would be interesting to investigate the effects of more sophisticated methods

for assigning default scores to unscored units, such as partitioning the set of units

according to properties of the units, such as size or labels used in the fragment.

Having successfully adapted our accuracy-based scoring algorithm to PB-SMT

and DOT, we see no reason why this method could not be exploited in other log-

linear based frameworks, such as the Hierarchical Phrase-Based model (Chiang,

2005, 2007) or the Syntax-Augmented MT system (Zollmann and Venugopal, 2006).

Final avenues for further research of our accuracy-based method are the inves-

tigation of the tradeoff between N -best list size and the corresponding amount of

scored phrase pairs and translation quality improvement, the effect on oracle se-

lection of different evaluation metrics such as TER (Snover et al., 2006), and the

comparison of our phrase-table filtering method with techniques specifically designed

for this purpose, e.g. (Johnson et al., 2007; Sánchez-Martínez and Way, 2009).

The log-linear framework we have introduced for DOT enables it to benefit from

a range of improvements found in the SMT literature. In particular, all kinds of

source information can be exploited as source contexts, such as POS tags (Stroppa

et al., 2007), recursiveness of the parse tree, dependency information (Haque et al.,

2009b), or head word of the sentence (Haque et al., 2009b). Features of the properties

of derivations can also be incorporated, such as minimum amount of fragments

or minimum distance to the shortest derivation among all of the derivations that

generate a translation, or word length of the translation.

When obtaining our lexical windows, we have prioritized words which lie to the

right of the head of a constituent, by including an additional word to the right
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of the head when window sizes are even, and by discarding words to the left of

the head when backing off. This decisions were grounded on properties of right-

branching languages. It would be interesting to evaluate the extent to which these

decisions impact on the behaviour of our features, by experimenting with prioritising

words to the left of the head, and by evaluating performance on non-right-branching

languages.

As explained in Chapter 4, we expect further improvements to be possible by the

use of an n-gram language model in DOT, if this feature is allowed to be properly

computed while building target translations. This will allow an early disposal of

derivations for which the boundaries between the words dominated by their frag-

ments are not fluent according to the language model. As noted, an efficient proce-

dure such as cube pruning (Chiang, 2007) would need to be implemented.

The improved DOTmodel of Chapter 4 could in turn be used as a baseline system

under the accuracy-based scoring method. As the rescoring method improves the

structural features of DOT by directly modifying the scores in the grammar, and as

our source windows aim at improving lexical selection, we expect these methods to

be complementary and to lead to even further improvements when combined.

Finally, having incorporated accuracy-based features into DOT, once the imple-

mentation of our language model feature has matured and once additional source-

context features have been incorporated into our new log-linear model, a comparison

with a standard PB-SMT system could be made.

129



Appendix A

Spanish Tag Set

After obtaining constituency parse trees with the Spanish language pack developed

for Bikel’s (2002) parser by Chrupała and van Genabith (2006), we post-process the

trees discarding all but the first sub-property of part of speech tags. Table A.1 lists

the POS tags we obtained.

POS Tag Description

aq Qualifying adjective
ao Ordinal adjective
cc Coordinating conjunction
cs Subordinating conjunction
da Article determiner
dd Demonstrative determiner
de Exclamative determiner
di Indefinite determiner
dn Numeral determiner
dp Possessive determiner
dt Interrogative determiner
Fa Punctuation: ¡ [
Fc Punctuation: , (comma)
Fd Punctuation: :
Fe Punctuation: ’ (single quote)

continued on next page
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continued from previous page

POS Tag Description

Fg Punctuation: -
Fh Punctuation: /
Fi Punctuation: ¿ ?
Fp Punctuation: . )
Fs Punctuation: . . .
Fx Punctuation: ;
i Interjection
nc Common noun
np Proper noun
p0 Pronoun (particular cases, cf. (Civit, 2003))
pd Demonstrative pronoun
pi Indefinite pronoun
pn Numeral pronoun
pp Personal pronoun
pr Relative pronoun
pt Interrogative pronoun
px Possessive pronoun
rg General adverb
rn Negative adverb
s Preposition
va Auxiliary verb
vm Main verb
vs Semiauxiliary verb
w Date
y Abbreviation
z Number

Table A.1: Spanish part-of-speech tags

The constituent labels we use are the ones used by (Chrupała and van Genabith,

2006), which are listed in Table A.2. Some labels not needed to understand the

examples in this thesis have been omitted. For a complete list see (Chrupała and

van Genabith, 2006).
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Tag Description

sn Noun phrase
gv Verbal group
sp Prepositional phrase
sadv Adverbial phrase
sa Adjectival phrase
conj.subord Subordinating conjunction
coord Coordinating conjunction
interjeccio Interjection
neg Negative adverb
morf se
gerundi Gerund verb
infinitu Infinitive verb
S Root node
S.NF Non-finite clause
S.NF.R Relative non-finite clause
grup.nom Nominal group

Table A.2: Spanish sentence and other constituent tags
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