628 research outputs found

    Performance Evaluation of Sparse Matrix Multiplication Kernels on Intel Xeon Phi

    Full text link
    Intel Xeon Phi is a recently released high-performance coprocessor which features 61 cores each supporting 4 hardware threads with 512-bit wide SIMD registers achieving a peak theoretical performance of 1Tflop/s in double precision. Many scientific applications involve operations on large sparse matrices such as linear solvers, eigensolver, and graph mining algorithms. The core of most of these applications involves the multiplication of a large, sparse matrix with a dense vector (SpMV). In this paper, we investigate the performance of the Xeon Phi coprocessor for SpMV. We first provide a comprehensive introduction to this new architecture and analyze its peak performance with a number of micro benchmarks. Although the design of a Xeon Phi core is not much different than those of the cores in modern processors, its large number of cores and hyperthreading capability allow many application to saturate the available memory bandwidth, which is not the case for many cutting-edge processors. Yet, our performance studies show that it is the memory latency not the bandwidth which creates a bottleneck for SpMV on this architecture. Finally, our experiments show that Xeon Phi's sparse kernel performance is very promising and even better than that of cutting-edge general purpose processors and GPUs

    Towards a portable and future-proof particle-in-cell plasma physics code

    Get PDF
    We present the first reported OpenCL implementation of EPOCH3D, an extensible particle-in-cell plasma physics code developed at the University of Warwick. We document the challenges and successes of this porting effort, and compare the performance of our implementation executing on a wide variety of hardware from multiple vendors. The focus of our work is on understanding the suitability of existing algorithms for future accelerator-based architectures, and identifying the changes necessary to achieve performance portability for particle-in-cell plasma physics codes. We achieve good levels of performance with limited changes to the algorithmic behaviour of the code. However, our results suggest that a fundamental change to EPOCH3D’s current accumulation step (and its dependency on atomic operations) is necessary in order to fully utilise the massive levels of parallelism supported by emerging parallel architectures

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Full text link
    Objective: The advent of High-Performance Computing (HPC) in recent years has led to its increasing use in brain study through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a single acceleration (or homogeneous) platform to effectively address the complete array of modeling requirements. Approach: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform, incorporating three distinct acceleration technologies, a Dataflow Engine, a Xeon Phi and a GP-GPU. The PyNN framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different instances of a state-of-the-art neuron model, modeling the Inferior- Olivary Nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal- network dimensions but also different network-connectivity circumstances that can drastically change application workload characteristics. Main results: The synthetic approach of three HPC technologies demonstrated that BrainFrame is better able to cope with the modeling diversity encountered. Our performance analysis shows clearly that the model directly affect performance and all three technologies are required to cope with all the model use cases.Comment: 16 pages, 18 figures, 5 table

    A general guide to applying machine learning to computer architecture

    Get PDF
    The resurgence of machine learning since the late 1990s has been enabled by significant advances in computing performance and the growth of big data. The ability of these algorithms to detect complex patterns in data which are extremely difficult to achieve manually, helps to produce effective predictive models. Whilst computer architects have been accelerating the performance of machine learning algorithms with GPUs and custom hardware, there have been few implementations leveraging these algorithms to improve the computer system performance. The work that has been conducted, however, has produced considerably promising results. The purpose of this paper is to serve as a foundational base and guide to future computer architecture research seeking to make use of machine learning models for improving system efficiency. We describe a method that highlights when, why, and how to utilize machine learning models for improving system performance and provide a relevant example showcasing the effectiveness of applying machine learning in computer architecture. We describe a process of data generation every execution quantum and parameter engineering. This is followed by a survey of a set of popular machine learning models. We discuss their strengths and weaknesses and provide an evaluation of implementations for the purpose of creating a workload performance predictor for different core types in an x86 processor. The predictions can then be exploited by a scheduler for heterogeneous processors to improve the system throughput. The algorithms of focus are stochastic gradient descent based linear regression, decision trees, random forests, artificial neural networks, and k-nearest neighbors.This work has been supported by the European Research Council (ERC) Advanced Grant RoMoL (Grant Agreemnt 321253) and by the Spanish Ministry of Science and Innovation (contract TIN 2015-65316P).Peer ReviewedPostprint (published version

    Evaluating the performance of legacy applications on emerging parallel architectures

    Get PDF
    The gap between a supercomputer's theoretical maximum (\peak") oatingpoint performance and that actually achieved by applications has grown wider over time. Today, a typical scientific application achieves only 5{20% of any given machine's peak processing capability, and this gap leaves room for significant improvements in execution times. This problem is most pronounced for modern \accelerator" architectures { collections of hundreds of simple, low-clocked cores capable of executing the same instruction on dozens of pieces of data simultaneously. This is a significant change from the low number of high-clocked cores found in traditional CPUs, and effective utilisation of accelerators typically requires extensive code and algorithmic changes. In many cases, the best way in which to map a parallel workload to these new architectures is unclear. The principle focus of the work presented in this thesis is the evaluation of emerging parallel architectures (specifically, modern CPUs, GPUs and Intel MIC) for two benchmark codes { the LU benchmark from the NAS Parallel Benchmark Suite and Sandia's miniMD benchmark { which exhibit complex parallel behaviours that are representative of many scientific applications. Using combinations of low-level intrinsic functions, OpenMP, CUDA and MPI, we demonstrate performance improvements of up to 7x for these workloads. We also detail a code development methodology that permits application developers to target multiple architecture types without maintaining completely separate implementations for each platform. Using OpenCL, we develop performance portable implementations of the LU and miniMD benchmarks that are faster than the original codes, and at most 2x slower than versions highly-tuned for particular hardware. Finally, we demonstrate the importance of evaluating architectures at scale (as opposed to on single nodes) through performance modelling techniques, highlighting the problems associated with strong-scaling on emerging accelerator architectures

    Contribution au calcul sur GPU: considérations arithmétiques et architecturales

    Get PDF
    L’optimisation du calcul passe par une gestion conjointe du matériel et du logiciel. Cette règle se trouve renforcée lorsque l’on aborde le domaine des architectures multicoeurs où les paramètres à considérer sont plus nombreux que sur une architecture superscalaire classique. Ces architectures offrent une grande variété d’unité de calcul, de format de représentation, de hiérarchie mémoire et de mécanismes de transfert de donnée.Dans ce mémoire, nous décrivons quelques-uns de nos résultats obtenus entre 2004 et 2013 au sein de l'équipe DALI de l'Université de Perpignan relatifs à l'amélioration de l’efficacité du calcul dans sa globalité, c'est-à-dire dans la suite d’opérations décrite au niveau algorithmique et exécutées par les éléments architecturaux, en nous concentrant sur les processeurs graphiques.Nous commençons par une description du fonctionnement de ce type d'architecture, en nous attardant sur le calcul flottant. Nous présentons ensuite des implémentations efficaces d'opérateurs arithmétiques utilisant des représentations non-conventionnelles comme l'arithmétique multiprécision, par intervalle, floue ou logarithmique. Nous continuerons avec nos contributions relatives aux éléments architecturaux associés au calcul à travers la simulation fonctionnelle, les bancs de registres, la gestion des branchements ou les opérateurs matériels spécialisés. Enfin, nous terminerons avec une analyse du comportement du calcul sur les GPU relatif à la régularité, à la consommation électrique, à la fiabilisation des calculs ainsi qu'à laprédictibilité
    corecore