154 research outputs found

    Ultrafast Error-Bounded Lossy Compression for Scientific Datasets

    Get PDF
    Today\u27s scientific high-performance computing applications and advanced instruments are producing vast volumes of data across a wide range of domains, which impose a serious burden on data transfer and storage. Error-bounded lossy compression has been developed and widely used in the scientific community because it not only can significantly reduce the data volumes but also can strictly control the data distortion based on the user-specified error bound. Existing lossy compressors, however, cannot offer ultrafast compression speed, which is highly demanded by numerous applications or use cases (such as in-memory compression and online instrument data compression). In this paper, we propose a novel ultrafast error-bounded lossy compressor that can obtain fairly high compression performance on both CPUs and GPUs and with reasonably high compression ratios. The key contributions are threefold. (1) We propose a generic error-bounded lossy compression framework - -called SZx - -that achieves ultrafast performance through its novel design comprising only lightweight operations such as bitwise and addition/subtraction operations, while still keeping a high compression ratio. (2) We implement SZx on both CPUs and GPUs and optimize the performance according to their architectures. (3) We perform a comprehensive evaluation with six real-world production-level scientific datasets on both CPUs and GPUs. Experiments show that SZx is 2∼16x faster than the second-fastest existing error-bounded lossy compressor (either SZ or ZFP) on CPUs and GPUs, with respect to both compression and decompression

    Green HPC: Optimizing Software Stack Energy Efficiency of Large Data Systems

    Get PDF
    High-performance computing (HPC) is indispensable in modern scientific research and industry applications, but its energy consumption is a growing concern. This thesis presents two novel approaches to optimize energy consumption in large data systems. The first chapter of the thesis will discuss the use of Dynamic Voltage and Frequency Scaling (DVFS) to optimize the energy efficiency of two popular lossy compression algorithms: SZ and ZFP. By adjusting the voltage and frequency levels of computing resources, DVFS can reduce energy consumption while maintaining the desired level of performance and accuracy. The second chapter of the thesis will focus on a detailed comparison and analysis of asynchronous and synchronous checkpointing energy consumption using the VELOC and GenericIO libraries. The study investigates the trade-offs between these two checkpointing techniques, offering insights into their energy consumption patterns and performance impacts on large-scale HPC systems. Based on the analysis, we provide recommendations for choosing the most energy-efficient checkpointing method for specific application scenarios. Together, these two approaches contribute to the development of Green HPC, paving the way for more sustainable and energy-efficient large data systems. This thesis will provide valuable insights for researchers and industry practitioners aiming to optimize energy consumption while maintaining high-performance computing capabilities. i

    Improving Performance of Iterative Methods by Lossy Checkponting

    Get PDF
    Iterative methods are commonly used approaches to solve large, sparse linear systems, which are fundamental operations for many modern scientific simulations. When the large-scale iterative methods are running with a large number of ranks in parallel, they have to checkpoint the dynamic variables periodically in case of unavoidable fail-stop errors, requiring fast I/O systems and large storage space. To this end, significantly reducing the checkpointing overhead is critical to improving the overall performance of iterative methods. Our contribution is fourfold. (1) We propose a novel lossy checkpointing scheme that can significantly improve the checkpointing performance of iterative methods by leveraging lossy compressors. (2) We formulate a lossy checkpointing performance model and derive theoretically an upper bound for the extra number of iterations caused by the distortion of data in lossy checkpoints, in order to guarantee the performance improvement under the lossy checkpointing scheme. (3) We analyze the impact of lossy checkpointing (i.e., extra number of iterations caused by lossy checkpointing files) for multiple types of iterative methods. (4)We evaluate the lossy checkpointing scheme with optimal checkpointing intervals on a high-performance computing environment with 2,048 cores, using a well-known scientific computation package PETSc and a state-of-the-art checkpoint/restart toolkit. Experiments show that our optimized lossy checkpointing scheme can significantly reduce the fault tolerance overhead for iterative methods by 23%~70% compared with traditional checkpointing and 20%~58% compared with lossless-compressed checkpointing, in the presence of system failures.Comment: 14 pages, 10 figures, HPDC'1

    Dynamic Quality Metric Oriented Error-bounded Lossy Compression for Scientific Datasets

    Full text link
    With the ever-increasing execution scale of high performance computing (HPC) applications, vast amounts of data are being produced by scientific research every day. Error-bounded lossy compression has been considered a very promising solution to address the big-data issue for scientific applications because it can significantly reduce the data volume with low time cost meanwhile allowing users to control the compression errors with a specified error bound. The existing error-bounded lossy compressors, however, are all developed based on inflexible designs or compression pipelines, which cannot adapt to diverse compression quality requirements/metrics favored by different application users. In this paper, we propose a novel dynamic quality metric oriented error-bounded lossy compression framework, namely QoZ. The detailed contribution is three-fold. (1) We design a novel highly-parameterized multi-level interpolation-based data predictor, which can significantly improve the overall compression quality with the same compressed size. (2) We design the error-bounded lossy compression framework QoZ based on the adaptive predictor, which can auto-tune the critical parameters and optimize the compression result according to user-specified quality metrics during online compression. (3) We evaluate QoZ carefully by comparing its compression quality with multiple state-of-the-arts on various real-world scientific application datasets. Experiments show that, compared with the second-best lossy compressor, QoZ can achieve up to 70% compression ratio improvement under the same error bound, up to 150% compression ratio improvement under the same PSNR, or up to 270% compression ratio improvement under the same SSIM

    CEAZ: Accelerating Parallel I/O via Hardware-Algorithm Co-Design of Efficient and Adaptive Lossy Compression

    Full text link
    As supercomputers continue to grow to exascale, the amount of data that needs to be saved or transmitted is exploding. To this end, many previous works have studied using error-bounded lossy compressors to reduce the data size and improve the I/O performance. However, little work has been done for effectively offloading lossy compression onto FPGA-based SmartNICs to reduce the compression overhead. In this paper, we propose a hardware-algorithm co-design of efficient and adaptive lossy compressor for scientific data on FPGAs (called CEAZ) to accelerate parallel I/O. Our contribution is fourfold: (1) We propose an efficient Huffman coding approach that can adaptively update Huffman codewords online based on codewords generated offline (from a variety of representative scientific datasets). (2) We derive a theoretical analysis to support a precise control of compression ratio under an error-bounded compression mode, enabling accurate offline Huffman codewords generation. This also helps us create a fixed-ratio compression mode for consistent throughput. (3) We develop an efficient compression pipeline by adopting cuSZ's dual-quantization algorithm to our hardware use case. (4) We evaluate CEAZ on five real-world datasets with both a single FPGA board and 128 nodes from Bridges-2 supercomputer. Experiments show that CEAZ outperforms the second-best FPGA-based lossy compressor by 2X of throughput and 9.6X of compression ratio. It also improves MPI_File_write and MPI_Gather throughputs by up to 25.8X and 24.8X, respectively.Comment: 14 pages, 17 figures, 8 table

    Fixed-PSNR Lossy Compression for Scientific Data

    Full text link
    Error-controlled lossy compression has been studied for years because of extremely large volumes of data being produced by today's scientific simulations. None of existing lossy compressors, however, allow users to fix the peak signal-to-noise ratio (PSNR) during compression, although PSNR has been considered as one of the most significant indicators to assess compression quality. In this paper, we propose a novel technique providing a fixed-PSNR lossy compression for scientific data sets. We implement our proposed method based on the SZ lossy compression framework and release the code as an open-source toolkit. We evaluate our fixed-PSNR compressor on three real-world high-performance computing data sets. Experiments show that our solution has a high accuracy in controlling PSNR, with an average deviation of 0.1 ~ 5.0 dB on the tested data sets.Comment: 5 pages, 2 figures, 2 tables, accepted by IEEE Cluster'18. arXiv admin note: text overlap with arXiv:1806.0890
    • …
    corecore