165 research outputs found

    Attribute Grammar Applications in Prototyping LOTOS Tools

    Get PDF
    What is the practical applicability of attribute grammars? As we show in this paper, attribute grammars are at least good enough for the prototyping of fully functional interactive tools. Going from a definition of a language and the functionality of its tools to an attribute grammar is a discipline in need of a systematic approach, for which we give some initial material. As is inevitable when a system is extensively used (in our case the Cornell Synthesizer Generator), this paper also proposes extensions to the attribute grammar formalism and its supporting systems. 1 Introduction This paper represents, in some way, a view from the trenches. How we prototyped tools contributing to a specification environment for LOTOS is the main topic here. Attribute grammars were chosen because they promised to be a good prototyping approach to language based software development, and the close relation between attribute grammars and the description of tool functions helps ensure the correctness of..

    Protocol-Inspired Hardware Testing

    Get PDF
    The relevance of protocol conformance testing techniques to hardware testing is discussed. It is shown that the ioconf (input-output conformance) approach used in protocol testing can be applied to generate tests for a synchronous hardware design using its formal specification. The generated tests are automatically applied to a circuit by a VHDL testbench, thus giving confidence that the hardware design meets its high-level formal specification. Case studies illustrate how the ideas can be applied to standard hardware verification benchmarks such as the Single Pulser and Black-Jack Dealer

    Interactive specification and verification of behavioral adaptation contracts

    Get PDF
    International audienceContext. Adaptation is a crucial issue when building new applications by reusing existing software services which were not initially designed to interoperate with each other. Adaptation contracts describe composition constraints and adaptation requirements among these services. The writing of this specification by a designer is a difficult and error-prone task, especially when interaction protocols are considered in service interfaces. Objective. In this article, we propose a tool-based, interactive approach to support the contract design process. Method. Our approach includes: (i) a graphical notation to define port bindings, and an interface compatibility measure to compare protocols and suggest some port connections to the designer, (ii) compositional and hierarchical techniques to facilitate the specification of adaptation contracts by building them incrementally, (iii) validation and verification techniques to check that the contract will make the involved services work correctly and as expected by the designer. Results. Our results show a reduction both in the amount of effort that the designer has to put into building the contract, as well as in the number of errors present in the final result (noticeably higher in the case of manual specification). Conclusion. We conclude that it is important to provide integrated tool support for the specification and verification of adaptation contracts, since their incorrect specification induces erroneous executions of the system. To the best of our knowledge, such tool support has not been provided by any other approach so far, and hence we consider the techniques described in this paper as an important contribution to the area of behavioral software adaptation

    Rigorous object-oriented analysis

    Get PDF
    Object-oriented methods for analysis, design and programming are commonly used by software engineers. Formal description techniques, however, are mainly used in a research environment. We have investigated how rigour can be introduced into the analysis phase of the software development process by combining object-oriented analysis (OOA) methods with formal description techniques. The main topics of this investigation are a formal interpretation of the OOA constructs using LOTOS, a mathematical definition of the basic OOA concepts using a simple denotational semantics and a new method for object- oriented analysis that we call the Rigorous Object-Oriented Analysis method (ROOA). The LOTOS interpretation of the OOA concepts is an intrinsic part of the ROOA method. It was designed in such a way that software engineers with no experience in LOTOS, can still use ROOA. The denotational semantics of the concepts of object-oriented analysis illuminates the formal syntactic transformations within ROOA and guarantees that the basic object- oriented concepts can be understood independently of the specification language we use. The ROOA method starts from a set of informal requirements and an object model and produces a formal object-oriented analysis model that acts as a requirements specification. The resulting formal model integrates the static, dynamic and functional properties of a system in contrast to existing OOA methods which are informal and produce three separate models that are difficult to integrate and keep consistent. ROOA provides a systematic development process, by proposing a set of rules to be followed during the analysis phase. During the application of these rules, auxiliary structures are created to help in tracing the requirements through to the final formal model. As LOTOS produces executable specifications, prototyping can be used to check the conformance of the specification against the original requirements and to detect inconsistencies, omissions and ambiguities early in the development process

    Architectural notes: a framework for distributed systems development

    Get PDF
    This thesis develops a framework of methods and techniques for distributed systems development. This framework consists of two related domains in which design concepts for distributed systems are defined: the entity domain and the behaviour domain. In the entity domain we consider structures of functional entities and their interconnection, while in the behaviour domain we consider behaviour definition and structuring. An interaction in which we abstract from the particular responsibilities of the participating functional entities is considered as an action. Behaviours consist of actions, interactions and their relationships. Relationships between actions and interactions are defined in terms of causality relations. In each causality relation the conditions and constraints for an action or interaction to occur are defined. Two important behaviour structuring techniques have been identified from the possible ways causality relations can be distributed: causality-oriented behaviour composition and constraint-oriented behaviour composition. Causality-oriented behaviour composition consists of placing some conditions of an action and the action itself in different sub-behaviours. Constraint-oriented behaviour composition consists of placing parts of the conditions and constraints of an action in different sub-behaviours, such that this action is shared by these sub-behaviours. This thesis identifies milestones in the design process of distributed systems, as well as the design steps to move from one milestone to another. These design steps are characterized using the concepts of the entity and the behaviour domain. We identified two crucial design operations of the behaviour domain that support these design steps: behaviour refinement and action refinement. Behaviour refinement consists of introducing (internal) structure in the causality relations of reference actions of an abstract behaviour, but preserving their causality and exclusion relationships and their attribute values. Action refinement consists of replacing abstract actions by activities, such that the completion of these activities correspond to the occurrence of the abstract actions. One important characteristic of action refinement is the possibility of distributing attribute values of the abstract actions over actions of the activities that replace them in the concrete behaviours. The area of research, scope and objectives of this thesis are discussed in Chapter 1. The concept of design culture and its elements is introduced in this chapter in order to provide an overview of the important aspects of the design process. Entity domain, behaviour domain, and design milestones are introduced and discussed in Chapter 2. This chapter also discusses the global objectives of design steps, and the abstraction obtained by considering interactions between cooperating functional entities as actions of the interaction system between these entities. Action, action attributes, causality and exclusion are discussed in Chapter 3. This chapter shows how a behaviour can be defined in terms of the causality relations of its actions in a monolithic form. Causality-oriented behaviour composition is discussed in Chapter 4. Entries and exits of a behaviour are the mechanisms that make it possible to assign parts of a condition of an action and the action itself to different sub-behaviours. Constraint-oriented behaviour composition is discussed in Chapter 5. Decomposition possibilities of monolithic behaviours are systematically studied in this chapter. Behaviour refinement is discussed in Chapter 6. This chapter defines a method to obtain an abstraction of a concrete behaviour. This method can be used to check whether the concrete behaviour corresponds to a certain abstract behaviour. Action refinement is discussed in Chapter 7. This chapter identifies some activity forms, and define the rules for considering these activities as implementations of an abstract action. These rules are used in a method to derive an abstraction of a concrete behaviour in which the abstract actions are implemented as activities. This method can be used to check whether the concrete behaviour corresponds to a certain abstract behaviour. Chapter 8 discusses a design example that is meant to illustrate the use of our design concepts. The example is an interaction server, which is a component that supports the interaction between multiple functional entities. Chapter 9 draws some conclusions and revisits the design milestones of Chapter 2, showing alternatives for the design trajectory which have been created with the use of actions and interactions in a single framework

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    • …
    corecore