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Abstrac t  

What is the practical applicability of attribute grammars? As we show in this 
paper, attribute grammars are at least good enough for the prototyping of fully 
functional interactive tools. Going from a definition of a language and the func- 
tionaUty of its tools to an attribute grammar is a discipline in need of a systematic 
approach, for which we give some initial material. As is inevitable when a system 
is extensively used (in our case the Cornell Synthesizer Generator), this paper also 
proposes extensions to the attribute grammar formalism and its supporting systems. 

1 Introduction 

This paper  represents, in some way, a view from the trenches. How we prototyped tools 
contributing to a specification environment for LOTOS is the main topic here. Attr ibute 
grammars  were chosen because they promised to be a good prototyping approach to lan- 
guage based software development, and the close relation between at t r ibute  grammars  
and the description of tool functions helps ensure the correctness of the tool prototypes. 
Needless to say, doing some large developments based on a t t r ibute  grammars  has given 
us some insights in what can be done with them and what their limitations are. Knowing 
some techniques for structuring attribute grammars is very important. Yet, the method- 
ology of programming with attribute grammars is not fully developed. One of the aims of 
this paper is to contribute to that methodology. Usage of attribute grammars in our tools 
is also discussed in another paper [vE89b], which has more emphasis on the functionality 
of the tools produced. 
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The attribute system selected for our work is the Cornell Synthesizer Generator (SG) 
[TR89a,TR89b]. Its important features are that it is a fully functional generator of struc- 
ture editors employing incremental attribute evaluation. Moreover, the fact that these 
generated editors work on a window system greatly contributes to their appeal. 

The structure of this paper is as follows. We assume some familiarity with attribute 
grammars and the concept of structure editors. In section 2 we discuss the kind of tool 
functionality that we want to prototype for LOTOS tools, and show that the concept 
of structure editing has wide applicability for that. Section 3 is devoted to attribute 
grammar programming techniques and, by necessity, also comments on limitations and 
possible extensions. Creating interactive user interfaces is the subject of section 4. 

2 Functional i ty  of  LOTOS Tools 

Most interactive tools can be seen as editors. In an editor the user issues commands to 
navigate through, manipulate or view the edit-object. For example, the edit-object of a 
conventional text editor is a sequence of lines of characters. In a database system the 
edit-object is an entire database and can be accessed through a database query language. 
Tools that support a specification language operate on expressions in this language and on 
objects that denote the semantics of these expressions (as in a programming language: the 
program, its execution state and assertions). The SG generates language specific editors 
from a high level language specification. Editor specifications are written in a formalism 
(SSL) that is based on attribute grammars. 

LOTOS (Language Of Temporal Ordering Specification) is a language developed for 
the formal specification of communication protocols and services. It was developed by 
ISO for the work on Open Systems Interconnectlon and is now international standard 
IS8807. LOTOS is based on Milner's CCS (Calculus of Communicating Systems) [Mil80]. 
Its data type structure is based on the abstract data type language ACT ONE [EM85]. 
An overview of LOTOS, including specifications and theory, can be found in [vEVD89]. 
A tutorial on LOTOS can also be found in [BB87]. 

In process algebraic approaches, such as LOTOS and CCS, the emphasis is on de- 
scribing systems as behaviours. A behaviour is a sequence of events and event-offers. An 
event is the result of a synchronous interaction of behaviours. A behaviour is described by 
a behaviour expression. A behaviour expression can be composed by combining atomic 
event-offers and by combining other behaviour expressions with operators such as choice, 
parallel, enable, disable etc. Behaviour expressions can also be named and parameterised. 

Semantically, a behaviour expression denotes a transition system of states and transi- 
tions (corresponding to events) between states. At each state of the behaviour a number 
of events are possible. The set of these events is called the menu of that state. If no events 
are possible, the state is usually called a deadlock state. All possible sequences of events 
form the tree of behaviour, also called the communication tree. Each node in the tree 
is a state, and each edge corresponds to an event, which is possibly parameterised with 
values. The communication tree is an important concept that is the basis of a number of 
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tools because it captures the dynamic behaviour of a specification. 

Different specifications can be equivalent in a certain sense, e.g. they have the same 
externally observable behaviour. The typical example in the communication field is a 
service as opposed to the protocol that should deliver the service. The service only 
describes, for example, that a certain event on one side is followed by an event on the 
other side. The protocol also describes how this is done. One aspect of verification 
is proving the equivalence of two specifications. The strong semantical foundations of 
LOTOS allows the development of a theory that describes when two specifications are 
equivalent in a certain sense. A number of these equivalence relations are discussed in 
[Bri88a,Bri88b,Mi180]. These equivalence relations do not only have a use in the proof of 
correctness of a specification, as in the previous protocol example. They can also serve as 
the basis for correctness preserving transformations for restructuring specifications. 

The purpose of tools is to support a design process, based on LOTOS, from the initial 
specification to the final implementation. After making a formal specification of a system 
in LOTOS, subsequent steps of this process are aimed at verifying it, refining it and 
adding implementation decisions. LOTOS based design methods are themselves under 
development, [VSvS88]. so it is important to facilitate the development of design support 
tools by rapid prototyping in order to assess these design methods. 

Functions of tools can be grouped according to two broad phases in a design process. 
The first group of functions supports the construction and analysis of specifications. Here 
we find functions that support the editing of specifications and the checking of properties 
such as syntax and static semantics, functions for the static analysis (e.g. data type and 
process structure browsing), and functions for the dynamic analysis of behaviour (e.g. 
walking through and unfolding of the communication tree of the behaviour, also called 
simulation). The second group of functions supports the implementation, refinement and 
correctness proof of specifications. Characteristic of these functions is that they relate 
specifications to each other. Examples include comparing a service to a protocol speci- 
fication, or transforming a specification into a differently structured one. This involves 
test generation and checking, symbolic manipulation, transformation by equivalence laws, 
and proof assistance. 

Existing tools for full LOTOS include the simulator Hippo [vE89a] and the Ottawa 
simulators. [LOBF88]. LOLA [QPF89] is a transformation tool for most of full LOTOS. 

The prime attribute grammar based tool that we worked on is a LOTOS editor. As 
stated, most interactive tools look like an editor. Nevertheless the functionality of the 
LOTOS editor extends greatly beyond what is normally perceived to be the functionality 
of an editor. Besides being a full structure editor and a pretty printer for LOTOS, it 
also checks the static semantics of the edit-object. It gives facilities for investigating the 
types of value expressions (LOTOS has overloaded operators) and for browsing through 
a specification and its error messages in a structural way. Furthermore it partly supports 
an analysis of the dynamic semantics of a specification (e.g. what does this behaviour 
expression do). The LOTOS editor is generated from approximately 20.000 lines of at- 
tribute grammar. It is noteworthy that implementing tool functions for a language feeds 
back on its definition. For example, the first attempts at describing the static semantics of 
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LOTOS in an attribute grammar have resulted in fairly extensive changes (clarifications) 
in the language definition. 

The other tools that we worked on served more as prototypes into tool functionality 
for transforming a specification into an equivalent one. The editors help in conducting 
a proof, and serve as proof assistants. They are research vehicles and help us assess the 
viability of certain tool functions. The aforementioned tools are described in more detail 
in [vE89b]. In this paper we concentrate on the attribute grammar formalism. 

3 Attribute Grammar Programming Techniques 

In this section we discuss how an attribute grammar describing certain tool functionality 
can be developed. It is structured along the lines of an 'idealised' development of such 
a grammar. In sequence we discuss concrete syntax, abstract syntax, attributes and at- 
tribute equations, transformations, performance and some miscellanea. In the process we 
discuss features found useful and facilities found missing. So, the section shows attribute 
grammar programming techniques while at the same time being a critique of the system 
we used: the Cornell Synthesizer Generator. It should be noted that [TR89a] is also a 
good introduction into the use of attribute grammars. Furthermore, [KRS82] also dis- 
cusses a design discipline for attribute grammars, and [vE89b] gives more detail about 
the attribute grammars for the tools discussed here. 

3 .1  C o n c r e t e  S y n t a x  

There are two aspects of concrete syntax for the SG. One is the syntax that is used for 
parsing a text so that it can be read into an editor. The other is the description of the 
unparsing of edit-objects. 

We do not discuss the creation of a concrete syntax here. What we do discuss is 
the relation with abstract syntax. In the SG, an abstract syntax tree is created by 
attribution of a concrete syntax tree. This scheme has advantages and disadvantages. 
The advantage is that the definition of the abstract syntax (on which the semantical tool 
functions will be defined) is not cluttered up with details that only serve for parsing. 
The full attribute formalism is available for the translation between concrete and abstract 
syntax, which gives considerable freedom. Related to that is the fact that the unparsing 
(or pretty printing) can be described independently from the concrete parsing syntax, and 
can include information that is computed by attribute rules on that abstract syntax. The 
main disadvantage is that one needs three descriptions of the syntax (concrete parsing 
syntax, abstract syntax and unparsing), which can look very similar, and a mapping 
between these. In the initial development phase this problem can be slightly reduced if 
the description of the parse syntax is postponed (after all, a structure editor not necessarily 
has to have a way of reading text). 

The treatment of comments in this scheme is also not completely trivial, ff comments 
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are to be retained in the edit-object, they have to be part of the abstract syntax. 

The pretty printing description language specifies the placement of unparsed objects 
relative to one another. An important feature of this language is, paradoxically, that 
it cannot describe every conceivable layout. This leads to simple and efficiently imple- 
mentable unparsing schemes. In practice it turns out that a reasonable layout of LOTOS 
specifications can be described. 

3 . 2  A b s t r a c t  S y n t a x  

Abstract syntax is the backbone of an attribute grammar based structure editor. It is 
important that the abstract syntax can be described in such a way that it fulfills the 
following requirements. The relation between abstract and concrete syntax should be 
easy to describe, both for parsing and unparsing. The abstract syntax also determines 
the ease with which structural editing operations can be done. Early structure editor 
generators only had an implicit concept of resting place (which are the places the selection 
of the editor can be): every nonterminal of the abstract syntax was a resting place. In 
the SG, resting places are a separate concept, enabling better compromises between the 
various requirements on an abstract syntax. The most important requirement is that the 
abstract syntax should allow a concise description of the attribute rules, as the attribute 
rules typically form the bulk of an editor specification. 

The SG uses term algebras to describe both abstract syntax and attribute values. 
Simply stated, term algebras define abstract syntax trees and operators to construct 
them. The wide applicability of term algebras has a number of advantages. For example, 
attributes can be used as abstract syntax objects, which is useful in presenting derived 
information in the unparsing, and in computing the result of a transformation (discussed 
further on). Conversely, an abstract syntax object might be the canonical representation 
of an attribute value, e.g. an identifier is itself the best representation of an identifier. 
Finally, the description of 'incomplete', e.g. partially edited, objects is well integrated 
in the term algebra formalism of the SG. This implies that is is possible to describe 
attributions that can compute partial checks of partial edit-objects. 

How does one derive an abstract syntax from a concrete syntax? In the abstract 
syntax all terminal symbols that serve solely for parsing purposes, such as keywords and 
parentheses, are omitted. A concrete syntax can also contain so-called chain productions, 
that serve to describe operator precedences. These should also be eliminated. It can 
sometimes be convenient to replicate a nonterminal structure, in order to ease the de- 
scription of attribute rules. An example in LOTOS is formed by identifier lists. They can 
denote gate identifiers or value identifiers, which have to be attributed differently. 

3 . 3  A t t r i b u t e s  

Attributes and attribute equations are used, for example, for checking static semantics, 
for computing dynamic semantics, and for computing the layout information and infor- 
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matives. In the SG, the facility for defining functions over terms is effectively a side-effect 
free applicative language. One feature of this language is particularly interesting: attri- 
bution expressions, which allows any term, e.g. an attribute value, to be attributed. This 
is particularly convenient in the description of functions based on the dynamic semantics. 
In this way one can put a syntactic object, e.g. a behaviour expression, in an attribute, 
copy it to a different place, and at tr ibute it there, using an attr ibution expression. 

When is it possible to describe semantics with at tr ibute gramrnars? It is necessary 
that  a semantical definition can be made constructive, as opposed to a constraint oriented 
definition (as in: ' the requirement is fulfilled if a solution to these equations exists.'). 

How does one create a semantical definition with at tr ibute grammars? There are some 
standard techniques, a large number of which are presented in [TR89a], e.g. how to do 
redundant  parenthesis elimination, and three solutions for checking identifier binding, but  
do these contribute to a method? Our first approach to a method is the following. A 
language definition contains a large number of 'objects' ,  some of them syntactical ones, 
but  others introduced to express requirements and meaning in the semantics. Examples 
of these are environments of identifiers, types of expressions, and conditions. All these 
objects have to be identified, and then systematically mapped to concepts in an attribute 
grammar, e.g. abstract syntax nonterrninal, attribute, function over terms. For example, 
for a semantical requirement one expects some attributes to hold and disseminate relevant 
information, some function to compute the requirement, an error at tr ibute to hold the 
error message, and a suitable unparsing of the error message. 

Of course there are trade-offs possible in the design of an at tr ibute grammar. An 
important  trade-off is between having a function compute some information or distributing 
the computation over the abstract syntax using attributes. For example, in Pascal a 
variable declaration can contain the following fragment: a ,  b,  c:  i n t .  To compute 
the contribution of this fragment to the environment of defined identifiers one can either 
apply a function on the identifier list on the left and the type name, or one can thread 
an at t r ibute representing the type through the list. Another trade-off has to do with 
incremental performance, an issue that  will be discussed in more detail further on. Our 
name for a technique discussed there is attribute splitting, and it involves splitting an 
at tr ibute that  represents a certain composite value in two attributes each representing a 
part  of tha t  value. This is done in the hope that  one of the attributes changes less often 
than  the other one so that  the cost of incremental reevaluation is reduced. 

3 . 4  T r a n s f o r m a t i o n s  

Transformations in the SG are manually selected and applied. Their effect is to replace 
the current selection by a new abstract syntax tree object, which is presumably computed 
from the selection. In that computation, attributes and functions can be used. Transfor- 
mations have two main applications. They are used to define structural editing operations, 
such as template invocation ('make this thing into a parallel composition of things'), and, 
more interestingly, to define semantical transformations. From the (dynamic) semantics 
we derive equivalence laws, which can be implemented as such transformations. The idea 
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is that we can prove the equivalence of one specification to another if we can transform 
the first into the second using only equivalence taws. Tools that support this are proof 
assistants. An example of such a transformation is an 'unfold' rule that replaces a process 
invocation by its defining body. One step beyond this is to use such tools to transform 
a specification into one that reflects implementation decision. From our experiences in 
working on such tools we see two possible improvements to the SG facility for defining 
transformations. One, the SG enables a transformation when the selection of the editor 
matches a certain syntactical pattern. It would be interesting to also allow 'semantical 
conditions' on transformations, which can for instance be on the value of a certain at- 
tribute. In our experiences, a large number of transformations are always syntactically 
possible but not semantically, making it hard for the user to find his or her way through 

proof. Two, certain transformations add information. For example, consider a transfor- 
mation to change the name of a certain variable in an expression. How is the new name 
entered? A facility for allowing the user to give a parameter to the transfo~nation would 
solve that problem. 

3 .5  P e r f o r m a n c e  

There are two aspects of performance: the time it takes to fully attribute a given abstract 
syntax tree, and the time it takes to respond to an edit operation (incremental perfor- 
mance). SG generated editors employ incremental reevaluation of attributes, meaning 
that only those attributes are reevaluated that have changed. Incremental reevaluation 
is an essential prerequisite for the concept of consistently attributed edit-objects. For 
instance, in our LOTOS tools, it keeps response times in the 0.5-5 sec range (most of the 
time), where a full attribution can take minutes for a realistically sized specification. 

Incremental performance can vary between functionally equivalent editors. In an ear- 
lier section we mentioned attr/bute splitting, a technique for improving incremental per- 
formance. In the LOTOS editor, an important example is formed by the environment 
of process definitions. This environment has two parts: the process headings, and the 
process bodies, and the environment attribute is split accordingly. The headings are used 
in checking parameter list correspondence, and the bodies are used in certain dynamic 
semantics functions. Now if they are represented in a single attribute, each change in the 
body of one process definition changes the value of the entire environment, which causes 
all parameter list correspondences (static semantics) to be rechecked. After attribute 
splitting, a change in a body avoids this superfluous rechecking. Transformations like 
these can have a major impact on incremental performance, but unfortunately do not 
appear to be an active research area. 

Summing up the performance of the LOTOS editor, there is good news and bad news. 
The good news is that people are willing to use the system on realistic specifications 
(approximately 2000 lines). The bad news is that this is the limit given the current 
version of the SG (3.2) and vintage 1988 hardware (Sun 3/60, 3 Mips, 8 Mbyte memory). 
Measurements show that the run time is dominated by environment table construction 
and lookup, even after considerable tuning. 
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3 . 6  M i s c e l l a n e a  

SG generated editors can manipulate multiple edit-objects, or buffers as they are also 
called. We have two uses for that. First, a LOTOS specification can refer to a standard 
library. In our editor, that library is a separate edit-object. Second, we place derived 
information, such as an analysis of dynamic behaviour (the menu), in separate edit- 
objects. The facilities of the SG to relate these objects are very limited. In fact, some 
fiddling in C code is necessary to get the previous functions to work. What one would 
want, is a facility to describe multiple buffers for edit-objects, and their dependencies, in 
such a way there is propagation of change between edit-objects. For example, the standard 
library, or a suitable representation of it, could be an inherited attribute of a specification 
buffer. Note that the dependencies between buffers are themselves an edit-object. In 
fact, making buffers first class citizens in the editor specification language may lead to 
a solution for this. Some work on coupling various invocations of editors is reported in 
[KKM87]. 

Editors can be interfaced to plain C code, although the current version of the SG makes 
this oflly possible, rather than convenient. One use of that is to perform computations on 
objects that are awkward to express in attribute grammars or whose attribute grammar 
implementation is inefficient. Examples are large state space exploration and abstract 
data type simulation. It is important that objects can be shuttled back and forth between 
the attribute grammar and the C code easily. For this reason these objects should have a 
simple and implementation independent description. Again, term algebras promise to be 
a good technique. 

4 Interact ive  User  Interfaces  

A system like the SG provides a considerable number of interactive facilities almost for 
free. Having an editor maintain consistently attributed edit-objects is a powerful concept. 
The attributes can compute interesting information that is available on demand, e.g. select 
a value expression and request its type. For more global information, there is the concept 
of alternate views, which can be used to provide summary information. Examples of usage 
are a view to show all error messages, and a view to show all headings of definitions. 

What can be improved in the SG is the ability to manipulate multiple buffers related 
by attribute dependencies, as discussed in the previous section. If this idea is extended to 
its potential, it might enable a more object oriented style to user interface design. A user 
interface then allows the manipulation of multiple objects that are related and respond 
to changes in them, where user invoked operations can create new objects that are placed 
in their own buffers. A tool that might benefit is a proof assistant. It could manipulate a 
hierarchy of objects representing either intermediate objects or steps in a proof. The idea 
would also be of benefit to the integration of external tools, as their inputs and outputs 
can be seen as objects in the user interface. 
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In this section we summarise our experiences with and comments on attribute grammars 
in general and the SG in particular. 

Basing tool functionality strongly on syntactical structure is a good idea. Attribute 
grammars are a powerful formalism, and have enabled us to make usable tools. Attribute 
grammars are a slightly more restricted expression formalism than e.g. Prolog, but they 
are in general also faster in their implementation. Probably every expression formalism is 
a different compromise between expressive power and efficiency of implementation. Pre- 
sumable good facilities for external interfaces can enable a 'best of both worlds' approach, 
optimised both for ease of description and speed of execution. For example, in one of our 
experiments we have coupled a state space exploration tool to a proof assistant. 

The distinguishing strong point of the SG is its concept of generating editors that 
maintain consistently attributed edit-objects. A nice property of the description language 
of the SG, is that it makes no distinction between the syntactical domain, e.g. the edit- 
object, and the semantical domain, used for the attribute types. This enables, for example, 
the facility of attribution expressions. Transformations are a good idea for manually 
applying equivalence rules. Suggestions to extend them with parameters and conditions 
have been discussed. The interface to external tools is there, but needs integration with 
methods to build those other tools. The most promising potential for extension is the 
introduction of a more object oriented style, improving the handling of multiple related 
edit buffers and the interface to external tools. 
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