192 research outputs found

    Classification of wood defect images using local binary pattern variants

    Get PDF
    This paper presents an analysis of the statistical texture representation of the Local Binary Pattern (LBP) variants in the classification of wood defect images. The basic and variants of the LBP feature set that was constructed from a stage of feature extraction processes with the Basic LBP, Rotation Invariant LBP, Uniform LBP, and Rotation Invariant Uniform LBP. For significantly discriminating, the wood defect classes were further evaluated with the use of different classifiers. By comparing the results of the classification performances that had been conducted across the multiple wood species, the Uniform LBP was found to have demonstrated the highest accuracy level in the classification of the wood defects

    Noise Tolerant Descriptor for Texture Classification

    No full text
    International audienceAmong many texture descriptors, the LBP-based representation emerged as an attractive approach thanks to its low complexity and effectiveness. Many variants have been proposed to deal with several limitations of the basic approach like the small spatial support or the noise sensitivity. This paper presents a new method to construct an effective texture descriptor addressing those limitations by combining three features: (1) a circular average filter is applied before calculating the Complemented Local Binary Pattern (CLBP), (2) the histogram of CLBPs is calculated by weighting the contribution of every local pattern according to the gradient magnitude, and (3) the image features are calculated at different scales using a pyramidal framework. An efficient calculation of the pyramid using integral images, together with a simple construction of the multi-scale histogram based on concatenation, make the proposed approach both fast and memory efficient. Experimental results on different texture classification databases show the good results of the method, and its excellent noise robustness, compared to recent LBP-based methods

    Statistical binary patterns for rotational invariant texture classification

    No full text
    International audienceA new texture representation framework called statistical binary patterns (SBP) is presented. It consists in applying rotation invariant local binary pattern operators (LBP riu2) to a series of moment images, defined by local statistics uniformly computed using a given spatial support. It can be seen as a generalisation of the commonly used complementation approach (CLBP), since it extends the local description not only to local contrast information, but to higher order local variations. In short, SBPs aim at expanding LBP self-similarity operator from the local gray level to the regional distribution level. Thanks to a richer local description, the SBPs have better discrimination power than other LBP variants. Furthermore, thanks to the regularisation effect of the statistical moments, the SBP descriptors show better noise robustness than classical CLBPs. The interest of the approach is validated through a large experimental study performed on five texture databases: KTH-TIPS, KTH-TIPS 2b, CUReT, UIUC and DTD. The results show that, for the four first datasets, the SBPs are comparable or outperform the recent state-of-the-art methods, even using small support for the LBP operator, and using limited size spatial support for the computation of the local statistics

    BRUISE DETECTION IN APPLES USING 3D INFRARED IMAGING AND MACHINE LEARNING TECHNOLOGIES

    Get PDF
    Bruise detection plays an important role in fruit grading. A bruise detection system capable of finding and removing damaged products on the production lines will distinctly improve the quality of fruits for sale, and consequently improve the fruit economy. This dissertation presents a novel automatic detection system based on surface information obtained from 3D near-infrared imaging technique for bruised apple identification. The proposed 3D bruise detection system is expected to provide better performance in bruise detection than the existing 2D systems. We first propose a mesh denoising filter to reduce noise effect while preserving the geometric features of the meshes. Compared with several existing mesh denoising filters, the proposed filter achieves better performance in reducing noise effect as well as preserving bruised regions in 3D meshes of bruised apples. Next, we investigate two different machine learning techniques for the identification of bruised apples. The first technique is to extract hand-crafted feature from 3D meshes, and train a predictive classifier based on hand-crafted features. It is shown that the predictive model trained on the proposed hand-crafted features outperforms the same models trained on several other local shape descriptors. The second technique is to apply deep learning to learn the feature representation automatically from the mesh data, and then use the deep learning model or a new predictive model for the classification. The optimized deep learning model achieves very high classification accuracy, and it outperforms the performance of the detection system based on the proposed hand-crafted features. At last, we investigate GPU techniques for accelerating the proposed apple bruise detection system. Specifically, the dissertation proposes a GPU framework, implemented in CUDA, for the acceleration of the algorithm that extracts vertex-based local binary patterns. Experimental results show that the proposed GPU program speeds up the process of extracting local binary patterns by 5 times compared to a single-core CPU program

    Nonlinear Adaptive Diffusion Models for Image Denoising

    Full text link
    Most of digital image applications demand on high image quality. Unfortunately, images often are degraded by noise during the formation, transmission, and recording processes. Hence, image denoising is an essential processing step preceding visual and automated analyses. Image denoising methods can reduce image contrast, create block or ring artifacts in the process of denoising. In this dissertation, we develop high performance non-linear diffusion based image denoising methods, capable to preserve edges and maintain high visual quality. This is attained by different approaches: First, a nonlinear diffusion is presented with robust M-estimators as diffusivity functions. Secondly, the knowledge of textons derived from Local Binary Patterns (LBP) which unify divergent statistical and structural models of the region analysis is utilized to adjust the time step of diffusion process. Next, the role of nonlinear diffusion which is adaptive to the local context in the wavelet domain is investigated, and the stationary wavelet context based diffusion (SWCD) is developed for performing the iterative shrinkage. Finally, we develop a locally- and feature-adaptive diffusion (LFAD) method, where each image patch/region is diffused individually, and the diffusivity function is modified to incorporate the Inverse Difference Moment as a local estimate of the gradient. Experiments have been conducted to evaluate the performance of each of the developed method and compare it to the reference group and to the state-of-the-art methods
    • …
    corecore