1,678 research outputs found

    Improving K-means clustering with enhanced Firefly Algorithms

    Get PDF
    In this research, we propose two variants of the Firefly Algorithm (FA), namely inward intensified exploration FA (IIEFA) and compound intensified exploration FA (CIEFA), for undertaking the obstinate problems of initialization sensitivity and local optima traps of the K-means clustering model. To enhance the capability of both exploitation and exploration, matrix-based search parameters and dispersing mechanisms are incorporated into the two proposed FA models. We first replace the attractiveness coefficient with a randomized control matrix in the IIEFA model to release the FA from the constraints of biological law, as the exploitation capability in the neighbourhood is elevated from a one-dimensional to multi-dimensional search mechanism with enhanced diversity in search scopes, scales, and directions. Besides that, we employ a dispersing mechanism in the second CIEFA model to dispatch fireflies with high similarities to new positions out of the close neighbourhood to perform global exploration. This dispersing mechanism ensures sufficient variance between fireflies in comparison to increase search efficiency. The ALL-IDB2 database, a skin lesion data set, and a total of 15 UCI data sets are employed to evaluate efficiency of the proposed FA models on clustering tasks. The minimum Redundancy Maximum Relevance (mRMR)-based feature selection method is also adopted to reduce feature dimensionality. The empirical results indicate that the proposed FA models demonstrate statistically significant superiority in both distance and performance measures for clustering tasks in comparison with conventional K-means clustering, five classical search methods, and five advanced FA variants

    A hybrid swarm-based algorithm for single-objective optimization problems involving high-cost analyses

    Full text link
    In many technical fields, single-objective optimization procedures in continuous domains involve expensive numerical simulations. In this context, an improvement of the Artificial Bee Colony (ABC) algorithm, called the Artificial super-Bee enhanced Colony (AsBeC), is presented. AsBeC is designed to provide fast convergence speed, high solution accuracy and robust performance over a wide range of problems. It implements enhancements of the ABC structure and hybridizations with interpolation strategies. The latter are inspired by the quadratic trust region approach for local investigation and by an efficient global optimizer for separable problems. Each modification and their combined effects are studied with appropriate metrics on a numerical benchmark, which is also used for comparing AsBeC with some effective ABC variants and other derivative-free algorithms. In addition, the presented algorithm is validated on two recent benchmarks adopted for competitions in international conferences. Results show remarkable competitiveness and robustness for AsBeC.Comment: 19 pages, 4 figures, Springer Swarm Intelligenc

    Adaptive firefly algorithm for hierarchical text clustering

    Get PDF
    Text clustering is essentially used by search engines to increase the recall and precision in information retrieval. As search engine operates on Internet content that is constantly being updated, there is a need for a clustering algorithm that offers automatic grouping of items without prior knowledge on the collection. Existing clustering methods have problems in determining optimal number of clusters and producing compact clusters. In this research, an adaptive hierarchical text clustering algorithm is proposed based on Firefly Algorithm. The proposed Adaptive Firefly Algorithm (AFA) consists of three components: document clustering, cluster refining, and cluster merging. The first component introduces Weight-based Firefly Algorithm (WFA) that automatically identifies initial centers and their clusters for any given text collection. In order to refine the obtained clusters, a second algorithm, termed as Weight-based Firefly Algorithm with Relocate (WFAR), is proposed. Such an approach allows the relocation of a pre-assigned document into a newly created cluster. The third component, Weight-based Firefly Algorithm with Relocate and Merging (WFARM), aims to reduce the number of produced clusters by merging nonpure clusters into the pure ones. Experiments were conducted to compare the proposed algorithms against seven existing methods. The percentage of success in obtaining optimal number of clusters by AFA is 100% with purity and f-measure of 83% higher than the benchmarked methods. As for entropy measure, the AFA produced the lowest value (0.78) when compared to existing methods. The result indicates that Adaptive Firefly Algorithm can produce compact clusters. This research contributes to the text mining domain as hierarchical text clustering facilitates the indexing of documents and information retrieval processes

    A Comprehensive Review of Recent Variants and Modifications of Firefly Algorithm

    Get PDF
    Swarm intelligence (SI) is an emerging field of biologically-inspired artificial intelligence based on the behavioral models of social insects such as ants, bees, wasps, termites etc. Swarm intelligence is the discipline that deals with natural and artificial systems composed of many individuals that coordinate using decentralized control and self-organization. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. In the last two decades, there has been a growing interest of addressing Dynamic Optimization Problems using SI algorithms due to their adaptation capabilities. This paper presents a broad review on two SI algorithms: 1) Firefly Algorithm (FA) 2) Flower Pollination Algorithm (FPA). FA is inspired from bioluminescence characteristic of fireflies. FPA is inspired from the the pollination behavior of flowering plants. This article aims to give a detailed analysis of different variants of FA and FPA developed by parameter adaptations, modification, hybridization as on date. This paper also addresses the applications of these algorithms in various fields. In addition, literatures found that most of the cases that used FA and FPA technique have outperformed compare to other metaheuristic algorithms

    Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering

    Get PDF
    من بين الخوارزميات الأدلة العليا (الميتاهيورستك)، تعد الخوارزميات القائمة على البحوث المتعددة (المجتمع) خوارزمية بحث استكشافية متفوقة كخوارزمية البحث المحلية من حيث استكشاف مساحة البحث للعثور على الحلول المثلى العالمية. ومع ذلك، فإن الجانب السلبي الأساسي للخوارزميات القائمة على البحوث المتعددة (المجتمع) هو قدرتها الاستغلالية المنخفضة، مما يمنع توسع منطقة البحث عن الحلول المثلى. خوارزمية اليَرَاعَة المضيئة (Firefly (FA هي خوارزمية تعتمد على المجتمع والتي تم استخدامها على نطاق واسع في مشاكل التجميع. ومع ذلك، فإن FA مقيد بتقاربها السابق لأوانه عندما لا يتم استخدام استراتيجيات بحث محلي لتحسين جودة حلول المجموعات في منطقة المجاورة واستكشاف المناطق العالمية في مساحة البحث. على هذا الأساس، فإن الهدف من هذا العمل هو تحسين FA باستخدام البحث المتغير في الأحياء (VNS) كطريقة بحث محلية (FA-VNS)، وبالتالي توفير فائدة VNS للمفاضلة بين قدرات الاستكشاف والاستغلال. يسمح FA-VNS المقترح لليراعات بتحسين حلول التجميع مع القدرة على تعزيز حلول التجميع والحفاظ على تنوع حلول التجميع أثناء عملية البحث باستخدام مشغلي الاضطراب في VNS. لتقييم أداء الخوارزمية، يتم استخدام ثماني مجموعات بيانات معيارية مع أربع خوارزميات تجميع معروفة. تشير المقارنة وفقًا لمقاييس التقييم الداخلية والخارجية إلى أن FA-VNS المقترحة يمكن أن تنتج حلول تجميع أكثر إحكاما من خوارزميات التجميع المعروفة.Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On these bases, this work aims to improve FA using variable neighborhood search (VNS) as a local search method, providing VNS the benefit of the trade-off between the exploration and exploitation abilities. The proposed FA-VNS allows fireflies to improve the clustering solutions with the ability to enhance the clustering solutions and maintain the diversity of the clustering solutions during the search process using the perturbation operators of VNS. To evaluate the performance of the algorithm, eight benchmark datasets are utilized with four well-known clustering algorithms. The comparison according to the internal and external evaluation metrics indicates that the proposed FA-VNS can produce more compact clustering solutions than the well-known clustering algorithms

    Towards Optimized K Means Clustering using Nature-inspired Algorithms for Software Bug Prediction

    Get PDF
    In today s software development environment the necessity for providing quality software products has undoubtedly remained the largest difficulty As a result early software bug prediction in the development phase is critical for lowering maintenance costs and improving overall software performance Clustering is a well-known unsupervised method for data classification and finding related patterns hidden in dataset

    Comparative Analysis of Privacy Preservation Mechanism: Assessing Trustworthy Cloud Services with a Hybrid Framework and Swarm Intelligence

    Get PDF
    Cloud computing has emerged as a prominent field in modern computational technology, offering diverse services and resources. However, it has also raised pressing concerns regarding data privacy and the trustworthiness of cloud service providers. Previous works have grappled with these challenges, but many have fallen short in providing comprehensive solutions. In this context, this research proposes a novel framework designed to address the issues of maintaining data privacy and fostering trust in cloud computing services. The primary objective of this work is to develop a robust and integrated solution that safeguards sensitive data and enhances trust in cloud service providers. The proposed architecture encompasses a series of key components, including data collection and preprocessing with k-anonymity, trust generation using the Firefly Algorithm, Ant Colony Optimization for task scheduling and resource allocation, hybrid framework integration, and privacy-preserving computation. The scientific contribution of this work lies in the integration of multiple optimization techniques, such as the Firefly Algorithm and Ant Colony Optimization, to select reliable cloud service providers while considering trust factors and task/resource allocation. Furthermore, the proposed framework ensures data privacy through k-anonymity compliance, dynamic resource allocation, and privacy-preserving computation techniques such as differential privacy and homomorphic encryption. The outcomes of this research provide a comprehensive solution to the complex challenges of data privacy and trust in cloud computing services. By combining these techniques into a hybrid framework, this work contributes to the advancement of secure and effective cloud-based operations, offering a substantial step forward in addressing the critical issues faced by organizations and individuals in an increasingly interconnected digital landscape

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime
    corecore