93 research outputs found

    Improving GGH Public Key Scheme Using Low Density Lattice Codes

    Get PDF
    Goldreich-Goldwasser-Halevi (GGH) public key cryptosystem is an instance of lattice-based cryptosystems whose security is based on the hardness of lattice problems. In fact, GGH cryptosystem is the lattice version of the first code-based cryptosystem, proposed by McEliece. However, it has a number of drawbacks such as; large public key length and low security level. On the other hand, Low Density Lattice Codes (LDLCs) are the practical classes of lattice codes which can achieve capacity on the additive white Gaussian noise (AWGN) channel with low complexity decoding algorithm. This paper introduces a public key cryptosystem based on LDLCs to withdraw the drawbacks of GGH cryptosystem. To reduce the key length, we employ the generator matrix of the used LDLC in Hermite normal form (HNF) as the public key. Also, by exploiting the linear decoding complexity of the used LDLC, the decryption complexity is decreased compared with GGH cryptosystem. These increased efficiencies allow us to use the bigger values of security parameters. Moreover, we exploit the special Gaussian vector whose variance is upper bounded by the Poltyrev limit as the perturbation vector. These techniques can resist the proposed scheme against the most efficient attacks to the GGH-like cryptosystems

    Lattice-based cryptography

    Get PDF

    A provably secure variant of NTRU cryptosystem

    Get PDF
    In 1996 Hoffstein, Pipher ad Silverman presented NTRUEncrypt, which is to date the fastest known lattice-based encryption scheme. Its moderate key-sizes, excellent asymptotic performance and conjectured resistance to quantum attacks make it a perfect candidate to succeed where factorization and discrete log fail. Unfortunately, no security proof has been produced for NTRUEncrypt nor for its signature counterpart NTRUSign. In 2013 Stehlé and Steinfield proposed to apply some mild modification to the encryption and signature scheme to make them provably secure, under the assumed quantum hardness of standard worst-case lattice problems, restricted to a family of lattices related to some cyclotomic fields. In particular they showed that if the secret key polynomials of the encryption scheme are chosen from discrete Gaussians, then the public key, i.e their ratio, is statistically indistinguishable from uniform. The security will then follow from the hardness of the R-LWE problem.The aim of this thesis is to present Stehlé's and Steinfield's work in a slightly more accessi-ble form, providing some more background and details in some points

    Reduction algorithms for the cryptanalysis of lattice based asymmetrical cryptosystems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2008Includes bibliographical references (leaves: 79-91)Text in English; Abstract: Turkish and Englishxi, 119 leavesThe theory of lattices has attracted a great deal of attention in cryptology in recent years. Several cryptosystems are constructed based on the hardness of the lattice problems such as the shortest vector problem and the closest vector problem. The aim of this thesis is to study the most commonly used lattice basis reduction algorithms, namely Lenstra Lenstra Lovasz (LLL) and Block Kolmogorov Zolotarev (BKZ) algorithms, which are utilized to approximately solve the mentioned lattice based problems.Furthermore, the most popular variants of these algorithms in practice are evaluated experimentally by varying the common reduction parameter delta in order to propose some practical assessments about the effect of this parameter on the process of basis reduction.These kind of practical assessments are believed to have non-negligible impact on the theory of lattice reduction, and so the cryptanalysis of lattice cryptosystems, due to thefact that the contemporary nature of the reduction process is mainly controlled by theheuristics

    Modern Cryptography Volume 1

    Get PDF
    This open access book systematically explores the statistical characteristics of cryptographic systems, the computational complexity theory of cryptographic algorithms and the mathematical principles behind various encryption and decryption algorithms. The theory stems from technology. Based on Shannon's information theory, this book systematically introduces the information theory, statistical characteristics and computational complexity theory of public key cryptography, focusing on the three main algorithms of public key cryptography, RSA, discrete logarithm and elliptic curve cryptosystem. It aims to indicate what it is and why it is. It systematically simplifies and combs the theory and technology of lattice cryptography, which is the greatest feature of this book. It requires a good knowledge in algebra, number theory and probability statistics for readers to read this book. The senior students majoring in mathematics, compulsory for cryptography and science and engineering postgraduates will find this book helpful. It can also be used as the main reference book for researchers in cryptography and cryptographic engineering areas

    Post Quantum Cryptography

    Get PDF
    Riassunto tesi magistrale: Post Quantum Cryptography Candidato: VAIRA Antonio Durante la stesura della mia tesi, su cui ho lavorato quest'ultimo anno della mia carriera universitaria, ho cercato di rispondere alla domanda: Qual è lo stato dell'arte della crittografia odierna in grado di sostenere un attacco da parte di utente malevolo in possesso di un “grande” computer quantistico? Per “grande” si intende un computer quantistico che abbia un registro di diverse migliaia di qubit e quindi sia in grado di far girare degli algoritmi quantistici effettivamente utilizzabili. Ad oggi sono stati ideati solamente due algoritmi quantistici per scopi cripto-analitici ed uno di questi, l’algoritmo di Shor, permette di fattorizzare grandi numeri in un tempo ridotto. Questo “semplice” problema matematico (o meglio algoritmico) è alla base della sicurezza dei cripto-sistemi a chiave pubblica utilizzati oggi. In un sistema a chiave pubblica odierno, come l'RSA, la difficoltà di manomissione è legata alla difficoltà algoritmica di fattorizzare grandi numeri, dove difficoltà implica non l'impossibilità ma bensì un dispendio di risorse/tempo per l’hacking maggiore del valore stesso dell'informazione che si otterrebbe da tale hacking. Nel mio lavoro inizialmente ho preso in esame, in linea di massima, sia i cripto-sistemi utilizzati oggi sia gli algoritmi quantistici utilizzabili in un ipotetico futuro per comprometterli. Successivamente, ho focalizzato la mia attenzione sulle alternative “mainstream” ai cripto-sistemi impiegati oggi: ovvero algoritmi post-quantum, proposti dalla comunità di cripto-analisti attivi nel campo, e ho provato a costruire un framework per valutarne l'effettivo impiego. In questo framework, quindi, ho scelto di approfondire lo studio della famiglia dei lattice-based (algoritmi la cui sicurezza è basata sulla difficoltà di risolvere problemi relativi ai lattici multidimensionali). All'interno di questa famiglia di cripto-sistemi ne ho individuato uno in particolare, lo NTRU, particolarmente promettente per un impiego, nell'immediato futuro, all'interno di una corporate PKI (un esempio a me vicino è la PKI sviluppata all'interno dell'Airbus, per la quale ho lavorato durante quest'ultimo anno). Ho in seguito approfondito lo studio di un altro algoritmo appartenente alla medesima famiglia dei cripto-sistemi lattice-based : il ring-LWE in quanto molto più interessante da un punto di vista accademico ma ancora relativamente sconosciuto. Successivamente ho elaborato alcune modifiche per lo stesso algoritmo con lo scopo di renderlo più veloce e affidabile, incrementando così la probabilità di recuperare un messaggio corretto dal corrispondente crittogramma. Come ultima tappa, ho implementato l'algoritmo di criptazione modificato utilizzando un linguaggio ad alto livello (molto vicino a python) e ho comparato sia i tempi di esecuzione sia le risorse utilizzate con un versione non modificata ma implementata con lo stesso linguaggio, rendendo così i confronti il più coerenti possibile. Dai risultati ottenuti risulta che la versione modificata del ring-LWE è estremamente promettente ma necessita di una più approfondila analisi da un punto di vista cripto-analitico, ovvero è necessario stressare l'algoritmo per capire se introduca o meno ulteriori vulnerabilità rispetto alla versione originale. In conclusione l'algoritmo ring-LWE, che ho maggiormente approfondito, offre diversi e interessanti spunti di riflessione ma è ben lontano dall'essere implementato in una infrastruttura reale. Nel evenienza di una sostituzione immediata è in generale buona norma in crittografia ripiegare su strade già battute e implementazioni più vecchie e fidate, un esempio all'interno degli algoritmi post-quantum è sicuramente lo NTRU (già dal 2008 standard IEEE: Std 1363.1). Come ultima riflessione personale vorrei aggiungere che malgrado in questo mio lavoro di tesi l'aspetto fisico appaia marginale è solo grazie alla preparazione, che ho maturato nel mio percorso di studi, che ho potuto svolgerlo senza grandi difficoltà e facendo un esperienza davvero costruttiva in una grande azienda come l'Airbus. Dopo tutto un bagaglio fisico ci rende dei “problem-solver” nelle situazioni più disparate

    Modern Cryptography Volume 1

    Get PDF
    This open access book systematically explores the statistical characteristics of cryptographic systems, the computational complexity theory of cryptographic algorithms and the mathematical principles behind various encryption and decryption algorithms. The theory stems from technology. Based on Shannon's information theory, this book systematically introduces the information theory, statistical characteristics and computational complexity theory of public key cryptography, focusing on the three main algorithms of public key cryptography, RSA, discrete logarithm and elliptic curve cryptosystem. It aims to indicate what it is and why it is. It systematically simplifies and combs the theory and technology of lattice cryptography, which is the greatest feature of this book. It requires a good knowledge in algebra, number theory and probability statistics for readers to read this book. The senior students majoring in mathematics, compulsory for cryptography and science and engineering postgraduates will find this book helpful. It can also be used as the main reference book for researchers in cryptography and cryptographic engineering areas

    LCPR: High Performance Compression Algorithm for Lattice-Based Signatures

    Get PDF
    Many lattice-based signature schemes have been proposed in recent years. However, all of them suffer from huge signature sizes as compared to their classical counterparts. We present a novel and generic construction of a lossless compression algorithm for Schnorr-like signatures utilizing publicly accessible randomness. Conceptually, exploiting public randomness in order to reduce the signature size has never been considered in cryptographic applications. We illustrate the applicability of our compression algorithm using the example of a current state-of-the-art signature scheme due to Gentry et al. (GPV scheme) instantiated with the efficient trapdoor construction from Micciancio and Peikert. This scheme benefits from increasing the main security parameter nn, which is positively correlated with the compression rate measuring the amount of storage savings. For instance, GPV signatures admit improvement factors of approximately lgn\lg n implying compression rates of about 6565\% at a security level of about 100 bits without suffering loss of information or decrease in security, meaning that the original signature can always be recovered from its compressed state. As a further result, we propose a multi-signer compression strategy in case more than one signer agree to share the same source of public randomness. Such a strategy of bundling compressed signatures together to an aggregate has many advantages over the single signer approach
    corecore