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Chapter 1

Public Key Cryptography and
Lattices

1.1 Introduction

One of the aims of cryptography is to protect information that is sent over an insecure channel. In
1976, Diffie and Hellman introduced the concept of public key cryptography, where cryptosystems
are based on mathematically hard problems. Since then, several of such mathematical problems
have been proposed as a basis for public key cryptography, with varying success. In 1996, Ajtai
discovered that there are mathematical problems in the area of lattices that have some desirable
properties with respect to cryptography. Since then, lattices have been used to construct several
cryptosystems and other cryptographic applications. In this chapter, lattices are introduced and
their connection with public key cryptography is examined.

First, a short introduction will be given on the concept of public key cryptography in Sec-
tion 1.2. Specifically, the notions of computational security and computational complexity will be
discussed. In Section 1.3 lattices are introduced and in Section 1.4 several classical lattice problems
are given. Then, the process of lattice reduction is considered in Section 1.5 and some additional
lattice problems that are relevant for cryptography are given in Section 1.6. Finally, Section 1.7
will show one of the earliest applications of lattices in cryptography, where lattice reduction is
used to break knapsack-based cryptosystems.

1.2 Public Key Cryptography

1.2.1 Asymmetric cryptography

Until 1976, all known cryptographic systems were symmetric, in the sense that both sender and
receiver of a message use the same key. Some systems, such as the one-time pad, achieved infor-
mation theoretic security, which means that the system is secure even against adversaries with
unlimited computing power. However, information theoretic security comes at a high cost in terms
of the key length and required randomness. Furthermore, symmetric-key cryptography requires
significant key-management.

In 1976, Diffie and Hellman published an asymmetric key cryptosystem known as the Diffie-
Hellman key exchange [13], which could be used to securely agree on a symmetric key. They also
introduced the notion of a trapdoor function, sometimes called a trapdoor one-way function. A
one-way function f has the property that it is easy to compute f(x) from x, but it is hard to
compute x from f(x). A trapdoor function f has the additional property that there is some secret
information y, such that given y, it is easy to compute x from f(x). These functions are the basis
of asymmetric key cryptography.
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Diffie and Hellman proposed something they called Public Key Cryptography. The idea is to
create a pair of keys that are related mathematically, consisting of a private key and a public key.
One possible application is that the sender of a message can use the public key of the receiver
to encrypt his message and the receiver can then use his private key to decrypt the message.
Everyone can have the public key without compromising the security of the corresponding private
key, because deriving the private key from the public information is as hard as inverting a one-way
function. Thus, every user of a system can publish his public key for all other users of the system.
This provides a major advantage over symmetric cryptography, where a unique symmetric key
pair has to be created and distributed for each pair of users wanting to communicate privately.

In their paper, Diffie and Hellman noted that public key cryptosystems would never attain
security in the information theoretic sense, because the public and private keys are always math-
ematically related. They mentioned that, since the public information would always uniquely
determine the secret information among the members of a finite set, an adversary with unlimited
computation power would always be able to retrieve the secret information using an exhaustive
search. Public key cryptosystems aimed for a more practical approach to security instead, as
opposed to the security against some theoretical adversary with unlimited computing power.

1.2.2 Computational security

Rather than information theoretic security, public key cryptosystems and most symmetric cryp-
tosystems aim to achieve security while taking the limits of computational power of adversaries
into account. This is known as computational security, and it means that an adversary with
bounded computation power cannot feasibly break the system. Thus, breaking the system should
not be impossible, but rather computationally infeasible. This has led to the practice of basing the
security of (public key) cryptosystems on the assumption that some mathematical problem (such
as breaking the encryption) is computationally infeasible. Two good examples of cryptosystems
based on such mathematical problems are RSA and ElGamal.

RSA

RSA is based on the observation that it is easy to multiply numbers, but hard to factor composite
numbers. A private key in the RSA system consists of two large secret primes p and q, and a
secret exponent d that is invertible mod (p− 1)(q − 1). The public key consists of the composite
number N = pq and the public exponent e = d−1 mod (p− 1)(q − 1). Messages m are represented
by numbers in the ring Z/NZ, and they can be encrypted by exponentiating using the public
exponent c = me mod N .

Note that φ(N) = (p − 1)(q − 1), where φ is Euler’s totient function. In the ring Z/NZ,
exponents can be taken modulo φ(N), since aφ(N) ≡ a mod N for all invertible a ∈ Z/NZ.
Therefore, the receiver of the ciphertext c can use the private key to compute

cd = med = m (mod N),

because e = d−1 mod φ(N), and the message m is retrieved.
If an adversary is able to factor N , he can retrieve the secret primes p and q, and hence knows

φ(N). He can then use φ(N) to invert the public exponent, thus retrieving the secret exponent.
Note that this attack is sufficient to break the system, but not necessary. It may be that there
exist attacks that manage to break the encryption or retrieve the secret exponent without learning
the factorization of N . Although such attacks are not known at this time, this means that a
stronger assumption is necessary to get computational security. Indeed, this assumption must also
imply that N cannot feasibly be factored by an adversary. The RSA-assumption says that it is
intractable to derive the message m from the public key (N, e) and the corresponding ciphertext
c = me mod N . Under the RSA-assumption, the RSA cryptosystem is secure.
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ElGamal

ElGamal encryption is based on the fact that it is easy to exponentiate in a finite cyclic group,
but hard to compute the discrete logarithm. Hence, the underlying mathematical structure of the
ElGamal system is the finite cyclic group Zp for p prime. Let g be a generator of Zp. The private
key will be a secret integer 1 < x < p− 1. The public key consists of h = gx mod p, the generator
g and the prime p. To encrypt a message m, represented by a group element, the sender takes a
random integer y that is coprime to p− 1 as a blinding factor and computes

a = gy (mod p),
b = mhy (mod p),

and sends the pair (a, b) as the ciphertext. The receiver now computes

b/ax = mhy(gyx)−1 = mgxy(gyx)−1 = m (mod p),

retrieving the message m.
An adversary could try to retrieve the secret exponent x. If he is able to take the discrete

logarithm in the group G, he can compute x = logg(h) to find the private key. However, this
attack is once again sufficient but not necessary. The adversary could also try to derive gxy from
g, gx and gy, which is either public information or sent over possibly insecure channels. The
assumption that the adversary cannot derive gxy from g, gx and gy is known as the computational
Diffie-Hellman assumption. Under the computational Diffie-Hellman assumption, the ElGamal
cryptosystem is secure.

These two examples show that even though a cryptosystem makes use of the intractability of
certain problems, breaking the system is not always equivalent to solving these problems. Fur-
thermore, the difficulty of the actual problems is not always well known, and hence the security
of the system is not easily proven. Note that the lack of a proof of security for these systems does
not imply that they are insecure, however. It merely shows that the security is not yet perfectly
understood. In a practical sense, the security of these systems is based on the performance of the
best known attacks against these systems.

An important variable for such systems is the security parameter. This security parameter
is some variable in the cryptosystem that determines the “input size” of the system. For many
systems, such as RSA, the security parameter is the key length in bits. Increasing the security
parameter will generally increase the security of a cryptosystem, but it will decrease its efficiency as
well, i.e., the keys will be longer and decryption and encryption may take longer. The efficiency of
a cryptosystem is often considered with respect to the security parameter. The security parameter
is chosen such that it is computationally infeasible to break the cryptosystem, when taking the
limits of computation into account.

The security of a system gives a measure of this computational infeasibility. It is most com-
monly measured in bits, in which case it is called bit security. For a bit security of k bits, the
“effort” that an adversary must invest into the system is equivalent to trying out all possible keys
of length k bits, which leads to 2k different keys. Thus, the adversary must put in an “effort” of
at least 2k to break the system. Here, effort is a vague term that includes time (possibly measured
in number of operations on a computer), but can include things such as computer memory or
other computer resources as well. Furthermore, probabilistic attacks on a system with security
parameter k should not succeed with a probability higher than 2−k.

It would be ideal if the ‘best’ attack on the cryptosystem consists of trying all possible private
keys. To achieve this, other ways of breaking the system should be computationally infeasible. But
when are mathematical problems such as ‘breaking the encryption’ computationally infeasible?

1.2.3 Complexity theory and cryptosystems

This is where the two disciplines of computational complexity theory and the analysis of algorithms
come in. Computational complexity theory aims to divide computational problems in several
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difficulty classes, whereas the analysis of algorithms focuses on improving algorithms (to solve these
problems) in terms of running time and storage space. The following is an informal description
of computational complexity theory and is by no means an extensive introduction into the field.
The aim of this description is merely to provide some intuition on the notion of difficult problems.
For a more detailed introduction to complexity theory, see [46] by Johnson or any undergraduate
level textbook on the subject.

Two notable complexity classes from computational complexity theory are P , for polynomial,
and NP , for non-deterministic polynomial. The class P consists of all problems that can be
solved by a Deterministic Turing Machine in an amount of time that is bounded from above by
a function that is polynomial in the length of its input. The class NP consists of all problems
that are solvable by a Non-Deterministic Turing Machine, again with a time that is bounded by
a function polynomial in the length of the input.

The class P is contained in the class NP . An important open question in complexity theory
is whether these classes are in fact the same, or whether there exist problems in NP that are not
in P . Informally, P is the class of “easy” problems, whereas NP might also contain some “hard”
problems that are not in P . Karp introduced polynomial-time Karp reductions in [48], which
made it possible to reduce one problem to another problem. Such reductions assume that there
is some subroutine that solves the other problem, which can then be used to solve the original
problem. These subroutines are called oracles. Because the reduction is polynomial-time, reducing
a problem A to another problem B shows that if B is in P , then A must be as well. Intuitively,
this means that problem A cannot be “harder” to solve than B, as solving B immediately gives a
solution for A. Karp also showed that there was a subclass of NP , which he called NP -complete,
such that for any problem in that class, all problems in NP can be reduced to that particular
problem. This means that showing that any of these NP -complete problems is actually in P
would immediately prove that P = NP .

The question whether P = NP remains open, but many years of research have gone into it,
and the conjecture is that P 6= NP . Until it is shown that P = NP , NP -complete problems are
considered “hard” to solve. Therefore, if one was able to prove that (mathematically) breaking
a cryptosystem is equivalent to solving some problem that is NP -complete, this should give a
reasonable measure of security. Such proofs are called security proofs.

Unfortunately, it is not always straightforward to base a cryptosystem on a difficult mathemat-
ical problem. Although the problem is hard to solve, which provides one-wayness, the holder of
the private key should still be able to retrieve the message by using some trapdoor. It is not always
easy to incorporate such a trapdoor in hard problems. Furthermore, the notion of hard problems
is based on worst-case analysis alone, whereas cryptography is affected by typical computational
properties and costs. In other words: not every instance of a hard problem is necessarily hard, and
a cryptographic system based on a subclass of a hard problem will not be secure if the particular
subclass turns out to be easy to solve. A good example that suffered from these problems is the
case of knapsack-based cryptosystems, based on a variant of the knapsack problem. Certain re-
strictions on this hard problem created some practical vulnerabilities. These vulnerabilities could
be exploited using lattices, as will be shown after the introduction of lattices in Section 1.7.

Some problems have the property that not just worst-case instances are hard to solve. By
showing that any worst-case instance can be reduced to some random instance, it follows that
an average-case instance of the problem is at least as hard as any instance. This is also known
as random self-reducibility. In 1996, Ajtai [1] showed that it was possible to use randomized
reductions to establish a worst-case and average-case connection between certain lattice problems.
This generated a lot of interest in lattice problems as a basis for cryptosystems, because average-
case hardness is a desirable property for cryptosystems.

1.3 Lattices

This section is intended to give the definition and several properties of lattices. It is based on
introductions to lattices by Micciancio [64], Nguyen [75] and Lenstra [57], although a few proofs

7



have been added. First some notation that is useful when talking about lattices will be introduced.
This notation will then be used to formally define lattices. Afterwards, some distinctive properties
of lattices will be given, as well as three natural ways to derive lattices from other lattices. Finally, a
process called Gram-Schmidt orthogonalization is described, because it plays a role in the analysis
of lattice reduction.

1.3.1 Notation

Let Rn be the n-dimensional Euclidean vector space with its usual topology. Bold letters denote
column vectors, and the Euclidean inner product and corresponding norm are denoted by

〈x,y〉 =
n∑

i=1

xiyi,

‖x‖ =
√
x2

1 + . . .+ x2
n,

where x = (x1, . . . , xn)T and y = (y1, . . . , yn)T are vectors in Rn. The distance between two
vectors is defined as d(x,y) = ‖x − y‖, and the distance between a vector x ∈ Rn and a subset
E ⊂ Rn is defined as

dist(x, E) = min
y∈E
{d(x,y)} .

The unit vectors are denoted by e1, . . . , en, i.e., ei is the vector with its i’th coordinate equal to
one and all other coordinates equal to zero.

Let b.c : R → Z denote the floor function, which sends each real number x to the biggest
integer smaller than or equal to x, and let d.e : R → Z denote the ceiling function, which sends
each real number x to the smallest integer greater than or equal to x. Denote by b.e : R → Z
the round function, which is the function that sends each real number to the closest integer
(rounding up if this is not unique). Furthermore, for vectors x = (x1, . . . , xn)T ∈ Rn, define
bxe = (bx1e, . . . , bxne)T (and define similar notation for the floor and ceiling functions).

The open ball of radius r > 0 centered at x is denoted by

B(x, r) = {y ∈ Rn : ‖x− y‖ < r} .

When x = 0 and r = 1, this is the n-dimensional unit ball B(0, 1). Its volume is denoted by

vn =
πn/2

Γ(n/2 + 1)
, (1.1)

where Γ(x) =
∫∞
0
tx−1e−tdt is the Gamma function, the extension of the factorial function to the

real (and complex) numbers. Furthermore, let B(x, r) denote the closure of B(x, r).
For any subset S ⊆ Rn of vectors, the linear span of S, or span(S), is the minimal subspace

of Rn that contains S (or equivalently all linear combinations of the vectors in S). For any finite
subset {b1, . . . ,bm} ⊂ Rn, let L(b1, . . . ,bm) be the set of all linear combinations of the bi’s with
integral coefficients:

L(b1, . . . ,bm) :=

{
n∑

i=1

λibi : λ1, . . . , λm ∈ Z

}
.

The half open parallelepiped spanned by the vectors b1, . . . ,bm is denoted by

P(b1, . . . ,bm) =

{
n∑

i=1

λibi : 0 ≤ λi < 1

}
.
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Furthermore, the vectors b1, . . . ,bm ∈ Rn are called linearly dependent if there exist λ1, . . . , λm ∈
R, which do not all equal zero, such that

m∑

i=1

λibi = 0,

and linearly independent otherwise.
For a subspace E ⊂ Rn, denote its orthogonal complement by

E⊥ = {x ∈ Rn : 〈x,y〉 = 0, for all y ∈ E} .

Now, let πE denote the projection on the orthogonal complement E⊥ of E. This is the unique
linear map πE : Rn → Rn such that

πE(x) = x, for all x ∈ E⊥, and
πE(x) = 0, for all x ∈ E.

Note that πE is indeed a projection, since π2
E = πE . For all x ∈ Rn, the projection can be written

as πE(x) = x− y for some y ∈ E (that depends on x), due to the linearity of πE .
Let Rn×m(R) be the set of n × m matrices with coefficients in the ring R. One matrix in

particular is of interest: the Gram matrix of the vectors b1, . . . ,bm is the m×m matrix
(
〈bi,bj〉

)
ij

containing all pairwise inner products of the bi’s. Consider the matrix B that has the vectors bi
as its columns, i.e.,

B =



| | |

b1 b2 · · · bm
| | |


 .

The Gram matrix of b1, . . . ,bm can equivalently be written as BTB. The determinant of the
Gram matrix, denoted by ∆(b1, . . . ,bm) = det(BTB), is called the Gram determinant of the bi’s.
The Gram determinant has several interesting properties. It is always nonnegative, and equal to
zero if and only if the bi’s are linearly dependent. Additionally, it is invariant under any integral
linear transformation of determinant ±1, including permutation of the bi’s. Finally, it also has a
geometric interpretation when the bi’s are linearly independent. In that case,

√
∆(b1, . . . ,bm) is

the m-dimensional volume of the parallelepiped P(b1, . . . ,bm) spanned by the bi’s.

1.3.2 Definition

Lattices are typically defined as a discrete subgroup of Rn. The first step is to examine what
discreteness means in this context.

Definition 1.1 (Discreteness). Let D be a subset of Rn. Then D is called discrete when it
has no accumulation points. This means that for all x ∈ D, there exists an r > 0 such that
B(x, r) ∩D = {x}.

Note that any subset of a discrete set is also discrete. It is now possible to define lattices:

Definition 1.2 (Lattice). A subgroup under addition of (Rn,+) that has the discreteness property
is called a lattice.

As any subgroup of a lattice also has the discreteness property by definition, it will itself be
a lattice. Let G ⊆ Rn be an additive subgroup. If G has an accumulation point x ∈ G with
an accompanying sequence (xn)∞n=1 ⊂ L converging to x, then the sequence (x − xn)∞n=1 is in
G due to closure under addition. As this sequence converges to 0 ∈ G, any additive subgroup
of Rn has an accumulation point if and only if 0 is an accumulation point. Therefore, it is also
possible to define lattices as nonempty subsets L ⊆ Rn, closed under subtraction, such that there
exists an r > 0 such that B(0, r) ∩ L = {0}. Due to the combination of their group structure and
discreteness, lattices have the following properties:
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Figure 1.1: The lattice Zn, consisting of all vectors in R2 with integral coefficients.

Lemma 1.3. Let L ⊂ Rn be a lattice. Then the following properties hold:

(i) There exists an r > 0 such that for all x ∈ L, there is no other element y ∈ L with
‖x− y‖ < r. Equivalently, there exists an r > 0 such that B(x, r) ∩ L = {x} for all x ∈ L.

(ii) L is a closed set, which means that L has no accumulation points outside of L (hence none
at all).

(iii) If S ⊆ Rn is bounded, then L ∩ S is finite.

(iv) L is countable.

Although this gives a formal definition of a lattice, it does not show how lattices can be
represented. The next step in working with lattices is to find a way to represent them.

1.3.3 Bases

In vector spaces, subspaces can be described using bases. It is also possible to define bases for
lattices. Take m vectors b1, . . . ,bm ∈ Rn. Consider the set of integral linear combinations of
these vectors, L(b1, . . . ,bm). This is a subgroup of Rn, but not necessarily discrete. For example,
the set L((1), (

√
2)) ⊂ R is not discrete, because

√
2 6∈ Q, which means it is possible to construct

a sequence (an · 1 − bn ·
√

2) that converges to zero as n → ∞. The following proposition gives
sufficient conditions for discreteness:

Proposition 1.4. The subgroup L(b1, . . . ,bm) ⊂ Rn is discrete (and therefore a lattice) if either

(i) b1, . . . ,bm ∈ Qn, or

(ii) b1, . . . ,bm ∈ Rn are linearly independent.

Proof. The first case is trivial, as it is possible to compute the least common multiple l of the
denominators of all vector entries, and the distance between two vectors is always at least 1/l. For
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the second case, let L = L(b1, . . . ,bm) and consider the parallelepiped

P =

{
m∑

i=1

λibi : |λi| < 1

}
.

Now take y ∈ L ∩ P . Since y ∈ L, it is a linear combination of the bi’s with integral coefficients,
but since y ∈ P , it is also a linear combination of the bi’s with real coefficients in the open interval
(−1, 1):

y =
m∑

i=1

λibi, where λi ∈ Z, and

y =
m∑

i=1

µibi, where µi ∈ (−1, 1).

Subtracting y from itself gives the zero vector:

0 = y − y =
m∑

i=1

(λi − µi)bi.

Because the bi’s are linearly independent, λi−µi = 0 for all 1 ≤ i ≤ m. But since λi is integral for
all i and µi is in the open interval (−1, 1), they must be zero. Hence, y = 0, and thus L∩P = {0}.
Since there exists an r > 0 such that B(0, r) ⊂ P (e.g. r = 1

2 min {‖b1‖, . . . , ‖bn‖}), 0 cannot be
an accumulation point. This completes the proof.

The fact that a finite set of vectors can describe a lattice, much like a finite set of vectors can
describe a subspace of Rn, gives rise to the following definition:

Definition 1.5. A lattice L is said to be spanned by the generators b1, . . . ,bm if L = L(b1, . . . ,bm).
If the bi’s are linearly independent as well, then (b1, . . . ,bm) is called a basis of L and for every
x ∈ L there are unique integral coordinates (x1, . . . , xm) such that

x =
m∑

i=1

xibi.

Bases are useful when representing lattices, but they are generally not unique. Compare for
instance Figures 1.2 and 1.3 to see two different bases of the lattice Zn. For a basis {b1, . . . ,bm}
of a lattice L, the matrix representation of this basis is defined as the matrix B that has the
vectors bi as its columns:

B =



| | |

b1 b2 · · · bm
| | |


 .

For any basis matrix B, define L(B) = L(b1, . . . ,bm), P(B) = P(b1, . . . ,bm) and span(B) =
span(b1, . . . ,bm). In the following, the word basis will be used interchangeably for both b1, . . . ,bm
and their corresponding basis matrix B.

Linear subspaces of Rn have a dimension, which signifies the number of vectors in a basis
for the subspace, as well as the maximal number of independent vectors in this subspace. This
definition is used to define the rank of a lattice.

Definition 1.6. Let L ⊂ Rn be a lattice. The rank d of L is defined to be the dimension of
the subspace span(L), which is the minimal subspace containing L. If n = d, the lattice is called
full-rank.
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e1

e2

Figure 1.2: The lattice Zn with two basis vectors e1 = (1, 0) and e2 = (0, 1).

b1

b2

Figure 1.3: The lattice Zn, now with the different basis b1 = (1, 1) and b2 = (2, 1).
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The words rank and dimension are sometimes used interchangeably for the rank of a lattice.
To prevent confusion between the dimension of the space and the rank of the lattice, the word
dimension will not be used to describe the rank of a lattice here. As with subspaces, the rank
of a lattice is equal to the maximal number of linearly independent vectors in the lattice, as well
as the number of vectors in a basis of L. Note that unlike in subspaces, not all maximal sets of
linear independent vectors form a basis. The following proposition characterizes when independent
vectors in the lattice form a basis.

Proposition 1.7. Let L ⊂ Rn be a d-rank lattice, and let b1, . . . ,bd be d independent vectors in
L, with matrix representation B. Then, B is a basis of L if and only if there are no non-zero
lattice vectors x ∈ L such that x ∈ P(B).

Proof. ( =⇒ ) Assume B is a basis of L and consider lattice vector x ∈ L. Since B is a basis of L
consisting of d independent vectors, x can be written as a unique linear combination of the bi’s
with integral coefficients:

x =
d∑

i=1

λibi, λi ∈ Z.

If x ∈ P(B), 0 ≤ λi < 1 by definition, and thus λi = 0 for all 1 ≤ i ≤ d. Therefore, the only
lattice point x ∈ P(B) is the zero vector.

(⇐= ) For the other direction, it is shown that if B is not a basis, there must be a nonzero lattice
vector x ∈ L such that x ∈ P(B). Assume B is not a basis of L. There must be a lattice vector
y ∈ L such that y is not a linear combination of the bi’s with integral coefficients. Since b1, . . . ,bd
are d linearly independent vectors in L, span(L) = span(B). Thus, it is possible to write y as a
linear combination of b1, . . . ,bd

y =
d∑

i=1

λibi,

where at least one λi is not integral. Now consider the vector

y′ =
d∑

i=1

bλicbi.

As y′ is an integral linear combination of d lattice vectors, it must itself again be a lattice vector.
Since L is an additive subgroup, the difference between the lattice vectors y and y′ is a lattice
vector as well. This vector is of the form

x = y − y′ =
d∑

i=1

(λi − bλic)bi.

Because 0 ≤ λi − bλic < 1, the vector x ∈ P(B). Furthermore, x cannot be the zero vector, since
there is at least one λi that is not integral and thus λi − bλic > 0 for some i. Therefore, x ∈ L is
a nonzero lattice vector such that x ∈ P(B), as desired. This completes the proof.

Figure 1.4 shows an example where two independent lattice vectors taken from a lattice L do
not form a basis of this lattice L. It also shows that the half-open parallelepiped P(B) contains
a lattice vector, as shown by Proposition 1.7. The following proposition shows that it is always
possible to obtain a basis from maximal sets of linearly independent vectors:

Proposition 1.8. Let L ⊂ Rn be a lattice of rank d. If c1, . . . , cd ∈ L are d linearly independent
lattice vectors, then there exists a lower triangular d× d matrix (uij) ∈ Rd×d such that the vectors
b1, . . . ,bd, given by bi =

∑i
j=1 uijcj form a basis of L, i.e., they are linearly independent and

L(b1, . . . ,bd) = L.
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P(B)

b1

b2

∈ L(b1,b2) 6∈ L(b1,b2)

Figure 1.4: The independent vectors b1 = (1,−1) and b2 = (1, 1) span a lattice different from Z2.

Combining this proposition with the fact that every d-rank lattice has at least d independent
vectors gives the following corollary:

Corollary 1.9. Every lattice L ⊂ Rn has at least one basis.

As a result, every d-rank lattice can be written as the integral linear combinations of d basis
vectors. Furthermore, Proposition 1.4 and Corollary 1.9 provide yet another definition of lattices,
i.e., as the integral linear combinations of a set of basis vectors. As mentioned, these bases are
generally not unique. The following proposition shows the relation between different lattice bases:

Proposition 1.10. Take any basis (b1, . . . ,bd) of a lattice L ⊂ Rn, and any d lattice vectors
c1, . . . , cd ∈ L. Then there exists a unique square integral d × d matrix U = (uij) such that, for
1 ≤ j ≤ d, cj =

∑d
i=1 uijbi, or equivalently C = BU . Furthermore, the cj’s form a basis of L if

and only if the determinant of U is ±1.

Combining this proposition with the fact that there are infinitely many d × d matrices of
determinant ±1 when d ≥ 2 gives that there are also infinitely many bases for each lattice when
d ≥ 2.

1.3.4 Volume

The last part of Proposition 1.10 states that any two lattice bases B and B′ can be transformed
into one another by multiplication with a suitable unimodular matrix U , i.e., an integral matrix
of determinant ±1. Therefore, the Gram determinant of both bases is equal (and hence for any
two bases of the lattice), which suggests it might be interesting to consider the following lattice
invariant:

Definition 1.11. Let L ⊂ Rn be a d-rank lattice and let (b1, . . . ,bd) be any basis. Then

vol(L) = ∆(b1, . . . ,bd)1/2 =
√

det(BTB)

is called the volume or determinant of the lattice, which is independent of the choice of basis.
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This quantity is called the volume due to the geometric interpretation of the Gram determinant:
it denotes the d-dimensional volume of the parallelepiped P(B) spanned by the basis vectors of
L. In the case that L is a full-rank lattice (d = n), the following properties of the volume hold:

Lemma 1.12. Let L ⊂ Rn be a full-rank lattice. Then:

(i) If B ∈ Rn×n is a basis of L, then vol(L) =
√

det(BTB) =
√

det(BT ) det(B) = |det(B)|.

(ii) If r > 0, then

lim
r→∞

rnvn

|B(0, r) ∩ L|
= vol(L),

where vn is defined as in (1.1).

Both these properties give rise to equivalent definitions of the volume of a full-rank lattice.
Part (ii) of Lemma 1.12 shows that the ratio between the number of lattice vectors contained in
B(0, r) and the volume rnvn of this ball with radius r converges to the volume of L.

1.3.5 Quadratic forms

Historically, lattices were not studied in terms of subgroups of vector spaces, but instead in terms
of quadratic forms. If {b1, . . . ,bd} is a basis of a lattice L ⊂ Rn, then

q(x1, . . . , xd) =

∥∥∥∥∥
d∑

i=1

xibi

∥∥∥∥∥

2

(1.2)

is a positive definite quadratic form over Rd. Equivalently, given a positive quadratic form q over
Rd, Cholesky factorization of q returns d linearly independent vectors b1, . . . ,bd satisfying (1.2)
for all x = (x1, . . . , xd)T ∈ Rd.

1.3.6 Derived lattices

Let L ⊂ Rn be a lattice. It is possible to derive other lattices from L that are related.

Sublattices

Definition 1.13. Let L ⊂ Rn be a lattice. A subset M ⊂ L that is also a lattice is called a
sublattice of L. Each sublattice of L must also be a subgroup of L, and each subgroup of L retains
the discreteness property and is therefore a sublattice of L. M is called a full-rank sublattice of L
if dim(M) = dim(L).

Note that unlike subspaces, a sublattice of L can have the same rank as L without being equal
to L. Recall Figure 1.4, where the pictured lattice has rank 2, yet is a sublattice of Z2.

Now, since a sublattice M of L is also a subgroup, it is interesting to consider the quotient
L/M . The number of cosets of M in L is called the group index and is denoted by [L : M ]. The
following lemma shows a relation between full-rank sublattices and a finite group index:

Lemma 1.14. Let L ⊂ Rn be a lattice, and let M be a sublattice of L. Then M is full-rank if
and only if the group index [L : M ] is finite, and furthermore

vol(M) = vol(L)[L : M ].

It is also interesting to consider sublattices that are not full-rank. In that case, their rank is
strictly less than d and their group index is infinite.

Definition 1.15. Let L ⊂ Rn be a lattice and let M ⊂ L be a sublattice. If there is a linear
subspace E ⊆ Rn such that M = L ∩ E, then M is called a primitive or pure sublattice.
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Take any basis B of L, then B∩E is a basis for M . Proposition 1.8 now implies the following
lemma:

Lemma 1.16. Let L ⊂ Rn be a lattice of rank d. A k-rank sublattice M of L is primitive if and
only if every basis B of M can be augmented to a basis of L, by finding d− k vectors that, when
combined with the basis of M , form a basis of L.

This definition can be extended to vectors, because it is possible to define lattices as the integral
linear combination of a set of independent vectors. This gives rise to the following definition:

Definition 1.17. Let L ⊂ Rn be a d-rank lattice. The vectors b1, . . . ,bm ∈ L are called primitive
if and only if L(b1, . . . ,bm) is a primitive sublattice of L, i.e., if and only if there are vectors
bm+1, . . . ,bd such that b1, . . . ,bd is a basis for L.

Projected lattices

In Rn, subspaces and their orthogonal complements can be used to define projections on these
spaces. When projecting lattices on subspaces, the result is not necessarily discrete. It is possible
to choose subspaces that guarantee discreteness when projecting the lattices, however. The result
will then again be a lattice.

Lemma 1.18. Let L ⊂ Rn be a d-rank lattice, and take an r-rank primitive sublattice M ⊂ L,
where 1 ≤ r ≤ d. Define the projection πM := πspan(M) as the projection on the orthogonal
complement of the smallest subspace containing M . Then πM (L) ⊂ Rn is a (d − r)-rank lattice
with volume vol(L)/ vol(M).

Proof. Take a basis (b1, . . . ,br) of M . This basis can be extended to a basis of L, since M is
primitive by assumption. This gives rise to the existence of br+1, . . . ,bd ∈ L such that (b1, . . . ,bd)
is a basis of L. Now, recall the definition of πM and consider

πM (L) = πM (L \M) = πM (L(br+1, . . . ,bd))
= L(πM (br+1), . . . , πM (bd)),

since πM (M) = {0} by definition of πM .
From the definition of πM it also follows that for all i, there exists a vector mi ∈M such that

πM (bi) = bi −mi. Consider the following sum:

d∑

i=r+1

λiπM (bi) =
d∑

i=r+1

λibi − λimi.

As mi ∈ M , it is a linear combination of the vectors b1, . . .br, and since the basis vectors
b1, . . . ,bd are linearly independent, this sum is equal to the zero vector if and only if the λi are
all zero. Therefore, πM (br+1), . . . , πM (bd) are linearly independent. As a result, the subgroup
πM (L) = L(πM (br+1), . . . , πM (bd)) is a (d− r)-rank lattice due to Proposition 1.4. The proof of
the statement on the volume of πM (L) becomes trivial once Gram-Schmidt vectors are introduced
(see Section 1.3.7) and is omitted here.

This lemma leads to the following corollary, which will be useful when studying lattice reduc-
tion:

Corollary 1.19. Take a basis (b1, . . . ,bd) of a lattice L ⊂ Rn. Now define Mi as the sublat-
tice spanned by the primitive basis (b1, . . . ,bi−1), for 1 ≤ i ≤ d. Furthermore, define πi :=
πMi

= πspan({b1,...,bi−1}), for 1 ≤ i ≤ d. Then πi(L) is a (d − i + 1)-rank lattice of volume
vol(L)/ vol(L(b1, . . . ,bi−1)). Note that π1 is the identity.
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This corollary is often used in lattice reduction, because projection reduces the rank, which
allows for induction on the lattice rank. In fact, applying π2 (the projection on the orthogonal
complement of the first basis vector b1) reduces the rank by 1. In Euclidean vector spaces with
the normal inner product, the map π2 is defined by

π2(u) = u− 〈b1,u〉
‖b1‖2

b1.

To see that the resulting vector is in the orthogonal complement of span(b1), compute the inner
product

〈u− 〈b1,u〉
‖b1‖2

b1,b1〉 = 〈u,b1〉 −
〈b1,u〉
‖b1‖2

〈b1,b1〉 = 〈u,b1〉 − 〈b1,u〉 = 0.

Now, let u ∈ L be a lattice vector and let v = π2(u). Then v can be lifted back to L as follows:

u′ = v +
( 〈b1,u〉
‖b1‖2

−
⌊ 〈b1,u〉
‖b1‖2

⌉)
b1

= u− 〈b1,u〉
‖b1‖2

b1 +
〈b1,u〉
‖b1‖2

b1 −
⌊ 〈b1,u〉
‖b1‖2

⌉
b1

= u−
⌊ 〈b1,u〉
‖b1‖2

⌉
b1. (1.3)

Note that
⌊
〈b1,u〉
‖b1‖2

⌉
∈ Z and

∣∣∣ 〈b1,u〉
‖b1‖ −

⌊
〈b1,u〉
‖b1‖

⌉∣∣∣ ≤ 1/2 by definition of the round function. Thus,
the result is a nonzero vector u′ ∈ L such that

v = π2(u′),

‖u′‖2 ≤ ‖v‖2 + (‖b1‖/2)2, and

|〈b1,u′〉| ≤ ‖b1‖2/2.

Using this procedure, it is possible to derive a somewhat short vector u′ in L from any short vector
v in π2(L). Figure 1.5 shows a 2-dimensional example of this lifting procedure, with the basis
b1 = (1, 2) and b2 = (−1, 2). The projection π2(b2) is lifted back to the shorter lattice vector
u′ = (−2, 0).

Dual lattice

Besides projective lattices and sublattices, it is also possible to consider the dual lattice.

Definition 1.20. For a lattice L ⊂ Rn, the dual lattice L× is defined as

L× = {y ∈ span(L) : 〈x,y〉 ∈ Z, for all x ∈ L}.

In the case that L is full-rank, the dual lattice consists of all vectors y such that for every
x ∈ L, the inner product 〈x,y〉 is an integer. Let B be a basis of L. Any lattice vector can be
written as x = Bx′, for x′ ∈ Zn. Conversely, each x′ ∈ Zn gives rise to a lattice vector. Given a
vector y in the dual, the inner product becomes

〈x,y〉 = 〈Bx′,y〉 = 〈x′, BTy〉 ∈ Z, for all x′ ∈ Zn.

Now, by taking x′ = ei, where ei is the i’th unit vector, it immediately follows that this inner
product is integral if and only if every entry of BTy is integral. Therefore, y′ = BTy is an
integral vector, and equivalently, y = (BT )−1y′ for some integral vector y′. This proves that
L× ⊆

{
(BT )−1y′|y′ ∈ Zn

}
. Conversely, every y′ ∈ Zn gives rise to a vector in the dual, since for

any y′ ∈ Zn the following equality holds:

〈x′,y′〉 = 〈x′, (BT )(BT )−1y′〉 = 〈Bx′, (BT )−1y′〉 = 〈x,y〉.
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b1b2

π2(b2)

u′

Figure 1.5: The projection π2(b2) is lifted to L, where b1 = (2,−1) and b2 = (2, 1).

This proves that
{

(BT )−1y′ : y′ ∈ Zn
}
⊆ L×. Thus, the dual is spanned by the columns of

(BT )−1. It immediately follows that (L×)× = L and that the rank of L× is the same as that of L.
A similar argument applies when L is not full-rank, but then the dual is spanned by B(BTB)−1,
which is the right inverse of BT when the columns of B are independent (recall that the Gram
matrix BTB has a non-zero determinant if and only if the columns of B are independent).

Dual lattices are volume-reversing, as seen in the following lemma:

Lemma 1.21. Let L ⊂ Rn be a lattice of rank d. Then L× ⊂ Rn is a d-rank lattice of volume
vol(L)−1.

Proof. As the dual lattice is a lattice that is spanned by B(BTB)−1, its volume is equal to
det((B(BTB)−1)TB(BTB)−1) by Lemma 1.12.

det
(
(B(BTB)−1)TB(BTB)−1

)
= det

(
((BTB)−1)TBTB(BTB)−1

)

= det
(
((BTB)−1)T

)
= det(BTB)−1.

By Lemma 1.12, this is equal to vol(L)−1, as desired. Furthermore, the rank of L× is the same as
that of L, since the columns of B(BTB)−1 are independent.

If L ⊂ Zn is an integral lattice of rank d < n, it is possible to define the orthogonal lattice,
which is similar to the dual lattice of L:

Definition 1.22. For a lattice L ⊂ Rn, the orthogonal lattice is defined as

L⊥ = {y ∈ Rn : 〈x,y〉 = 0, for all x ∈ L}.
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Note that, unlike in the dual lattice, the vectors in the orthogonal lattice are not restricted to the
span of L. The orthogonal lattice appears in the analysis of several lattice-based cryptosystems,
as will be seen in Chapter 2.

1.3.7 Gram Schmidt Orthogonalization

The Gram-Schmidt process is an iterative method to orthonormalize the basis of a vector space.
This is done by taking a basis vector and scaling it such that it has length one. All subsequent
vectors are iteratively projected on the orthogonal complement of the span of the previous vectors
and scaled to length one. When the vectors are not scaled during the procedure, the resulting
basis will be orthogonal rather than orthonormal. In lattices, the projection of a lattice vector
on the orthogonal complement of another lattice vector is not necessarily in the lattice, and it is
generally not possible to scale a vector to length one. This means that applying the Gram-Schmidt
process to a lattice basis will generally not result in a set of basis vectors that still span the same
lattice. However, the Gram-Schmidt process is still interesting to consider in the case of lattices,
as will be shown in Section 1.5.

Define the Gram Schmidt Orthogonalization (GSO) of a basis {b1, . . .bd} of a lattice L using
the following iterative formula:

b∗1 := b1

b∗i := bi −
i−1∑

j=1

µijb∗j , where µij =
〈bi,b∗j 〉
‖b∗j‖2

for all 1 ≤ j < i ≤ d.

In order to orthonormalize this basis, all vectors b∗i can be divided by their length. Figure 1.6
shows the result of applying the GSO-procedure with normalization to the basis b1 = (1, 2) and
b2 = (1, 0). Note that applying the GSO-procedure to a lattice basis does not result in a basis for
the lattice (even without normalization).

b1

b2

b∗
2

b∗
1

Figure 1.6: The normalized result of the GSO-procedure applied to b1 = (1, 2) and b2 = (1, 0).

Consider the following three matrices:

B =



| | |

b1 b2 · · · bd
| | |


 , B∗ =



| | |

b∗1 b∗2 · · · b∗d
| | |


 , µ =




1 0 · · · 0

µ2,1 1
. . .

...
...

. . . . . . 0
µd,1 · · · µd,d−1 1



.
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Using these matrices, the GSO of a basis B can be described using the matrix equality B = B∗µT .
Thus, the GSO of a basis of the lattice L satisfies

vol(L) =
√

det(BTB) =
√

det(µ(B∗)TB∗µT )

=
√

det(µ)2 det((B∗)TB∗) =
√

det((B∗)TB∗).

The Gram matrix (B∗)TB∗ is a diagonal matrix with entries 〈b∗i ,b∗i 〉 = ‖b∗i ‖2. The non-diagonal
entries are zero, because the columns of B∗ are pairwise orthogonal. Thus, the Gram determinant
is given by det((B∗)TB∗) =

∏d
i=1 ‖b∗i ‖2. Therefore, for any basis B of the lattice L, the volume

of L is given by

vol(L) =
d∏

i=1

‖b∗i ‖, (1.4)

where b∗i are the GSO vectors of the basis B.
Note that the GSO depends on the order of the bi. Although the resulting vectors are generally

not in the lattice (except for b∗1, which is in the lattice by design), an adaptation of the GSO can still
be used to “reduce” a basis in a certain sense. This reduction uses the lifting procedure discussed
in the section on projected lattices, as will be shown in Section 1.5, where lattice reduction is
introduced.

1.4 Classical lattice problems

This section contains two important classical lattice problems. As the computational aspects of
these problems are important, the actual representation of lattices becomes an issue, such as the
representation of a lattice in a computer. Lattices are defined in the Euclidean vector space Rn.
However, from a computational viewpoint it is customary to consider lattices where all lattice
vectors have rational coefficients. Any rational lattice can be transformed to an integral lattice by
multiplying with a suitable integral factor (such as the least common multiple of all denominators).
Thus, without loss of generality, lattice problems will only be defined in terms of integral lattices,
such that the representation becomes a basis matrix of integers.

1.4.1 SVP

Let L ⊂ Zn be a non-trivial lattice, i.e., it contains at least one nonzero vector x. Now, the set
S = B(0, ‖x‖) is bounded, and therefore, by Lemma 1.3, L ∩ S is finite. Note that x ∈ L ∩ S,
and thus L ∩ S contains at least one nonzero vector. It follows that the set of norms of nonzero
vectors in L ∩ S is finite and nonempty, and thus there exists a nonzero vector u ∈ L such that

‖u‖ = min
v∈L\{0}

‖v‖. (1.5)

This gives rise to the shortest vector problem (SVP):

Definition 1.23 (Shortest Vector Problem (SVP)). Given a basis B of a d-rank lattice L ⊆ Zn,
find a nonzero vector u ∈ L such that ‖u‖ = min

v∈L\{0}
‖v‖.

Note that the shortest vector in a lattice is not unique. Indeed, if u is a nonzero shortest vector,
then so is −u. It is even possible to have several linearly independent shortest vectors. In the
following, a “shortest vector” will always mean a nonzero vector, as 0 is trivially the shortest
vector in a lattice.

In 1910, Minkowski created the Geometry of Numbers [73], a field intended to be a bridge
between quadratic forms and Diophantine approximation. A central problem in this field was to
prove the existence of short nonzero vectors in a lattice. Van Emde Boas proved in 1981 [15] that
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SVP is NP-hard in the `∞ norm, but NP-hardness in the `p-norm for p <∞ was not proven until
Ajtai showed it in [2] for the `2 norm under randomized reductions. For most applications the
shortest vector problem is defined using the `2 norm.

Often, applications do not require an actual shortest vector, but a vector that is “short enough”.
Hence, it is interesting to consider the approximate shortest vector problem:

Definition 1.24 (Approximate Shortest Vector Problem (aSVP)). Given a basis B of a d-rank
lattice L ⊆ Zn and an approximation factor γ ≥ 1, find a nonzero vector u ∈ L such that
‖u‖ ≤ γ min

v∈L\{0}
‖v‖.

It is currently known that SVP is NP-hard (under quasi-polynomial time reductions) to ap-
proximate for factors γ = 2log(n)1/2−ε

, where ε > 0 is an arbitrarily small constant (see [49]).

1.4.2 CVP

Another problem that was studied in the language of quadratic forms is the closest vector problem
(CVP), which can be seen as the inhomogeneous version of SVP:

Definition 1.25 (Closest Vector Problem (CVP)). Given a basis B of a d-rank lattice L ⊆ Zn
and a target vector x ∈ span(L) (not necessarily in the lattice L), find a lattice vector u ∈ L such
that ‖x− u‖ = dist(x, L).

In 1981, van Emde Boas included it in his paper on hard lattice problems [15], where he called
it the “Nearest Vector Problem”. He showed that it is NP-hard to solve CVP exactly. As with
SVP, it is not always necessary to retrieve the actual closest vector, but sometimes a vector that
is “close enough” suffices. This gives rise to the approximate closest vector problem:

Definition 1.26 (Approximate Closest Vector Problem (aCVP)). Given a basis B of a d-rank
lattice L ⊆ Zn, a target vector x ∈ Rn (not necessarily in the lattice L) and an approximation
factor γ ≥ 1, find a lattice vector u ∈ L such that ‖x− u‖ ≤ γ dist(x, L).

It is known that CVP is NP-hard to approximate within any constant factor, as well as some
slowly increasing (sub-polynomial) function in the lattice rank (see [6, 14]).

1.4.3 Connections between SVP and CVP

Reducing SVP to CVP

The closest vector problem has been regarded as being harder than the shortest vector problem
(in the same dimension). This was first formalized by Henk [34], and later expanded by Goldreich
et al. [31]. They showed, using elementary results on lattices, that an oracle that solves CVP can
be used to solve SVP in the same dimension for a wide variety of norms. Furthermore, their result
preserves approximation factors.

They reduce SVP to CVP as follows. Given a basis B = [b1, . . . ,bd], define the basis B(j) =
[b1, . . . ,bj−1, 2bj ,bj+1, . . . ,bd]. Consider the instances (B(j),bj) of the closest vector problem,
which are defined by the basis B(j) and the target vector bj . For the reduction, the instances
(B(j),bj) are given to the CVP-oracle, which is a subroutine that solves CVP. The oracle will
return the vectors vj , the lattice vectors in L(B(j)) that are closest to bj . Now, the shortest of
the vectors v1 − b1, . . . ,vn − bn will be a shortest vector of the lattice L(B).

The proof of validity for their reduction starts out with the following observation:

Proposition 1.27. Let B = [b1, . . . ,bd] be a basis for a lattice L, and let u =
∑d
i=1 λibi be a

shortest nonzero vector. Then, at least one of the λi ∈ Z is odd for 1 ≤ i ≤ d.
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Proof. Assume the λi are all even, i.e., λi = 2λ′i for some integer λ′i. Now consider the vector

u′ =
1
2
u =

d∑

i=1

λ′ibi.

As the λ′i’s are all integer, u′ is a nonzero lattice vector with norm 1
2‖u‖. This contradicts the

assumption that u is a shortest nonzero vector in L.

The next proposition shows that any feasible solution to the SVP instance corresponds to a
feasible solution of one of the CVP-instances. (B(j),bj).

Proposition 1.28. Let u =
∑d
i=1 λibi be a lattice vector in L(B) such that λj is odd. Then

v = u + bj is a lattice vector in L(B(j)) such that the distance dist(v,bj) = ‖u‖.

Proof. Consider the vector v:

v = u + bj = (λj + 1)bj +
∑

i 6=j
λibi =

λj + 1
2

(2bj) +
∑

i 6=j
λibi.

Because λj is odd, λj+1
2 is an integer, and hence v is in L(B(j)). Furthermore dist(v,bj) =

‖v − bj‖ = ‖u‖.

Finally, they show that any feasible solution of the CVP-instances (B(j),bj) corresponds to a
nonzero vector in L(B) as well:

Proposition 1.29. Let v = λj(2bj) +
∑
i 6=j λibi be a vector in L(B(j)). Then u = v − bj is a

nonzero lattice vector in L(B).

Proof. Consider the vector u:

u = v − bj =
d∑

i=1

λjbj − bj = (2λj − 1)bj +
∑

i 6=j
λibi.

Because 2λj−1 is an odd integer and hence not equal to zero, it follows that u is a nonzero vector
in L(B).

Now, let u be a shortest vector in L(B). By Proposition 1.27 it must have an odd coefficient
with respect to the basis B. Thus, by Proposition 1.28, there is an instance (B(j),bj) of the closest
vector problem that has a solution ‖v‖ of distance at most ‖v−bj‖ = ‖u‖ to bj . Therefore, each
shortest vector in L(B) gives rise to a solution of a CVP-instance (B(j),bj), such that the length
of the shortest vector is equal to the distance between the target vector and this CVP solution. It
follows that among all CVP-instances (B(j),bj), there exists at least one solution whose distance
to the target does not exceed the length of the shortest vector in L(B).

By Proposition 1.29, every solution vj of every CVP-instance (B(j),bj) gives rise to a vector
u in the lattice L(B), such that the norm of u is the same as the distance of vj to bj . This
means that the solutions to the CVP-instances (B(j),bj) cannot have a distance to their target
that is smaller than the length of a shortest vector in L(B). Combining these results shows that
the shortest of the vectors v1−b1, . . . ,vn−bn will be a shortest vector of the lattice L(B). Thus,
SVP can be reduced to CVP using this method. This means that, in terms of computational
complexity, the closest vector problem is as least as hard as the shortest vector problem.
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Embedding technique

Although SVP can be reduced to CVP, there also exists a heuristic method to convert instances
of CVP to an instance of SVP in a lattice of similar rank in a similar dimension. This method,
known as the “embedding technique” (see [30]), allows for reasonable approximations to CVP.

The embedding technique works as follows. Take an instance of the CVP, with a basis
{b1, . . . ,bn} for the lattice L and with the target vector c. Now construct the (n + 1)-rank
lattice L′ using the columns of the following matrix as basis vectors:

B′ =




| | |
c b1 · · · bn
| | |
1 0 · · · 0


 .

The determinant of B′ is the same as the determinant of the basis B of L. Thus, the volume of
the lattice L′ is the same as that of L. Furthermore, the rank is nearly the same, since the rank
of L is n and the rank of L′ is n + 1. The expectation is that the length of the shortest lattice
vector is approximately the same in both lattices. This expectation will be made more concrete
in the next section on short vectors. Now, consider the vector that is closest to c as an integral
linear combination of the bi’s, x =

∑
i λibi. The idea is that c − x will have relatively small

entries (depending on how close c is to the lattice), and therefore (c− x, 1) will be a short vector
in L′. However, this is merely an efficient heuristic technique, and does not provide a reduction
from CVP to SVP.

1.4.4 Theoretical results on short vectors

As mentioned in the SVP description, every lattice has a shortest nonzero vector u ∈ L. Minkowski
defined the length of one of the shortest nonzero vectors as the first minimum of the lattice L,
denoted by λ1(L). It was also mentioned that this vector is not necessarily unique; if u is a solution,
then so is −u. This means that a second-to-shortest nonzero vector is not necessarily a useful
concept. Therefore, Minkowski included linear independence in his definition of the successive
minima of a lattice:

Definition 1.30. Let L ⊂ Rn be a d-rank lattice. Define for 1 ≤ i ≤ d the ith minimum as

λi(L) = min
u1, . . . , ui ∈ L

independent

max
1≤j≤i

‖uj‖.

Thus, the first minimum λ1(L) is, as before, the length of one of the shortest nonzero vectors from
the lattice. The second minimum is obtained by taking two independent lattice vectors u1,u2

such that the longest of the two is as short as possible, its length being the second minimum. In
general, the j’th minimum is obtained by taking j independent lattice vectors u1, . . . ,uj such that
the longest of these j vectors is as short as possible. It follows that these minima are nondecreasing,
i.e., λ1(L) ≤ . . . ≤ λd(L).

Now, by definition there will always be linearly independent vectors that reach the minima
simultaneously. But these vectors do not always form a lattice basis when the dimension is 4
or greater. On top of that, when the dimension is 5 or greater, a basis reaching the minima
simultaneously need not exist.

Let L ⊂ Zn be a full-rank lattice. Recall that, by Lemma 1.12(ii), for r > 0

lim
r→∞

rnvn

|B(0, r) ∩ L|
= vol(L).

Rewriting this limit shows that, heuristically:

rnvn
vol(L)

≈ |B(0, r) ∩ L|. (1.6)
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Now, it is interesting to consider for which r the left-hand side of (1.6) is one, i.e., when there
is expected to be only one lattice vector in the n-dimensional ball of radius r. Using Stirling’s
formula to approximate vn gives the solution

r ≈
√

n

2πe
(vol(L))1/n.

This gives rise to the definition of the expected shortest length of a nonzero vector in a lattice L:

σ(L) =
√

n

2πe
(vol(L))1/n. (1.7)

Note that the previous argument only holds heuristically. It is based on the Gaussian Heuristic,
which says that for any set C ⊂ Rn, the expected number of lattice points in L∩C is vol(C)/ vol(L).
Furthermore, the word expected is not meant in the probabilistic sense, but heuristically.

It is also interesting to consider how long these shortest vectors of a lattice can be. Is it possible
to somehow bound the length of a shortest vector? Let L ⊂ Rn be a d-rank lattice. The length
of the shortest vector λ1(L) and the volume of the lattice vol(L) are both homogeneous functions
of L. Indeed, if L is replaced by tL, the length of the shortest vector becomes λ1(tL) = |t|λ1(L),
whereas for the volume vol(tL) = |t|d vol(L). Therefore, the quantity λ1(L) has the same degree
as vol(L)1/d. Hermite [35] was the first to prove the fact that λ1(L)/ vol(L)1/d could be upper
bounded, resulting in the following definition:

Definition 1.31. Hermite’s constant γd is the supremum of λ1(L)2/ vol(L)2/d over all d-rank
lattices L.

The powers of two used in this definition stem from the fact that Hermite looked at quadratic
forms rather than lattices. Using Hermite’s constant, it is possible to upper bound the length of
the shortest vector in any d-rank lattice L:

λ1(L) ≤ √γd vol(L)1/d. (1.8)

It is known that for all d, there exists a lattice reaching equality in (1.8) for Hermite’s constant
γd. These lattices are called critical. However, it turns out that finding exact values for γd is a
very difficult problem. The only known values for γd are for 1 ≤ d ≤ 8 and d = 24. Additionally,
all critical lattices are known for each of these ranks, up to scaling and isometry.

It is hard to give the explicit upper bound on the shortest length of a vector as in (1.8) when
γd is only known for nine different values of d. Fortunately, it is possible to give rather good
asymptotical bounds on γd. Hermite himself gave an upper bound on γd, as seen in the following
theorem:

Theorem 1.32 (Hermite’s inequality). Hermite’s constant for lattices of rank d satisfies the upper
bound

γd ≤ γd−1
2 , (1.9)

for all integers d ≥ 2, and where γ2 =
√

4/3.

Proof. The proof goes by induction. For the base case, consider d = 2, where (1.9) is trivially
satisfied. To see that γ2 ≤

√
4/3, consider a two-dimensional lattice L spanned by b1 and b2.

Assume without loss of generality that ‖b1‖ = λ1(L) and 〈b1,b2〉 ≤ ‖b1‖2/2. If the second
condition is not satisfied, replace b2 by the vector obtained when lifting π2(b2) back to L, as in
Equation (1.3). Now consider the GSO-vectors b∗1 = b1 and b∗2 = b2 − 〈b1,b2〉

‖b1‖2 b1. The following
inequalities hold:

‖b1‖2 ≤ ‖b2‖2 = ‖b∗2 +
〈b1,b2〉
‖b1‖2

b1‖2 ≤ ‖b∗2‖2 +
∣∣∣∣
〈b1,b2〉
‖b1‖2

∣∣∣∣
2

‖b1‖2

≤ ‖b∗2‖2 + ‖b1‖2/4.
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By Equation (1.4), the volume of the lattice L is given by vol(L) = ‖b1‖‖b∗2‖. Thus, rewriting
this expression gives

λ1(L) = ‖b1‖ ≤
√

4/3‖b∗2‖ =
√

4/3 vol(L)/‖b1‖.

It now follows that

λ1(L)2/ vol(L)2/2 ≤
√

4/3,

for every lattice L of rank 2. Thus, γ2 ≤
√

4/3 by definition of Hermite’s constant.
To see that γ2 ≥

√
4/3, consider the hexagonal lattice spanned by b1 = (1, 0) and b2 =

( 1
2 ,

1
2

√
3). Then vol(L) = 1

2

√
3 and λ1(L) = λ2(L) = 1. Thus, λ1(L)2/ vol(L) = 1/(1/2

√
3) =√

4/3, as desired.
The proof to complete the induction is similar to the proof of γ2 ≤

√
4/3. Assume the induction

hypothesis (1.9) is true for rank d − 1. Consider a d-rank lattice L ⊂ Rn and one of its shortest
nonzero vectors b1. Let {b1, . . . ,bd} be any basis for L containing b1. Now consider the projected
lattice L′ = π2(L) and its shortest vector b′2. Note that the Gram-Schmidt Orthogonalization of
the basis {π2(b2), . . . , π2(bd)} of L′ satisfies that (π2(bi))∗ = b∗i for all 2 ≤ i ≤ d, because the
first step of the GSO in L is to project these vectors on the orthogonal complement of the span of
b1 anyway. By Equation (1.4) and the fact that b1 = b∗1, the volume of L′ satisfies

vol(L′) =
d∏

i=2

‖b∗i ‖ = vol(L)/‖b1‖.

As L′ is a (d− 1)-rank lattice, the definition of Hermite’s constant gives that

‖b′2‖ = λ1(L′) ≤ √γ(d−1) vol(L′)1/(d−1) ≤ (γ2)(d−2)/2 vol(L′)1/(d−1),

where the last inequality follows from the induction hypothesis. Recall from Equation (1.3) that
b′2 can be lifted back to L by adding the appropriate scalar multiple of b1 resulting in a nonzero
vector b2 ∈ L such that ‖b2‖2 ≤ ‖b′2‖2 + ‖b1‖2/4. Now ‖b1‖ ≤ ‖b2‖, because b1 is a shortest
vector in L by assumption. Since vol(L′) = vol(L)/‖b1‖, it follows that

‖b1‖ ≤
√

4/3‖b′2‖ ≤ γd/22 vol(L′)1/(d−1)

= γ
d/2
2 (vol(L)/‖b1‖)1/(d−1).

This implies

λ1(L) = ‖b1‖ ≤ γ(d−1)/2
2 vol(L)1/d.

From here it is easily seen that

λ1(L)2/ vol(L)2/d ≤ γd−1
2 ,

for any d-rank lattice L, and specifically for a critical one, where λ1(L)2/ vol(L)2/d = γd. This
proves the desired result.

This bound is exponential in the dimension d. Since then, both linear upper and lower bounds
have been found for γd. The first linear upper bound was shown by Minkowski, as a consequence
of his convex body theorem.

Theorem 1.33 (Minkowski’s Convex Body Theorem). Let L ⊂ Rn be an n-rank lattice. Let
C ⊂ Rn be a measurable convex set, that is symmetric with respect to 0 and of measure strictly
greater than 2n vol(L). Then C ∩ L contains at least one nonzero vector.
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The proof of this theorem makes use of a generalization of the pigeonhole principle. As a
corollary of this theorem, an upper bound on the length of the shortest vector is obtained:

Corollary 1.34. Let L ⊂ Rn be a d-dimensional lattice and let vd be defined as in (1.1). Then L
contains a nonzero vector x such that

λ1(L) ≤ ‖x‖ ≤ 2
(

vol(L)
vd

)1/d

.

Rewriting this expression gives that

λ1(L)2

vol(L)2/d
≤ 4

(vd)2/d
.

Since this holds for all d-rank lattices L, it specifically holds for a critical lattice of rank d, and
thus

γd ≤
4

(vd)2/d
,

for d ≥ 1. Now, using known properties of vd, the following linear bound can be derived:

γd ≤ 1 +
d

4
, (1.10)

for all d ≥ 1.
These bounds can be used to give an upper bound for the length λ1 of the shortest vector in a

lattice, as in (1.8). The next question is whether λ2 can be bounded as well. Unfortunately, this
is not the case, as can be seen by the following example:

Example 1.35. Consider the lattice L spanned by the columns of the following matrix:
(
ε 0
0 1

ε

)
.

For ε ≤ 1, the length of the shortest vector is λ1(L) = ε, whereas the length of the second shortest
vector (linearly independent from the first) is λ2(L) = 1/ε, which tends to infinity for ε→ 0. Thus,
λ2(L) can be arbitrarily large compared the volume of L, which is 1 in this case. Additionally,
this example shows that λ1(L) can be arbitrarily small compared to the upper bound of Hermite’s
constant.

Although it is not possible to bound any other successive minima using the volume of L,
Minkowski showed it is possible to bound the geometric mean of the successive minima:

Theorem 1.36 (Minkowski’s Second Theorem). Let L ⊂ Rn be a d-dimensional lattice. Then

(
r∏

i=1

λi(L)

)1/r

≤ √γd vol(L)1/d,

for every 1 ≤ r ≤ d.

1.5 Lattice basis reduction

Minkowski’s results on short vectors in a lattice of the previous section do not have constructive
proofs. They do not provide a procedure to retrieve such short vectors. There are several algo-
rithms that solve the exact version of SVP, retrieving an actual shortest vector. However, these
algorithms perform some variation of a complete enumeration of short vectors. As such, they do
not run in polynomial time for varying lattice rank.
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As opposed to Minkowski’s result, the proof of Hermite’s inequality does give some constructive
pointers to find short vectors, but its approximation factor is exponential in the rank. In 1982,
Lenstra, Lenstra and Lovász published the Lenstra-Lenstra-Lovász algorithm (LLL), which is a
basis reduction algorithm for lattices, based on Hermite’s inequality. As a byproduct of reducing
the lattice basis, the LLL algorithm finds a short vector that approximates the shortest nonzero
vector with an exponential approximation factor, such as in Hermite’s inequality. The LLL algo-
rithm was a huge breakthrough in lattice basis reduction, because it runs in polynomial time as a
function of the rank of the lattice. This section provides an introduction to lattice reduction, and
specifically to the LLL algorithm.

Lattices are generally represented by a basis. In Rn, there are orthonormal bases, i.e., bases
(e1, . . . , en) where all vectors have norm ‖ei‖ = 1 and they are pairwise orthogonal, i.e., 〈ei, ej〉 = 0
if i 6= j. It is interesting to consider orthogonal bases for lattices as well. Lattice basis reduction
algorithms aim to give a basis that is reduced in the sense that its basis vectors are close to
orthogonal. Since it is not immediately clear how to define what “close to orthogonal” means, bases
that consist of short vectors will be considered instead. The reason for the use of short vectors
will become apparent in this section. Algorithms for SVP and CVP often use basis reduction
algorithms as a preparation step, because reduced bases are easier to work with.

1.5.1 Orthogonality

An attractive quality of vector space bases is orthogonality. In lattices, it is not always possible
to orthogonalize the basis. Recall that for any basis {b1, . . . ,bd} the volume of the lattice always
satisfies vol(L) ≤ ∏d

i=1 ‖bi‖, with equality if and only if all the basis vectors are orthogonal to
each other. This gives rise to the following definition:

Definition 1.37. The orthogonality defect of the basis {b1, . . . ,bd} of a lattice L is denoted by∏d
i=1 ‖bi‖/ vol(L) ≥ 1. Equality holds if and only if the basis is orthogonal.

It is easy to see that decreasing the length of the vectors in a basis also decreases the orthog-
onality defect of the lattice.

1.5.2 Reduction notions

There is no single definition of what a reduced basis is. Several reduction notions will be defined
here.

Size-reduction

The first notion is intuitively very easy to achieve. However, it is rather weak, in the sense that by
itself, it does not offer very good bounds on the orthogonality defect or length of the basis vectors.

Definition 1.38. A basis {b1, . . .bd} of a lattice L ⊂ Rn is called size-reduced if the GSO-
coefficients µij satisfy

|µij | ≤
1
2
,

for all 1 ≤ j < i ≤ d.

An equivalent geometric interpretation of this definition is that bi is already as close to the
orthogonal complement of b∗j as possible, for all j < i. As a result, when projecting bi on the
orthogonal complement of b∗j , less than half the vector b∗j needs to be subtracted or added. This
basically means that this basis is the closest basis to this particular GSO, while still spanning the
same lattice. Furthermore, since bi = b∗i +

∑
j<i µijb

∗
j , the square of the norm of bi will satisfy

‖b∗i ‖2 ≤ ‖bi‖2 ≤ ‖b∗i ‖2 +
(

1
2

)2 i−1∑

j=1

‖b∗j‖2,
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by the triangle inequality. An algorithm to size-reduce bases will be given later. Many other
reduction notions include size-reduction as a requirement in their definition.

Lagrange-reduction

A special case of the basis reduction problem is the case where d = 2. In the late 18th century,
an algorithm (which has been attributed to both Lagrange [52] and Gauss [22]) was invented to
reduce the basis for lattices of rank d = 2 in terms of quadratic forms. This algorithm returns a
basis that satisfies the following reduction notion:

Definition 1.39. Let L ⊂ Rn be a 2-dimensional lattice. A basis {b1,b2} of L is said to be
Lagrange-reduced if ‖b1‖ ≤ ‖b2‖ and |〈b1,b2〉| ≤ ‖b1‖2/2.

It is easy to check whether a given basis satisfies this notion. A geometric interpretation of this
definition is that in the plane spanned by b1 and b2, the vector b1 is within the circle centered at
the origin with radius ‖b2‖, and the angle between the two vectors is in the interval (π/3, 2π/3)
modulo π. Note that the condition on the inner product is equivalent to size-reduction.

It turns out that this reduction notion also minimizes the length of the vectors.

Proposition 1.40. Let L ⊂ Rn be a 2-dimensional lattice. The basis {b1,b2} of L is Lagrange-
reduced if and only if ‖b1‖ = λ1(L) and ‖b2‖ = λ2(L).

By definition, there always exist vectors b1 and b2 that simultaneously reach the minima λ1(L)
and λ2(L). Furthermore, because the space is 2-dimensional, these vectors also form a basis of
the lattice. Assume they do not, then there must be lattice vector x = x1b1 + x2b2 where x1

and x2 are not integral. But then the vector (x1 − bx1e)b1 + (x2 − bx2e)b2 is shorter than b2 by
the fact that b1 and b2 are linearly independent and the triangle inequality. Thus, there always
exist bases that simultaneously reach the minima, and by Proposition 1.40, there always exist
Lagrange-reduced bases.

The algorithm that achieves this reduction notion is a generalization of Euclid’s algorithm for
computing the greatest common divisor to a 2-dimensional vector space. It will be explained in
the next section about reduction algorithms.

HKZ-reduction

The next reduction notion is very strong, but rather hard to achieve:

Definition 1.41 (HKZ-reduction). A basis {b1, . . . ,bd} of a lattice L ⊂ Rn is called Hermite-
Korkine-Zolotarev-reduced (HKZ-reduced) if it is size-reduced and

‖b∗i ‖ = λ1(πi(L)), (1.11)

for all 1 ≤ i ≤ d, where b∗i is the GSO-projection of bi.

This is a natural definition, since b∗i ∈ πi(L) is a nonzero vector in the projected lattice by
design of the GSO procedure. Furthermore, b∗d is the shortest vector of πd(L), because all vectors
in πd(L) are multiples of bd in the original lattice: the contributions of the other bi’s have been
projected onto 0.

HKZ-reduced bases have the following interesting properties:

Theorem 1.42. Let {b1, . . . ,bd} be an HKZ-reduced basis of a lattice L ⊂ Rn. Then

4
i+ 3

≤
( ‖bi‖
λi(L)

)2

≤ i+ 3
4

,

for all 1 ≤ i ≤ d.
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For a proof of this theorem, see the work by Mahler [63] for a proof of the upper bound and the
work by Lagarias, Lenstra and Schnorr [50] for a proof of the lower bound. The proofs combine
several observations on the lengths of projected vectors, as well as some properties of size-reduced
bases.

Another nice property of HKZ-reduced bases is that for any HKZ-reduced basis {b1, . . . ,bd},
the projected partial basis {πi(bi), πi(bi+1), . . . , πi(bj)} is HKZ-reduced for all 1 ≤ i ≤ j ≤ d.
This allows for properties of lower-dimensional HKZ-reduced bases to be transferred to higher
dimensions. However, these properties come at a cost. The requirement (1.11) demands that each
GSO projection must be a shortest vector in some projected lattice. This suggests that every
vector bi requires some instance of SVP to be solved in some projected lattice. Getting b1 to
satisfy the requirement is already an SVP-instance in the original lattice. Therefore, computing a
basis that satisfies this reduction notion is at least as hard as solving the shortest vector problem.

Hermite’s reduction notions

Hermite devised two algorithms to reduce a basis, with a different reduction notion for both. Both
algorithms appeared in letters to Jacobi [35]. The first algorithm he created obtains a basis that
satisfies the following two properties:

• The basis is size-reduced.

• The GSO vectors satisfy ‖b∗i ‖ ≤ (4/3)(d−i)/4 vol(πi(L))1/(d−i+1) for every 1 ≤ i ≤ d, which
is equivalent to Hermite’s inequality (1.9) in the projected lattice πi(L).

This is not a very strong reduction notion. The following example shows that the orthogonality
defect of a basis satisfying this reduction notion is unbounded when the rank of the lattice is d ≥ 3.

Example 1.43. Let 0 < ε < 1 and let L be the lattice spanned by the basis

B =




1 1/2 1/2
0 ε ε/2
0 0 1/ε


 .

To see that this basis satisfies the reduction notion, first compute the GSO:

b∗1 = b1 = (1, 0, 0),

b∗2 = b2 −
〈b∗1,b2〉
‖b∗1‖2

b∗1 = (1/2, ε, 0)− 1
2

(1, 0, 0) = (0, ε, 0),

b∗3 = b3 −
〈b∗1,b3〉
‖b∗1‖2

b∗1 −
〈b∗2,b3〉
‖b∗2‖2

b∗2 = (1/2, ε/2, 1/ε)− 1
2

(1, 0, 0)− ε2

2ε2
(0, ε, 0) = (0, 0, 1/ε).

It follows that the basis is size-reduced, because |µij | = 1/2 for 1 ≤ j < i ≤ 3. Now, by (1.4), the
volumes of the projected lattices can be computed by multiplying the norms of the GSO-vectors:

vol(L) = ‖b∗1‖ · ‖b∗2‖ · ‖b∗3‖ = 1 · ε · 1/ε = 1,
vol(π2(L)) = ‖b∗2‖ · ‖b∗3‖ = ε · 1/ε = 1,
vol(π3(L)) = ‖b∗3‖ = 1/ε.

Note that the volume of L does not depend on ε. The second requirement of the reduction notion
can now be verified:

‖b∗1‖ = 1 ≤ (4/3)2/4 · 11/3 =
√

4/3,

‖b∗2‖ = ε ≤ (4/3)1/4 · 11/2 = (4/3)1/4,

‖b∗3‖ = 1/ε ≤ (4/3)0 · (1/ε)1 = 1/ε.
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This holds for all 0 < ε < 1, and if ε tends to 0, the second basis vector will lie close to parallel to
the first basis vector, and the orthogonality defect becomes

‖b1‖ · ‖b2‖ · ‖b3‖/ vol(L) = 1 ·
√

1/4 + ε2 ·
√

1/4 + ε2/4 + 1/ε2/1→∞,
as ε→ 0.

Hermite noticed that his algorithm did not correspond with the aforementioned 2-dimensional
algorithm that satisfies Lagrange’s reduction notion (Definition 1.39). He created a second algo-
rithm, which obtains a basis satisfying the following properties:

• The basis is size-reduced.

• The GSO-vectors satisfy that πi(bi) is the smallest vector in the projected basis of πi(L),
i.e.,

‖πi(bi)‖ ≤ ‖πi(bj)‖, (1.12)

for all 1 ≤ i < j ≤ d.

The requirement (1.12) is much weaker than the requirement (1.11) from Definition 1.41. In (1.11),
the projection of the i’th basis vector πi(bi) must be at least as short as all vectors in the projected
lattice πi(L), whereas in (1.12), πi(bi) only needs to be at least as short as the projection of the
other basis vectors πi(bi+1), . . . , πi(bd). This reduction notion guarantees that the GSO-vectors
satisfy

‖b∗i ‖2 = ‖πi(bi)‖2 ≤ ‖πi(bi+1)‖2

= ‖πi+1(bi+1) + µi+1,ib∗i ‖2

= ‖b∗i+1‖2 + µ2
i+1,i‖b∗i ‖2

≤ ‖b∗i+1‖2 +
1
4
‖b∗i ‖2,

‖b∗i ‖2 ≤
4
3
‖b∗i+1‖2. (1.13)

From (1.13), it follows by induction that

‖b∗i ‖2 ≤
(

4
3

)j−i
‖b∗j‖2, (1.14)

for all 1 ≤ i ≤ j ≤ d. Equation (1.14) leads to the following bound on the norms of the vectors of
the reduced basis:

‖bi‖2 = ‖b∗i ‖2 +
i−1∑

j=1

µ2
ij‖b∗j‖2

≤ ‖b∗i ‖2 +
i−1∑

j=1

1
4

(
4
3

)i−j
‖b∗i ‖2

=

(
1 +

1
4

(4/3)i − 4/3
4/3− 1

)
‖b∗i ‖2 =

(
4
3

)i−1

‖b∗i ‖2. (1.15)

Using the inequality in (1.15), the orthogonality defect of a basis of a lattice L that satisfies this
reduction notion can be bounded:

d∏

i=1

‖bi‖/ vol(L) ≤
d∏

i=1

(
4
3

)(i−1)/2

‖b∗i ‖/ vol(L)

=
(

4
3

)∑d
i=1(i−1)/2

=
(

4
3

)d(d−1)/4

.
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Although this is a suitable reduction notion that gives a bound on the orthogonality defect,
Hermite’s algorithms are not known to run in polynomial time as a function of the lattice rank.
Hendrik Lenstra [56] proposed a reduction algorithm that relaxed the second requirement of Her-
mite’s reduction notion:

c‖πi(bi)‖ ≤ ‖πi(bj)‖,
where c ∈ (1/4, 1) is a constant. Hendrik Lenstra proved in [56] that his algorithm runs in
polynomial time for any fixed dimension. In a letter to Hendrik1, Lovász proposed a modification
which guarantees a polynomial running time for any dimension. Recall that the reasoning in
Equations (1.13), (1.14) and (1.15) used only the inequalities ‖b∗i ‖2 ≤ ‖πi(bi+1)‖2 and |µij | ≤ 1/2.
Lovász’ proposal was to replace the inequalities c‖πi(bi)‖ ≤ ‖πi(bj)‖ by the single inequality
c‖πi(bi)‖ ≤ ‖πi(bi+1)‖, for 1 ≤ i ≤ d. This leads to the following reduction notion.

Definition 1.44. Let {b1, . . . ,bd} be a basis of a lattice L ⊂ Rn. It is said to be LLL-reduced
with factor δ ∈ ( 1

4 , 1) if it is size-reduced and

δ‖b∗i ‖2 ≤ ‖b∗i+1 + µi+1,ib∗i ‖2, (1.16)

for all 1 < i ≤ d.

The inequality (1.16) is called Lovász’ condition, and is equivalent to δ‖πi(bi)‖ ≤ ‖πi(bi+1)‖.
Its purpose stems from the fact that Gram-Schmidt Orthogonalization depends on the order of
the vectors in the basis. If the vectors bi and bi+1 would be swapped, then only b∗i and b∗i+1

would change, and the new b∗
′

i = b∗i+1 +µi+1,ib∗i . Thus, the left-hand side of (1.16) is δ times the
norm of the ‘old’ b∗i (before swapping), whereas the right-hand side is the norm of the ‘new’ b∗

′

i

(after swapping). This means that if Lovász’ condition does not hold, swapping bi and bi+1 would
significantly reduce the norm of b∗i . On the other hand, if the condition is satisfied, swapping will
not improve the norm of b∗i much. The most natural value for δ is 1, since that will lead to the
best reduction. Unfortunately, it is unknown if a basis satisfying that reduction notion can be
computed in polynomial time.

Another equivalent formulation of (1.16) is

(δ − µ2
i+1,i)‖b∗i ‖2 ≤ ‖b∗i+1‖2,

which implies that b∗i+1 is not much shorter than b∗i for each i. As size-reduction implies that
µ2
i+1,i < 1/4, this formulation yields the inequality

(δ − 1
4

)‖b∗i ‖2 ≤ (δ − µ2
i+1,i)‖b∗i ‖2 ≤ ‖b∗i+1‖2,

‖b∗i ‖2 ≤
(
δ − 1

4

)−1

‖bi+1‖2. (1.17)

This leads to the following theorem:

Theorem 1.45. Let 1
4 < δ ≤ 1, and take α = 1/(δ − 1

4 ). If the basis {b1, . . . ,bd} of a lattice
L ⊂ Rn is LLL-reduced with factor δ, then

(i) ‖b1‖ ≤ α(d−1)/4(vol(L))1/d.

(ii) ‖bi‖ ≤ α(d−1)/2λi(L), 1 ≤ i ≤ d.

(iii)
∏d
i=1 ‖bi‖ ≤ αd(d−1)/4 vol(L).

This result shows the connection between an LLL-reduced basis and Hermite’s inequality (1.9).
The closer δ is to 1, the better Hermite’s inequality is approximated, because the constant 4/3
becomes 4/3+ε for δ < 1. The proof of Theorem 1.45 follows the same reasoning as the derivation
of Equations (1.13), (1.14) and (1.15), where α = 4/3 was used, which is the value that arises
when δ = 1. The same results hold for δ ∈ (1/4, 1), by replacing (1.13) by (1.17).

1For a detailed description of the history of the LLL algorithm, see [101].
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1.5.3 Lattice reduction algorithms

As seen in the section on lattice reduction, there is not one single notion of a reduced lattice basis.
Therefore, there are also several different algorithms, each trying to reach a different reduction
notion. This section will focus on the LLL-algorithm and its reduction notions. First, an algorithm
will be given to size-reduce a basis, based on the Gram-Schmidt process. Then Lagrange’s reduc-
tion algorithm will be described, which is the 2-dimensional vector space equivalent of Euclid’s
algorithm for the greatest common divisor. Finally, the LLL-algorithm will be given, which can
be seen as an improved version of Hermite’s algorithms.

Size-reduction

The Gram-Schmidt Orthogonalization process is already quite close to a basis reduction algorithm.
The only problem is that the resulting vectors are not necessarily in the lattice. By slightly
tweaking the process, it is possible to create an algorithm that achieves the size-reduction notion.
It takes a basis {b1, . . . ,bd} as input and the output will be a size-reduced basis.

Algorithm 1 Size-reduction algorithm
Compute the GSO coefficients µij of {b1, . . . ,bd}.
for i = 2 to d do

for j = i− 1 down to 1 do
bi ← bi − dµijcbj
for k = 1 to j do
µik ← µik − dµijcµjk

end for
end for

end for

Algorithm 1 is equivalent to an algorithm that performs the following steps:

1. Compute the GSO coefficients µij of {b1, . . . ,bd}.

2. Project all basis vectors bi on their GSO vectors b∗i , iterating from i = 1 to d.

3. Lift all GSO vectors back to lattice vectors using the lifting procedure in Equation (1.3),
iterating from i = d to 1.

However, for efficiency, algorithm 1 only iterates over all vectors bi once from i = 1 to d, and lifts
them back immediately after projecting. This means that when the algorithm is done with the
vector bi, it will generally not be equal to the GSO vector b∗i . However, the bi will still be used
by the algorithm to reduce bj ’s for j > i in later iterations. Thus, the GSO coefficients µik need
to be adapted after bi is reduced, to correct for the difference between bi and b∗i . Note that the
algorithm changes the basis vectors, but not their GSO-projections.

Example 1.46. This example shows Algorithm 1 in action. It is applied to the lattice basis
spanned by the columns of the matrix




3 2 1
0 3 2
0 0 3


 .

First, the GSO-coefficients are computed. They are shown in the following matrix:



1 0 0
2/3 1 0
1/3 2/3 1


 .
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The size-reduction begins, for i = 2 and j = 1, b2 = (2, 3, 0) is reduced with respect to b1:

b2 ← b2 − dµ2,1cb1 = (2, 3, 0)− 1 · (3, 0, 0) = (−1, 3, 0).

Thus, b2 becomes (−1, 3, 0). Next, the matrix of GSO-coefficients is modified, which results in



1 0 0
−1/3 1 0
1/3 2/3 1


 .

The value µ2,1 is now −1/3. This signifies that b1 was subtracted 1/3 times too many from b2,
with respect to the real GSO-coefficients. Since b2 is now size-reduced with respect to b1, the
algorithm continues with b3 = (1, 2, 3). First, b3 is size-reduced with respect to b2 (i = 3, j = 2):

b3 ← b3 − dµ3,2cb2 = (1, 2, 3)− 1 · (−1, 3, 0) = (2,−1, 3).

Thus, b3 becomes (2,−1, 3). The GSO-coefficients are modified again, which results in



1 0 0
−1/3 1 0
2/3 −1/3 1


 .

Note that the value µ3,1 has changed into 2/3. This happened because b2 was subtracted once from
b3, but b1 was subtracted 1/3 times too many from b2. As a net result, b1 was added 1/3 times
to b3. Additionally, the value µ3,2 is now −1/3. As before, this signifies that b2 was subtracted
from b2 more than necessary with respect to the GSO-coefficients. Finally, b3 gets size-reduced
with respect to b1.

b3 ← b3 − dµ3,1cb1 = (2,−1, 3)− 1 · (3, 0, 0) = (−1,−1, 3).

The GSO-coefficients are changed one last time, resulting in



1 0 0
−1/3 1 0
−1/3 −1/3 1


 ,

which shows that the basis is indeed size-reduced. The algorithm now returns the size-reduced basis,
resulting in the following basis matrix:




3 −1 −1
0 3 −1
0 0 3


 .

Lagrange-reduction

Lagrange’s algorithm is the vector space equivalent of Euclid’s algorithm for computing the greatest
common divisor of two natural numbers. The idea is to take the biggest vector and keep removing
multiples of the smallest vector until it cannot become smaller, then switch the vectors and repeat
the process. Equivalently, this is the repeated application of GSO algorithm that was described
previously, while switching the two vectors after every reduction step.

This algorithm returns a basis satisfying Lagrange’s reduction notion as in Definition 1.39. As
shown before, u −

⌈
〈u,v〉
‖v‖2

⌋
v is merely the projection of u onto the orthogonal complement of v,

and lifted back to L with the shortest scalar multiple of v such that it is a lattice point.
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Algorithm 2 Lagrange’s lattice reduction algorithm
if ‖u‖ < ‖v‖ then

swap u and v
end if
repeat

r← u−
⌈
〈u,v〉
‖v‖2

⌋
v

u← v
v← r

until ‖u‖ < ‖v‖

LLL

The LLL-algorithm produces a basis that satisfies the LLL-reduction notion as in Definition 1.44.
Hermite had attempted to create similar algorithms to reduce the basis of lattices in accordance
with Hermite’s inequality (1.9). However, his reduction notions were slightly different and it is
unknown whether his algorithms are polynomial time for varying dimensions. What sets the LLL-
algorithm apart from Hermite’s algorithms is that LLL relaxes Hermite’s inequality and that LLL
swaps basis vectors one at a time, using Lovász’ condition (1.16). The following algorithm is LLL
in its simplest form. It takes a lattice basis {b1, . . . ,bd} as its input.

Algorithm 3 LenstraLenstraLovász lattice reduction algorithm
Size-reduce {b1, . . . ,bd} (using algorithm 1)
if there exists an index i violating Lovász’ condition (1.16) then

swap bi and bi+1 and return to the first step
end if

Theorem 1.47. Let δ ∈ ( 1
4 , 1). For bi ∈ Qn, Algorithm 3 computes a basis that is LLL-reduced

with factor δ in time that is polynomial in the lattice rank d, the space dimension n and the
maximal bit-length of the bi’s.

This theorem can be proven by analyzing what happens during the vector swaps. A sketch
of the proof will be given here, rather than the full proof, which can be found in the original
paper [54]. Assume for simplicity that the bi ∈ Zn for all i. When bi and bi+1 are swapped, only
their GSO vectors change. Let c∗i and c∗i+1 be the new GSO vectors after swapping. Because the
product of the length GSO vectors is equal to the lattice volume, it follows that

‖c∗i ‖ · ‖c∗i+1‖ = ‖b∗i ‖ · ‖b∗i+1‖.

Lovász’ condition was violated, which implies that ‖c∗i ‖2 < δ‖b∗i ‖2. Combining these facts gives

‖c∗i ‖2(d−i+1) · ‖c∗i+1‖2(d−i) < δ‖b∗i ‖2(d−i+1) · ‖b∗i+1‖2(d−i).

Now consider the quantity

D = ‖b∗1‖2d‖b∗2‖2(d−1) · . . . · ‖b∗d‖2,

which decreases by a factor δ < 1 every time vectors are swapped. Furthermore, D is the product
of d Gram determinants Di, where Di = ∆(b1, . . . ,bi) for 1 ≤ i ≤ d. It follows that D is an
integer (since bi ∈ Zn) and can therefore only decrease a logarithmic number of times in the
initial value of D. This means that only that many swaps can happen, which is upper bounded
by (max {‖b1‖, . . . , ‖bd‖})2d. It now remains to be shown that the size of the rational coefficients
µij and ‖b∗i ‖2 can be bounded. This can be done by closely examining the Di.

The LLL-algorithm was a breakthrough in lattice reduction, since it was the first algorithm
provably running in polynomial time, even in the dimension of the lattice. Several improvements
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have been made to the algorithm since, but those will not be described here. The performance
of LLL is remarkably good in the lower dimensions, and especially when the shortest vector is
much shorter than the expected shortest length σ(L) as defined in Equation (1.7). For instance, in
lattices where the lattice gap λ2(L)/λ1(L) is big, the shortest vector will generally be much shorter
than the expected length σ(L). The LLL-algorithm will perform above expectation in such lattices.
In fact, the LLL-algorithm has performed much better in practice than the theoretical bounds of
Theorem 1.45 would suggest. This has caused some commotion in the field of cryptography,
where lattices have been used to break systems due to the unexpectedly good performance of
lattice reduction algorithms such as LLL in the lower dimensions.

Example 1.48. This example shows Algorithm 3 in action for δ = 3/4. The algorithm is applied
to the lattice spanned by the columns of the following basis matrix:




2 0 −4
4 2 −2
−2 2 2




The first step is to size-reduce the basis using Algorithm 1. The result is the following matrix:



2 0 −2
4 2 2
−2 2 0




Lovász’ condition does not hold for i = 1, since

‖b∗2 + µ2,1b∗1‖2 = ‖b2‖2 = 8 < 18 =
3
4
‖b∗1‖2.

Thus, columns 1 and 2 are swapped, resulting in the basis matrix



0 2 −2
2 4 2
2 −2 0


 .

This basis is already size-reduced, but Lovász’ condition is violated for i = 2, since

‖b∗3 + µ3,2b∗2‖2 = 6 < 33/2 =
3
4
‖b∗2‖2.

Thus, columns 2 and 3 are swapped, resulting in the basis matrix



0 −2 2
2 2 4
2 0 −2


 .

This basis is size-reduced and does not violate Lovász’ condition. Thus, it is LLL-reduced with
factor 3/4.

1.5.4 Babai’s methods for CVP

Lattice reduction methods provide a basis of reasonably short vectors and can hence be used to
approximate the shortest vector problem. However, it is also possible to use the results of lattice
reduction to create algorithms that approximate the closest vector problem. Babai published two
methods to approximate CVP in 1986 [7], the rounding method and the nearest plane algorithm.
They are both approximation algorithms for CVP with provable approximation factors thanks to
the LLL algorithm. The first step of both algorithms is to apply LLL to the given basis in order
to reduce the length of the basis vectors. The underlying methods can be applied using any basis
for the lattice, however. The nearest plane algorithm gives a better approximation factor than
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the rounding method, but the rounding method is simpler. Only the rounding method will be
described here.

Let L ⊂ Zn be a d-rank lattice with basis B, and let x ∈ span(L) be the target vector. The
rounding method can concisely be described by the computation

u = BbB−1xe.

The idea of this method is as follows: since x ∈ span(L) and B is a basis for L, it can be written
as a unique linear combination of the basis vectors b1, . . . ,bd:

x =
d∑

i=1

λibi,

where λi ∈ R. Now, the coordinate vector of x with respect to the basis B is given by B−1x =
(λ1, . . . , λd). In Babai’s rounding method, each λi is rounded to the nearest integer bλie. The
resulting lattice vector u is computed by taking the linear combination of the bi’s with coefficients
bλie:

u =
d∑

i=1

bλiebi = BbB−1xe.

Babai showed that if the basis is LLL-reduced, then the rounding method finds an approximate
solution to the CVP-instance within an approximation factor of γ(d) = 1 + 2d(9/2)d/2. This is a
reasonable approximation factor, although it is still exponential in the lattice rank.

To show that Babai’s rounding method does not always find the right answer when the basis
is bad, consider the following example. Let L = Z2 be the integral lattice in dimension 2. Now
consider the CVP-instance given by the basis b1 = (1, 1) and b2 = (1, 0) of L and the target vector
x = (13/8, 1/4). Now, B−1x = (1/4, 11/8), or equivalently, 1

4b1 + 11
8 b2 = x. Rounding these

coordinates gives bB−1xe = (0, 1), which leads to the lattice vector 0b1 + 1b2 = (1, 0). However,
the closest lattice point to x is 2b2 = (2, 0). Figure 1.7 depicts this example.

b1

b2

x

Figure 1.7: Example of Babai’s rounding method.
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1.6 Additional lattice problems

In his worst-case to average-case reductions, Ajtai [1] introduced three lattice problems, such that
a solution to the shortest vector problem in a certain class of random lattices implies a solution
to any instance of these three problems. Those problems will be introduced in this section, as
well as the class of random lattices that was used. Recall that these worst-case to average-case
reductions are desirable properties for cryptosystems based on such problems. Additionally, the
Hermite Shortest Vector Problem will be described here, as an alternative to SVP.

1.6.1 Hermite Shortest Vector Problem

Recall that the aim of SVP is to find a shortest nonzero vector in a lattice. But given a vector,
how does one check whether this is the shortest? To circumvent this issue, the Hermite Shortest
Vector Problem does not aim to find a short vector relative to the shortest nonzero vector, but
instead relative to the volume, as in the definition of Hermite’s constant (Definition 1.31):

Definition 1.49 (Hermite Shortest Vector Problem (HSVP)). Given a basis B of a d-rank lattice
L ⊆ Zn and an approximation factor γ > 0, find a non-zero lattice vector v such that the norm of
v satisfies ‖v‖ ≤ γ(vol(L))1/d.

Since the volume of a lattice is easily computed, verifying a solution becomes easy as well. The
definition of Hermite’s constant guarantees a solution to this problem for approximation factor
γ ≥ γd, where γd is Hermite’s constant for rank d as in Definition 1.31.

Recall from Theorem 1.45(i) that the LLL-algorithm finds a basis such that the first vector
satisfies ‖b1‖ ≤ α(d−1)/4(vol(L))1/d for some constant α > 4/3. Therefore, the LLL-algorithm can
solve HSVP for approximation factor γ = α(d−1)/4.

1.6.2 Shortest Length Problem

As mentioned in the description of HSVP, it is not trivial to check whether a nonzero vector is
actually the shortest vector. If the length of a shortest nonzero vector is known, checking whether
a vector is a shortest vector becomes trivial. Is it possible to determine the first minimum λ1(L)
of a lattice L? This question gives rise to the first problem in Ajtai’s paper:

Definition 1.50 (Shortest Length Problem (SLP)). Given a basis B of a d-rank lattice L ⊆ Zn
and an approximation factor γ > 0, find a value λ(L) such that λ1(L) ≤ λ(L) ≤ γλ1(L).

Taking γ = 1 as the approximation factor gives the exact version of the problem. In Ajtai’s
paper, the approximation factor γ is polynomial (in n and d).

1.6.3 Unique Shortest Vector Problem

The second problem is a special case of the shortest vector problem that puts certain restrictions
on the lattice L.

Definition 1.51 (Unique Shortest Vector Problem (uSVP)). Given a basis B of a full-rank lattice
L ⊂ Zn and a gap factor γ, find the shortest non-zero lattice vector v ∈ L, where v is unique in
the sense that any other vector x ∈ L with ‖x‖ ≤ γ‖v‖ is an integral multiple of v.

Equivalently, this is the regular shortest vector problem restricted to the lattices where the gap
λ2(L)/λ1(L) > γ, where λi(L) is the i’th successive minimum of L. In his works, Ajtai considers
the unique shortest vector problem with polynomial gap of the form nc for some integer c.
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1.6.4 Shortest Basis Problem

The third problem is similar to a basis reduction problem. Let B(L) be the set of all bases for the
lattice L.

Definition 1.52 (Shortest Basis Problem (SBP)). Given a d-rank lattice L ⊂ Zn and an approx-
imation factor γ > 0, find a basis B = [b1, . . . ,bd], such that

max
1≤i≤d

‖bi‖ ≤ γ max
1≤i≤d

‖b′i‖,

for all bases B′ = [b′1, . . . ,b
′
d] ∈ B(L).

The exact version of the problem is obtained by taking γ = 1. In Ajtai’s paper, γ is a
polynomial approximation factor (in n and d).

1.6.5 Modular lattices

Ajtai’s class of random lattices consists of so-called modular or q-ary lattices L, which satisfy
qZn ⊆ L ⊆ Zn for some integer q. Now, this is not a useful class of lattices by itself, as every
lattices is modular for some q. Specifically, when q is an integer multiple of the volume of L, then
L is q-ary. In the following, lattices L that are modular for q << vol(L) will be considered.

Modular lattices have the following property. If x ≡ y mod q, then x ∈ L if and only if y ∈ L.
In his paper, Ajtai only considers lattices of the form

Λ⊥q (A) = {x ∈ Zm : Ax = 0 (mod q)} ,

where A is an n ×m integral matrix with coefficients modulo q. Here, m is used to denote the
number of columns rather than d, since it need not be smaller than n for modular lattices. The
columns of the matrix need not even be linearly independent. For m ≥ n, the lattice Λ⊥q (A) is a
full-rank lattice in Zm. It is also possible to consider the modular lattice spanned by the rows of
A:

Λq(A) =
{
x ∈ Zm : x = ATy (mod q) for some y ∈ Zn

}
.

These lattices are dual in the sense that Λ⊥q (A) = q ·Λq(A)× and Λq(A) = q ·Λ⊥q (A)×. Finding a
short (not necessarily shortest) in the lattice Λ⊥q (A) was later named the Small Integer Solution
problem (SIS), but Ajtai did not explicitly define it as a separate problem. The SIS problem will
be formally introduced in Chapter 3.

1.7 Knapsack-based cryptography

To show the strength of the LLL algorithm, as well as the pitfalls of building trapdoors in hard
problems, this section will give an example of a type of cryptosystem that was broken by LLL
using the weaknesses created by the trapdoors. This example appeared in [18] and [40]. In 1978,
Merkle and Hellman published an article [33], attempting to base a cryptosystem on the subset
sum problem, which is known to be NP-complete. The subset sum problem is to find a subset
of a given set of positive integers {z1, . . . , zn}, such that the elements in the subset sum up to
some given integer S. This problem is a special case of the knapsack problem, and knapsack-based
cryptosystems are generally based on the subset sum problem.

The idea was to encrypt a binary message vector m by taking the inner product with the
vector z = (z1, . . . , zn), and to let the resulting integer S = 〈m, z〉 be the ciphertext. But now it
becomes difficult to retrieve the m from the integer S, and it might not even be a unique solution
to the subset sum problem. Merkle and Hellman needed to create a trapdoor to address these
issues, which is generally a difficult task when turning hard problems into cryptosystems.

For their trapdoor, Merkle and Hellman decided to restrict the subset sum problem to an easier
class of instances. Instead of using general integers zi, they used a super-increasing sequence of
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integers r = {r1, . . . , rn}, where super-increasing means that ri+1 ≥ 2ri for all 1 ≤ i < n. A
consequence of this lower bound is that for all i,

ri ≥ 2ri−1 ≥ ri−1 + 2ri−2 ≥ . . . ≥
i−1∑

j=1

rj + r1 >

i−1∑

j=1

rj .

Since for all i, ri is greater than the sum of all previous elements, the subset sum problem becomes
easy to solve. For a target integer S, just find the biggest ri such that ri ≤ S. Since

∑r−1
j=1 rj <

ri ≤ S, ri must be used in the sum to get S. Just set mi = 1 and continue the procedure with
S − ri. Thus, anyone who possesses the sequence r can use this trapdoor to decrypt the message
m.

The cryptosystem was constructed as follows: Take a secret super-increasing sequence r, as
well as two secret integers A and B, such that B > 2rn and gcd(A,B) = 1. Since B > 2rn, B
will also be greater than the sum of any subset of the ri’s, and therefore greater than any possible
solution of the subset sum problem. Next, the sequence r is transformed into the public key by
calculating Z = Ar mod B. The public key is basically a new instance of the subset sum problem
with Zi = Ari mod B for all i, where Z is generally not super-increasing.

Messages are now encrypted into this public subset sum instance as before. The ciphertext
becomes the integer S = 〈m,Z〉, where m is the binary message vector. To break the encryption,
one would need to solve this instance of the subset sum problem. To decrypt a ciphertext S, it
is multiplied by A−1 mod B to obtain S′ = A−1〈m, Ar〉 ≡ 〈m, r〉 mod B. Because it is known
that the solution S = 〈m, r〉 < B, the exact value of 〈m, r〉 is obtained by taking 0 ≤ S′ ≤ B − 1.
Since r is super-increasing, m can easily be recovered as described.

The transformation of the private key to the public key can be adapted at will. The version
described here is sometimes called the single-iterated Merkle-Hellman knapsack cryptosystem,
because only one pair (A,B) was used, but it is possible to transform the instance several times,
each time picking a Bi greater than the maximal sum of the subset sum instance i − 1. Other
transformations can be used as well, but generally modular linear operations are used to keep the
running time of the decryption low.

The density of a sequence x = (x1, . . . , xn) is defined as n/ log(maxi xi), and the density of
the knapsack is defined as the density of the sequence of the corresponding subset sum problem.
The bigger the value of rn in a super-increasing sequence, the lower the density of the knapsack.
For security reasons, the smallest value of the private key r1 must not be taken too small, or
else combinatorial attacks can be used to break the system. Furthermore, a bigger r1 results in
a bigger rn and hence in a knapsack of lower density. Now consider what happens to the density
of the knapsack when being transformed using an iteration in the Merkle-Hellman system. The
values 0 ≤ x1, . . . ,xn ≤ Bi have already had i − 1 transformations and are roughly uniformly
distributed over the interval [0, Bi). Since Bi+1 needs to be bigger than the sum of the xi’s, the
expectation is that Bi+1 >

n
2Bi. This means that each iteration is expected to lower the density

of the knapsack, so they cannot continue indefinitely if the density is to be kept high.
This is particularly interesting because it turns out that low-density knapsacks are vulnerable

to an attack using lattices. Consider an instance of a low-density knapsack cryptosystem with
public instance (Z1, . . . , Zn). The Zi are expected to be reasonably high-valued due to the low
density of the knapsack. Let m = (m1, . . . ,mn) be a binary message vector with ciphertext
S = 〈m,Z〉. It is now possible to construct the lattice spanned by the columns of the following
matrix:




1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
Z1 Z2 Z3 · · · Zn S



. (1.18)
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Note that multiplying the vector (m1,m2, . . . ,mn,−1) with the matrix in (1.18) results in the
vector v = (m1,m2, . . . ,mn, 〈m,Z〉 − S) = (m1,m2, . . . ,mn, 0) by design. This vector has norm
‖v‖ ≤ √n, because m is a binary vector. Thus, v is very likely to be the shortest vector in
the lattice (which has volume S) since it is very unlikely that a vector as short as v is a linear
combination of vectors that are as long as the columns of the matrix in (1.18).

The next step in the attack is to reduce the lattice and hope the correct short (0, 1)-vector is
found. It is possible that there are many very small non-binary vectors in this lattice, sometimes
called parasitic solutions. Lagarias and Odlyzko showed in [51] that for randomly chosen weights
the LLL-algorithm will find the correct solution in almost all problems of density d < 1/n with
high probability. In [12], Coster et al. improved the attack by replacing the last column by the
vector ( 1

2 ,
1
2 , . . . ,

1
2 , S). Using the same assumptions as Lagarias and Odlyzko, they showed the

attack would work for problems with density d < 0.9408.
Both these attack methods require something to solve the SVP. Since the LLL-algorithm

performs well in low dimensions, the systems can be broken for small n. The subset sum problem
in high-density knapsacks remains hard in general, but for the practical dimensions it is not hard
enough. Furthermore, the Merkle-Hellman system suffers from the fact that it requires iterations to
defeat combinatorial attacks, but these iterations lower the density of the problem. The knapsack-
based cryptosystems form a good example of the fact that it is difficult to turn a provably hard
problem into a cryptosystem, and that not every instance of a hard problem is hard.
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Chapter 2

Early Lattice-based Cryptography

2.1 Introduction

As discussed in Chapter 1, there are several hard lattice problems that appear suitable for public
key cryptography. One of the reasons is Ajtai’s discovery of a connection between the worst-
case and average-case of these problems. This chapter contains a description of the first three
cryptosystems that were associated with lattices. They were proposed in 1996 and 1997, and two
of the systems were subsequently broken in 1998 and 1999.

In Section 2.2, the Ajtai-Dwork cryptosystem will be described, including a description of
the attack that retrieves the secret key. Then, the Goldreich-Goldwasser-Halevi cryptosystem is
explained in Section 2.3, as well as the attack that was used to break the encryption. Finally, Sec-
tion 2.4 gives a description of the NTRU cryptosystem, including an explanation of the underlying
algebraic concepts.

2.2 Ajtai-Dwork

The Ajtai-Dwork cryptosystem (AD) was introduced in 1997 in [4]. As opposed to the other two
systems described in this chapter, the AD cryptosystem was accompanied by a security proof.
Unfortunately, it is quite inefficient compared to other public-key cryptosystems. Although the
system was not presented using lattices, the security proof showed that every instance of the
unique shortest vector problem could be transformed into a random instance of their cryptosystem
with high probability.

2.2.1 Parameters and setup

The AD system is defined in a Euclidean vector space setting, using the standard Euclidean norm.
The security parameter n determines the dimension of the vector space. Given n, let m = n3, and
rn = nn. For these parameters, denote the n-dimensional cube with sides of length rn by

Bn = {x ∈ Rn : |xi| ≤ rn/2, ∀i} .

Furthermore, for some integer c > 0, denote the n-dimensional ball of radius n−c by

Sn =
{
x ∈ Rn : ‖x‖ ≤ n−c

}
.

In the original proposal c = 8 was used. Here, c is chosen to be 9, in order to simplify some of
the proofs. This does not change the essence of the security result. The precision of the binary
expansion of the real numbers will be n bits, as in the original proposal.

The private key is a vector u that is chosen randomly from the n-dimensional unit ball. Then,
given a private key u, the distribution Hu is defined on Bn using the following construction:
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Hu:

1. Take x from {x ∈ Bn : 〈x,u〉 ∈ Z}, uniformly at random.

2. Draw n error vectors y1, . . . ,yn from Sn, independently and uniformly at random.

3. Output v = x +
∑n
i=1 yi.

To obtain the public key, n+m vectors w1, . . . ,wn,v1, . . . ,vm are taken randomly from Hu.
The wi’s must satisfy that the parallelepiped that they span, denoted by P(w1, . . . ,wn), is not
too flat, i.e., the minimum distance of wi to the hyperplane spanned by the other wj ’s, denoted
by Hj 6=i, must be at least rn/n2, for all i. If this is not the case, a new key is generated. A vector
v can be reduced modulo the parallelepiped by finding a vector v′, such that the difference v−v′

is a vector in the lattice spanned by the wi’s.

Parameter Description Knowledge
n Dimension Public

m = n3 Integer bound Public
rn = nn Integer bound Public

u n-dimensional vector Private
w1, . . . ,wn,v1, . . . ,vm n+m n-dimensional vectors Public

Table 2.1: Parameters of AD.

2.2.2 Encryption and decryption

Let the parameters of the system be defined as in Table 2.1. Then, encryption and decryption are
performed as follows.

Encryption

The encryption is performed on one bit at a time. To encrypt a zero bit, take b1, . . . , bm uniformly
at random from {0, 1} and reduce the vector

∑
i bivi modulo the parallelepiped P(w1, . . . ,wn).

The resulting n-dimensional vector will be the ciphertext. To encrypt a one bit, randomly choose
an n-dimensional vector in the parallelepiped P(w1, . . . ,wn) and take this as the ciphertext.

Decryption

To decrypt a ciphertext c, which is an n-dimensional vector corresponding to a single bit of
plaintext, compute the inner product with the private key u. If dist(〈c,u〉,Z) ≤ n−1, then c is
decrypted as zero and it is decrypted as one otherwise.

2.2.3 Why it works

The idea behind Hu is that the points in the resulting distribution are all ‘close to’ the secret or
hidden hyperplanes Hi = {h ∈ Rn : 〈h,u〉 = i}. Here, ‘close to’ is quantified by taking the inner
product with u, and seeing if the result is ‘close to’ Z, in the sense that the inner product lies in
the interval [z − ε, z + ε] for some integer z and ε > 0.

Flatness of the parallelepiped

During the encryption of a zero bit, a vector is reduced modulo the parallelepiped spanned by
the wj , which cannot be too flat. To see the reason of this restriction on the wj ’s, consider what
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happens when a sum of some of the vi’s is reduced modulo the parallelepiped P(w1, . . . ,wn). The
result is a vector v′ of the form

v′ =
m∑

i=1

bivi +
n∑

j=1

λjwj , (2.1)

where bi ∈ {0, 1} for 1 ≤ i ≤ m and λj ∈ Z for 1 ≤ j ≤ n. This vector lies in the parallelepiped
P(w1, . . . ,wn), and the vectors wj lie in the cube with side length rn (disregarding the insignificant
error vectors yi), which bounds their norm by

√
nrn/2. Therefore, the norm of v′ is bounded by

‖v′‖ ≤
n∑

j=1

‖wj‖ ≤ n
√
nrn/2. (2.2)

Now consider the vector v′−∑i bivi. Since the norm of the vi’s satisfies the same bound as those
of the wj ’s, it follows from (2.2) that

‖v′ −
∑

i

bivi‖ ≤ ‖v′‖+
∑

i

‖vi‖ ≤ (n
√
n+ n3

√
n)rn/2. (2.3)

Take any 1 ≤ k ≤ n, and then rewrite (2.1) as follows:

λkwk − (v′ −
∑

i

bivi) = −
∑

j 6=k
λjwj ,

wk − λ−1
k (v′ −

∑

i

bivi) = −λ−1
k

∑

j 6=k
λjwj . (2.4)

Now, the right hand side of (2.4) is in the hyperplane Hj 6=k spanned by the wj ’s for j 6= k. By
construction, the distance between wk and this hyperplane is lower bounded by rn/n2. Combining
this with (2.3) and (2.4) gives

rn/n
2 ≤ dist(wk, Hj 6=k) ≤ λ−1

k ‖v′ −
∑

i

bivi‖

≤ λ−1
k (n

√
n+ n3

√
n)rn/2.

This can then be rewritten as

λk ≤ n3
√
n(1 + n2), (2.5)

for n > 2. Note that (2.5) must hold for all 1 ≤ k ≤ n. This result will be used to show that the
encryption of a zero is always decrypted as a zero.

Encryption of zeroes

The encryption of a zero bit is a linear combination of vectors that are all close to the hidden
hyperplanes. Therefore, this encryption lies reasonably close to the hidden hyperplanes as well.
On the other hand, the encryption of a one bit is randomly distributed, and with a reasonably
high probability (depending on n) it will not lie close to a hidden hyperplane. As mentioned,
vectors close to a hyperplane will have an inner product that is close to Z.

By design, an encrypted zero will always be decrypted as a zero. To see this, consider

c0 =
m∑

i=1

bivi +
n∑

j=1

λjwj , (2.6)
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where the bi are bits and the λj are integers. Now consider the fact that the v’s and the w’s come
from the distribution Hu:

vi = x(1)
i +

n∑

k=1

y(1)
i,k (2.7)

wj = x(2)
j +

n∑

l=1

y(2)
j,l , (2.8)

where 〈x(∗)
i ,u〉 ∈ Z for all i, and where ‖y(∗)

i,j ‖ ≤ n−9 for all i and j. Combining (2.6), (2.7) and
(2.8) gives

〈c0,u〉 =
m∑

i=1

bi〈vi,u〉+
n∑

j=1

λj〈wj ,u〉

=
m∑

i=1

bi

(
〈x(1)
i ,u〉+

n∑

k=1

〈y(1)
i,k ,u〉

)
+

n∑

j=1

λj

(
〈x(2)
j ,u〉+

n∑

l=1

〈y(2)
j,l ,u〉

)
.

Furthermore, since 〈x(∗)
i ,u〉 ∈ Z for all i, and ‖y(∗)

i ‖ ≤ n−9 for all i, applying the triangle inequality
gives

dist(〈c0,u〉,Z) ≤
m∑

i=1

n∑

k=1

dist(〈y(∗)
i,k ,u〉,Z) +

n∑

j=1

λj

n∑

l=1

dist(〈y(∗)
j,l ,u〉,Z)

≤ n4n−9 + λmaxn
2n−9 < n−5 + n−5/2 + n−3/2 < n−1, (2.9)

where λmax = maxj λj ≤ n3
√
n(1 + n2), by (2.5).

Encryption of ones

The encryption of ones is taken randomly from the parallelepiped P(w1, . . . ,wn). Let c1 be
such an encryption. There is a small probability that c1 accidentally ends up close to the hidden
hyperplanes, causing a decryption error. Indeed, consider the fractional part 〈c1,u〉−b〈c1,u〉c. As
c1 was chosen uniformly random, this fractional part will also be roughly uniform on the interval
[0, 1]. If this fractional part is smaller than n−1 or larger than 1 − n−1, c1 will be decrypted as
a zero. Hence, the probability of a decryption error is approximately 2n−1. These decryption
errors can be eliminated by changing the encryption procedure of ones, as shown by Goldreich,
Goldwasser and Halevi [29].

Example 2.1. The aim of this example is to show the system in action for dimension n = 3.
Given this dimension, the other parameters become m = 27 and r3 = 27. All values in this example
were calculated using machine precision, but for the sake of simplifying the exposition they will not
be given fully.

First, a private key is randomly generated from the unit ball:

u = (−0.524655, 0.606024, 0.36764).

This u determines the hyperplanes, and the public key (w1,w2,w3,v1, . . . ,v27) is derived by ran-
domly taking vectors from within the cube with side length r3 = 27 on these hyperplanes and
adding 3 vectors from the 3-dimensional ball with radius 3−8 = 1/6561, as described above. The
resulting public key is shown in Table 2.2. Note that the inner products 〈wj ,u〉 and 〈vi,u〉 lie
within distance 1/37 = 2187 ≈ 0.00046 of Z.

To check whether the parallelepiped spanned by w1, w2 and w3 is not too flat, the least-squares
problem was solved to find a vector closest to wi in the span of the other two. From this vector,
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w1 (7.60816, 1.84201, −8.49921)
w2 (−7.37496, −4.58596, −2.96519)
w3 (−10.8126, 7.34985, 13.2545)
v1 (−9.87709, −1.47613, 12.8186)
v2 (8.17359, −7.28432, 1.91144)
v3 (3.82588, 10.4402, 4.57008)
v4 (−7.44063, −2.91462, −11.2543)
v5 (−4.52958, 3.59412, 1.21152)
v6 (9.41711, −5.15847, 5.6217)
v7 (−10.7713, 13.1401, −7.11104)
v8 (−11.6452, −12.5039, −4.16762)
v9 (−4.45261, 11.9807, −12.5033)
v10 (3.98351, −6.5037, −10.7949)
v11 (−10.5945, 5.37026, −2.21125)
v12 (8.90485, 3.89708, 9.00435)
v13 (−0.186633, 9.97465, −11.2685)
v14 (10.1227, 10.7732, 10.2871)
v15 (4.89837, 9.93115, 9.65963)
v16 (−11.8204, −12.5187, 9.20751)
v17 (11.1477,−0.826234, 6.39036)
v18 (4.98783, −9.41796, 3.60244)
v19 (5.09802, −7.89569, −1.46938)
v20 (−6.02514, −8.08041,−0.718234)
v21 (11.9069, −10.9563, 13.2924)
v22 (−8.34388, 0.0449246, −11.9814)
v23 (−2.58845, 7.41754, 3.11883)
v24 (12.3989, −7.34945, −5.55127)
v25 (−8.40949, 8.06724, −6.25887)
v26 (−7.28547, 11.2038, −1.66535)
v27 (−6.41749, −7.77925, 3.66542)

Table 2.2: Public Key of AD in dimension 3
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the distance was computed, resulting in the distances 4.83028, 7.12895 and 8.37488, for w1,w2

and w3, respectively. As these distances are all at least r3/32 = 3, the parallelepiped is not too
flat.

Now, the message m = (1, 0, 1, 1, 1, 1, 1, 0, 1) is encrypted bit by bit as described, resulting in
the ciphertext

c =((9.986, 3.746,−2.791), (1.365, 1.417,−3.108), (−16.955,−1.992, 9.227), (2.10)
(−5.223,−1.139, 1.278), (5.590,−3.151,−6.728), (−7.319, 9.134, 17.364), (2.11)
(−3.014, 3.752, 2.509), (−9.874, 4.964, 7.645), (−9.039, 4.727, 5.035)), (2.12)

where each triple corresponds to the encryption of one bit. Now, to decrypt, the inner product of
each triple with u is computed and it is then determined if the inner product lies close enough to
Z, i.e., if the distance to the nearest integer is less than n−1 = 1/3. These inner products are
shown in Table 2.3.

ci 〈ci,u〉
c1 3.994
c2 1.000
c3 -11.08
c4 2.519
c5 7.316
c6 -15.76
c7 -4.777
c8 -10.99
c9 -9.458

Table 2.3: Inner products of parts of the ciphertext with u.

Those that are within the interval (z− 1/3, z+ 1/3) for some integer z are decrypted as zeroes,
and the others as ones, resulting in the decryption m′ = (0, 0, 0, 1, 0, 0, 0, 0, 1). As expected, the
zeroes were both successfully decrypted. However, note that out of 7 bits of one in m, only 2 are
decrypted correctly and 5 decryption errors have occurred. For n = 3, the decryption failure rate
of ones is approximately 2/3.

2.2.4 Security proof

Before working on the cryptosystem, Ajtai showed a connection between the worst-case and
average-case complexity of SVP [1]. He proved that SVP is NP-hard under randomized reductions
[2]. The proof used a reduction to transform instances of the unique shortest vector problem to an
approximation version of the SVP for random instances of a specific class of lattice. Inspired by
this result, Ajtai and Dwork attempted to base a cryptosystem on the hardness of these problems.

For their cryptosystem, Ajtai and Dwork proved that being able to distinguish between the
encryption of zeroes and ones implies being able to solve the unique shortest vector problem. The
proof shows that if an encryption of a zero can be distinguished from an encryption of a one
in polynomial time (without knowledge of the private key) with a probability of n−c

′
for some

constant c′ > 0, then the unique shortest vector problem has a probabilistic polynomial time
solution in the worst-case. However, the hardness of the unique shortest vector problem was not
as well understood as that of SVP. This gave rise to the question whether it was possible to base
a cryptosystem on the worst-case hardness of SVP.

2.2.5 Attack on the encryption

Nguyen and Stern showed a converse to the security result of the AD cryptosystem in [78]. They
reduced distinguishing between zero and one encryptions to approximating SVP within a factor
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n0.5−ε or CVP within a factor n1.33. Earlier, there had been a result by Goldreich and Goldwasser
[28], that suggests that approximating CVP to within such a factor is unlikely to be NP-hard,
unless the polynomial-time hierarchy collapses. Thus, it is likely that breaking AD is not NP-hard.

For decrypting with CVP, Nguyen and Stern construct an (n+m)-dimensional lattice in R2n+m

that incorporates the wi’s and vi’s, such that an encryption of zero will lie close to the lattice.
A CVP-oracle can now be used to solve the decision variant of the CVP, which yields whether a
zero or a one was encrypted. The SVP-reduction is more technical and will be omitted here. For
more details on these constructions, see [78].

2.2.6 Attack on the private key

Nguyen and Stern also presented a heuristic attack to recover the secret vector u, with a slightly
different approach than the attack on the encryption. They construct a lattice in Rn+m depending
only on the vi’s and then try to approximate the inner products 〈vi,u〉 by making clever use of
short vectors in this lattice. With enough of these approximations, the secret vector u can be
sufficiently approximated to break the system.

The basis vectors of the lattice will be constructed by appending the m-dimensional unit vector
ei to βvi, where β is some real constant. This results in the m-dimensional lattice Lβ spanned by
the columns of the following (n+m)×m matrix:

M =
(
βA
Im

)
,

where A is the n×m matrix that has the vectors v1, . . . ,vm as its columns and Im is the m×m
identity matrix.

Recall that by (2.7), the distance dist(〈vi,u〉,Z) ≤ ∑n
k=1 ‖yi,k‖ ≤ n−7. Define Vi as the

closest integer to the inner product 〈vi,u〉. Nguyen and Stern proved that short vectors in Lβ
give information on these Vi’s. In the proof, they take some integral vector x = (x1, . . . , xm)
such that Mx is short, and consider

∑m
i=1 xiVi. This sum is an integer, but Nguyen and Stern

showed that whenever β2 ≥ n14

2n7−1 ≥ ‖Mx‖2, it must be small as well. They conclude that it must
therefore be 0, which means that the vector x is orthogonal to the integral vector V = (V1, . . . , Vm).

Consider the one-dimensional (integral) lattice spanned by the m-dimensional vector V , as well
as its (m − 1)-dimensional orthogonal lattice V ⊥ = {a ∈ Zm : 〈a, V 〉 = 0}. Using this definition,
x ∈ V ⊥, since x is orthogonal to V .

Next, they prove that there are many such sufficiently short vectors in this lattice. They
conjecture that there are at least m−1 short and linearly independent vectors in Lβ . Note that, for
all x, the last m coordinates of Mx are equal to x. Thus, the m−1 short and linearly independent
vectors Mxi ∈ Lβ correspond to m− 1 vectors xi, spanning the (m− 1)-dimensional lattice V ⊥.
Now, the orthogonal lattice (V ⊥)⊥ of V ⊥ must be one-dimensional, since m− (m− 1) = 1. It is
possible to retrieve this lattice using the xi’s, by calculating the determinant of the m×m matrix

X =




e1 e2 · · · em
x11 x12 · · · x1m

x21 x22 · · · x2m

...
...

. . .
...

x(m−1),1 x(m−1),2 · · · x(m−1),m



,

where ei symbolizes the i’th unit vector, and xi = (xi1, . . . , xim) for 1 ≤ i ≤ m − 1. This
determinant can also be written as

det(X) = e1

∣∣∣∣∣∣∣∣∣

x12 · · · x1m

x22 · · · x2m

...
. . .

...
x(m−1),2 · · · x(m−1),m

∣∣∣∣∣∣∣∣∣
+ . . .+ em

∣∣∣∣∣∣∣∣∣

x11 · · · x1,(m−1)

x21 · · · x2,(m−1)

...
. . .

...
x(m−1),1 · · · x(m−1),(m−1)

∣∣∣∣∣∣∣∣∣
. (2.13)
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The result will be an integral vector V ′ generating the lattice (V ⊥)⊥, such that zV ′ = V for some
integer z. If there is no denominator common to all Vi (which is true with high probability),
then z = ±1, because there can be no smaller integral vector generating (V ⊥)⊥. Thus, each
subdeterminant in (2.13) gives one ±Vi, depending on z.

Now, once the vector V ′ = ±V is obtained, it is possible to find an approximation to u by
solving the system of linear equations



− v1 −

...
− vm −


u′ = V ′. (2.14)

Since V ′ = ±V , it is possible that the solution u′ of (2.14) approximates −u instead of u, but
both can be used for decryption. Furthermore, there are only n unknowns and m equations in
(2.14), which means that n subdeterminants of (2.13) are sufficient to solve (2.14).

Example 2.2. The example from Subsection 2.2.3 is now continued to describe the attack on this
system. The first step of the attack is to construct the lattice Lβ. As β must satisfy the restriction
β ≥ 2187√

4373
≈ 33, β is taken to be equal to 2187√

4373
. This gives rise to the lattice Lβ as described

previously. Now, this lattice was reduced using the LLL-algorithm, resulting in a reduced lattice,
spanned by the columns yi of the matrix that can be found in the appendix on page 99.

y ‖y‖ y ‖y‖ y ‖y‖
y1 2.83325 y10 3.83746 y19 3.18018
y2 3.91709 y11 3.54524 y20 3.22969
y3 3.47864 y12 3.05059 y21 3.98926
y4 3.69904 y13 3.66608 y22 3.53119
y5 3.76439 y14 4.24623 y23 3.49574
y6 3.6791 y15 3.28848 y24 3.73659
y7 4.21238 y16 3.33429 y25 3.57329
y8 4.33437 y17 2.94213 y26 4.10063
y9 4.25502 y18 4.00259 y27 37.6377

Table 2.4: The norms of the vectors obtained from the reduced basis

Those vectors yi that have norm ‖yi‖ ≤ 2187√
4373
≈ 33 are usable in the attack. As can be seen in

Table 2.4, only y27 is unsuitable and the rest is suitable. Now, by the result of Nguyen and Stern
(see [78, Theorem 1]), the last 27 entries of each yi correspond to vectors xi = (x1, . . . , x27) such
that

∑
j xjVj = 0. Therefore, the vector V = (V1, . . . , V27) is equal to the orthogonal complement

of the m− 1 vectors x1, . . . ,x26. As described, it is possible to use the xi’s to find ±V with high
probability.

Because the orthogonal complement of the yi’s is 1-dimensional, it can be explicitly computed
by computing the determinant of the following 27× 27 matrix:




e1 · · · e27

− x1 −
...

− xm−1 −


 .

This results in the sum over the unit vectors ej times some subdeterminant determined by the
xi’s, and the result V ′ will be either +V or −V . As mentioned, n = 3 such subdeterminants
are sufficient to uncover u. By solving the system Au′ = V ∗, where A is the matrix consisting
of the row vectors v1,v2,v3 and V ∗ = (V ′1 , V

′
2 , V

′
3) = (−9, 8,−6). The solution to this system

of equations is u′ = (0.524644,−0.606028,−0.36764), which is a reasonable approximation of
−u = (0.524655,−0.606024,−0.36764): |−u−u′| = (1.09, 0.37, 0, 40)×10−5. Both u and −u can
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be used to decrypt, and using u′ to decrypt the ciphertext c from (2.10) results in the inner products
given in Table. This results in the decrypted message m′ = (0, 0, 0, 1, 0, 0, 0, 0, 1), as desired. This
completes the attack.

ci 〈ci,u′〉
c1 -3.995
c2 -1.000
c3 11.081
c4 2.519
c5 -7.316
c6 15.760
c7 4.777
c8 10.999
c9 9.458

Table 2.5: Inner products of parts of the ciphertext with u′.

2.2.7 Practicality of the system

Object Size(bits)
Private key u n2

Public key {wj} , {vi} n5 log2(n)
Ciphertext c n2(log2(n) + 1)

Table 2.6: Sizes of keys and message expansion in AD.

The private key consists of a vector in the n-dimensional unit ball. Since the precision of the
binary expansion of each entry is n, the private key can be represented using n2 bits. The public
key consists of n+n3 n-dimensional vectors, with entries of size ±rn/2 = ±nn/2. Thus, it requires
at least n3 · n log2(nn) = n5 log2(n) bits in storage space.

Note that the encryption of a single bit consists of a vector inside the parallelepiped spanned by
the wj ’s. Thus, this encryption consists of an n-dimensional vector whose entries can range from
−rn/2 to rn/2. Recall that the precision of the binary expansion of each entry is n. Therefore,
the ciphertext for one bit is represented by n(log2(nn) + n) = n2(log2(n) + 1) bits.

Experiments by Nguyen and Stern showed that they could successfully attack the system for
low values of n, and they claim that a successful attack for n = 32 looks feasible. As shown in
Table 2.6, for n = 32, storing the public key would require 325 log2(32) bits, or 20 Megabytes, and
the ciphertext for each single bit would consist of 322(log2(32) + 1) = 6144 bits. Thus, the system
is not very practical, even for these parameters that provide little security.

2.2.8 Conclusion

The Ajtai-Dwork cryptosystem is theoretically interesting, because of the security proof incor-
porating hard lattice problems. However, it is not a very efficient system due to the message
expansion and high storage space requirements for the public key. As Nguyen and Stern subse-
quently showed, for parameters where the system is still somewhat practical, it is not secure, due
to a clever lattice construction combined with the good performance of lattice reduction algorithms
in lower dimensions.

These results give rise to the interesting question whether it is possible to base the security of
cryptosystems on the (worst-case) hardness of SVP, rather than uSVP.
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2.3 Goldreich-Goldwasser-Halevi

The GGH cryptosystem, named for its introducers Goldreich, Goldwasser and Halevi, was pub-
lished in 1997 in [30]. It introduced a trapdoor one-way function based on the difficulty of the
closest vector problem. Using this trapdoor function, they introduced a public key cryptosystem
and digital signature scheme. The system did not come with a proof of security, but it was very
efficient in comparison to the Ajtai-Dwork system. Of the three lattice based systems discussed
in this chapter, GGH was the only one explicitly defined using lattices in its original paper.

2.3.1 Parameters and setup

GGH relies on two parameters, the lattice dimension n and the security parameter σ. The security
parameter determines the difficulty of the closest vector problem that arises from the encryption.

The private key consists of a secret matrix R, whose columns form a basis for the lattice L.
This basis consists of reasonably short integral vectors. The creators proposed several methods
to construct R. The public key consists of a public matrix B, representing a different basis for L.
The public basis is a bad basis, in the sense that it is not as reduced as the secret basis. There are
several methods to randomly generate the public basis B from the secret basis R. The authors
themselves proposed two methods and later Micciancio proposed to use the more efficient Hermite
Normal Form (HNF) of R as the public basis [65, 66].

Parameter Description Knowledge
n Dimension Public
σ Security parameter Public
R n× n integral matrix Private
B n× n integral matrix Public

Table 2.7: Parameters of GGH.

2.3.2 Encryption and decryption

Let the parameters of the system be defined as in Table 2.7. Then, encryption and decryption are
performed as follows.

Encryption

To encrypt a message, encode it as an integral vector m ∈ Zn, generate a random error vector e
and compute the ciphertext

c = Bm + e. (2.15)

In the original proposal, the error vector e is taken randomly from {−σ, σ}n.

Decryption

To decrypt a ciphertext c, compute

m = B−1RbR−1ce (2.16)

to retrieve the message m.

50



2.3.3 Why it works

In the GGH system, each message m ∈ Zn corresponds to a lattice point mL = Bm. Conversely,
each lattice point mL corresponds to some message m = B−1mL. During the encryption, m is
first transformed into its corresponding lattice point mL, and then the ciphertext c is obtained by
adding an error vector e. Now, σ and e are chosen such that mL will be the lattice vector that is
closest to the ciphertext c.

To retrieve mL (and therefore m), this closest vector problem must be solved. Therefore, the
decryption process consists of Babai’s rounding method for approximating CVP, as explained in
Chapter 1. The idea is that Babai’s method will work sufficiently well when using the private
basis R, but not well enough when using the public basis B. Decryption using the private basis
works when Babai’s method finds the correct lattice vector RbR−1ce = mL. Because R−1mL is
an integral vector, Babai’s method will find

RbR−1ce = RbR−1(mL + e)e
= R(R−1mL + bR−1ee)
= mL +RbR−1ee. (2.17)

If bR−1ee = b is a non-zero vector, then Rb will be a non-zero lattice vector. In this case, Babai’s
method will not return the desired lattice point, and hence the wrong message is retrieved. Thus,
the decryption is correct whenever bR−1ee = 0. This will happen when σ is small, because the
error vector e is of the form (±σ,±σ, . . . ,±σ). Increasing σ will increase the distance between the
lattice vector mL and the ciphertext c. As this distance increases, the CVP will become harder.
The probability that a decryption error occurs increases as well, as it will become more likely that
bR−1ee 6= 0. For a more detailed analysis of the probability of decryption errors, see [30].

Trying to use the public basis B for Babai’s method will fail, since B is constructed to be a
bad basis. Trying to reduce the basis B to some basis B′ that can be used to solve the CVP is
equivalent to solving the approximate shortest basis problem (see Chapter 1).

Example 2.3. This example shows an instance of the GGH cryptosystem for dimension n = 4
and security parameter σ = 1. The private matrix R is generated by randomly taking its entries
as integers in the interval [−4, 4], which is one of the proposed methods in [30]. The public matrix
B is the HNF of the matrix R (as implemented in Mathematica1). This results in the following
matrices:

R =




3 1 −1 3
3 −4 3 1
3 −3 −4 −3
−2 −3 −2 3


 , B =




1 0 0 0
0 1 0 0
0 0 1 0
−349 311 321 851


 .

Next, a message m = (−2, 0,−4,−1) is encrypted using the error vector e = (−1, 1, 1,−1). The
corresponding ciphertext is given by

c = Bm + e = (−3, 1,−3,−1438).

To decrypt this message using the private basis R, Babai’s method is applied:

x = bR−1ce = (143, 152, 112,−157),
mL = Rx = (−2, 0,−4,−1437),

m = B−1mL = (−2, 0,−4,−1).

Indeed, m is correctly decrypted, as

R−1e = (72/851,−(124/851), 136/851,−(269/851)),

bR−1ee = (0, 0, 0, 0).

1Mathematica’s implementation of the HNF is different from the standard implementation. This results in a
matrix that is not quite suitable for encryption, although it does not harm the example.
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Trying to decrypt using the public basis B results in

bB−1ce = (−3, 1,−3,−2),

which is not equal to m.

2.3.4 Attack on the encryption

The authors posted several instances of their system on the Internet to challenge people to break
it. These were instances in the dimensions n = 200, 250, 300, 350 and 400, each instance us-
ing the security parameter σ = 3. For these challenges, plaintexts were chosen uniformly from
{−128, . . . , 127}n. The challenge in dimension 200 was defeated using high-quality lattice reduc-
tion algorithms combined with the embedding technique that heuristically transforms a CVP in
dimension n to an SVP in dimension n+ 1 (see Chapter 1). In 1999, Nguyen published an attack
on the GGH system [74] and was able to beat the challenges for dimensions up to 350. Although
the challenge for dimension 400 was not defeated, the running time and storage required for these
dimensions was no longer practical.

Nguyen’s attack is based on two flaws in the GGH system. The first flaw is that the error
vectors are always very short when compared to the lattice vectors. As described in Chapter 1,
this will create a gap between the successive minima λ1(L) and λ2(L) in the lattice L that is
constructed using the embedding technique of Chapter 1, and hence this CVP-instance becomes
easier to solve than a general CVP-instance.

The second flaw is based on the choice of the error vector. Because the absolute values of the
entries in e are all σ, the following equality holds:

c + (σ, . . . , σ) = Bm + e + σ1

≡ Bm (mod 2σ). (2.18)

Nguyen subsequently showed that there is a reasonable probability that B is invertible mod 2σ
for several values of σ. He also showed that even if B is not invertible mod 2σ, the kernel will
likely be small, which means there will be a small number of possibilities of m2σ = m mod 2σ.

Once m2σ is known (or several possibilities), the decryption problem can be simplified:

c = Bm−Bm2σ +Bm2σ + e,

c−Bm2σ = B(m−m2σ) + e.

The vector m −m2σ is the zero vector (mod 2σ), and hence of the form 2σm′ for some vector
m′ ∈ Zn. Therefore, the following equation holds:

c−Bm2σ

2σ
= Bm′ +

e
2σ
. (2.19)

As the left-hand side of (2.19) is known, this becomes an instance of CVP with an even smaller
error vector of the form

{
− 1

2 ,
1
2

}n. The goal of this CVP instance is to find the closest lattice
vector Bm′ to the target vector c′ defined by:

c′ =
c−Bm2σ

2σ
,

m′ = m−m2σ,

e′ = c′ −m′ =
e

2σ
.

Solving this CVP-instance yields the error vector e′, which in turn yields the solution for the
original error vector e. Applying the embedding technique of Chapter 1 will now be easier,
because it is more likely to work with smaller error vectors. Once e is acquired, it is easy to
retrieve the message m = B−1(c− e).
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Nguyen proposed some solutions to repair the second flaw in the system, but noted that these
would also increase the vulnerability to the first flaw. For example, rather than taking the error vec-
tor from {±σ}n, he proposed to take the error vector uniformly from {−σ,−(σ − 1), . . . , (σ − 1), σ}n.
He notes that, unfortunately, this would decrease the expected length of the error vector from σ

√
n

to σ
√
n/3. Increasing the security parameter σ in this case will increase security, but the proba-

bility that decryption errors occur will increase as well. Therefore, σ needs to be kept small, which
leaves the first flaw unrepaired.

Example 2.4. The example from Section 2.3.3 is continued here to show Nguyen’s attack on
the encryption. First, the vector m2σ = m mod 2σ is computed using (2.18). Fortunately, B is
invertible modulo 2, where the inverse is given by

B−1 (mod 2σ) =




1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1


 .

Now m2σ can be found by solving (2.18):

Bm ≡ c + σ1 (mod 2σ)
≡ (−2, 2,−2,−1437) (mod 2)
≡ (0, 0, 0, 1) (mod 2),

m2σ = B−1 · (0, 0, 0, 1) = (0, 0, 0, 1).

Next, (2.19) is used to construct the easier CVP-instance

c′ = Bm′ + e′,

where

c′ =
c−Bm2σ

2σ
= (−3/2, 1/2,−3/2,−2289/2),

m′ =
m−m2σ

2σ
,

e′ =
e

2σ
.

Now, solving this CVP will give e′, which in turn gives e. To solve this CVP, the embedding
technique from Chapter 1 was used. The embedded lattice is spanned by the columns of the following
matrix: 



1 0 0 0 −(3/2)
0 1 0 0 1/2
0 0 1 0 −(3/2)
−349 311 321 851 −(2289/2)

0 0 0 0 1



. (2.20)

Recall from the description of the embedding technique in Chapter 1 that for any vector x in the
original lattice, (c′, 1)− (x, 0) is a vector in the embedded lattice. Thus, the embedded lattice will
contain the short vector (c′−Bm′, 1), where Bm′ is the closest vector to c′ in the original lattice.
The matrix in 2.20 is now reduced using LLL, resulting in the following matrix of the reduced basis
(the last row has been removed for simplicity):




−1/2 −2 1 −7/2 −1/2
1/2 −2 −3 −5/2 7/2
1/2 2 4 −5/2 5/2
−1/2 −2 2 3/2 7/2


 .

Now, the first column of this matrix is equal to e′ = e/2, thus the attacker can now retrieve
e = (−1, 1, 1,−1). Using e, it is easy to retrieve the message m from the ciphertext c, and thus
the attack is complete.
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2.3.5 Practicality of the system

Object Size(bits)
Private key R n2 log2(k)
Public key B n2 log2(n)

Operation Time
Encryption n2 log2(n)

Table 2.8: Sizes of keys and encryption time in GGH.

Table 2.8 contains the asymptotic key sizes and encryption time. The private key R consists
of a matrix of n2 integers, which means it requires n2 log2(k) bits in storage space, where the
elements of R are in the interval [i, i+ k] for some integer i. Micciancio showed in [66] that, if no
care is taken in selecting the method to transform R to B, the public key B can become an n× n
matrix with integral coefficients of that require O(n log2(n)) bits to be represented. Thus, this
will result in a public key B requiring O(n3 log2(n)) bits in storage. When using the HNF of R
as the public basis, this can be reduced to O(n2 log2(n)) bits. The encryption procedure consists
of the multiplication of an n × n matrix and an n-dimensional vector, as well as the addition of
one n-dimensional vector. As such, the encryption time is O(n2 log(n)) for dimension n.

The attack by Nguyen broke all systems except for that of dimension n = 400. For the n = 400
challenge, the public basis chosen by the authors of GGH required more than 2 Megabyte of storage
space. As Micciancio observed in [66], the size of the public key of this challenge is smaller than it
should have been. This is probably because the public bases were reduced using LLL to somehow
reduced their size. Micciancio also estimates that the use of his HNF method would reduce the
public key size to about 140 Kilobyte for dimension n = 400.

The attack would not perform well asymptotically in n, as the embedding technique is based
on lattice reduction algorithms to solve a SVP instance. Nonetheless, it defeats the GGH system
in the practical dimensions, and especially in the dimensions where GGH is competitive with other
public key cryptosystems, such as RSA and ElGamal (see Chapter 1).

2.3.6 Conclusion

The GGH cryptosystem is interesting because it was explicitly based on lattices. However, it
turned out that the trapdoor function that was used for the closest vector problem introduced
structural weaknesses that could be exploited. Once again the attack uses lattice reduction al-
gorithms that performed sufficiently to break the system in the low dimensions. Although more
effective than AD, raising the parameters is not an option for GGH either, if the system needs to
compete with current cryptosystems such as RSA and ElGamal (see Chapter 1).

2.4 NTRU

The first version of the NTRU cryptosystem was presented in 1996 by Hoffstein, Pipher and
Silverman [41]. The name NTRU allegedly stands for “N -th degree truncated polynomial ring”,
but it has alternatively been explained as “Number Theorists “R” Us,” a reference to the toy store
chain “Toys “R” Us”.

Although the NTRU system is regarded as lattice-based cryptography, it is typically described
using the ring of convolution polynomials. Since these convolution products of polynomials can
also be expressed as the multiplication with a circulant matrix, it is possible to describe NTRU
using lattices. This fact was used to attack the system using lattice reduction methods. Like
GGH, NTRU is aimed at practicality, and not supported by a proof of security.

NTRU consists of the cryptosystem NTRUEncrypt and the signature scheme NTRUSign. The
aim of this section is to introduce the NTRUEncrypt cryptosystem using lattices and to show
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an attack using lattice reduction. First a short introduction to truncated polynomial rings and
convolution products will be given.

2.4.1 Truncated polynomial rings

Consider the polynomial ring Z[X] of polynomials in the variable X having integer coefficients.
Truncated polynomial rings arise when taking the quotient ring Z[X]/〈Xn − 1〉 for some n. This
results in a ring of polynomials a of the form

a(X) = a0 + a1X + a2X
2 + . . .+ an−1X

n−1,

where the ai’s are all integers for 0 ≤ i ≤ n − 1. Now, this ring has the usual addition for
polynomials, and the sum of two truncated polynomials a and b is given by

(a+ b)(X) = (a0 + b0) + (a1 + b1)X + (a2 + b2)X2 + . . .+ (an−1 + bn−1)Xn−1.

The multiplication in this ring is the same as the usual multiplication, with one exception.
When multiplying two normal polynomials a′ and b′ of degree n− 1, the result is

(a′ · b′)(X) = a0b0 + (a0b1 + a1b0)X + . . .+ (
∑

i+j=k

aibj)Xk + . . .+ (
∑

i+j=2(n−1)

aibj)X2(n−1)

= c′0 + c′1X + c′2X
2 + . . .+ c′2(n−1)X

2(n−1),

where c′k =
∑
i+j=k aibj for 0 ≤ k ≤ 2(n−1). However, truncated polynomials are in the quotient

ring Z[X]/(Xn − 1), which has the equivalence classes

Xn = 1 (mod Xn − 1),

Xn+1 = X (mod Xn − 1),

Xn+2 = X2 (mod Xn − 1),
...

Xn+k = Xk mod n (mod Xn − 1),

for any integer k ≥ 1. Thus, when multiplying the truncated polynomials a and b, the result will
be

(a ∗ b)(X) ≡ c0 + c1X + c2X
2 + . . .+ cn−1X

n−1 (mod Xn − 1),

where

ck = c′k + c′k+n =
∑

i+j≡k mod n

aibj .

An equivalent approach is to consider ck as the inner product of the coefficients of a and b,
where b is cyclically rotated to the left over k positions. The multiplication is sometimes called a
convolution product, and it satisfies the usual properties such as associativity, commutativity and
distributivity, which confirms that the truncated polynomials form a ring. For the NTRU system,
the coefficients will be integers modulo q for some q.

2.4.2 Parameters and setup

As mentioned, NTRU is typically described as a polynomial ring cryptosystem. However, the
relation between the public and private key defines a certain lattice, which is called the NTRU
lattice. A basis for this lattice can be derived from the public key. Furthermore, the secret key
of the cryptosystem corresponds to certain short vectors in this lattice. Thus, a natural attack
is to try and solve the approximate shortest vector problem in the NTRU lattice. Still, it is not
necessary to use lattices when defining the encryption and decryption procedures.

The system relies on several parameters that provide a balance between security and practi-
cality. These are
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• the degree n,

• the large modulus q,

• the small modulus p, and

• the integer bounds df , dg and dr.

For security reasons, n must be prime, or the polynomial Xn−1 can be factorized, which improves
the efficiency of lattice attacks. Furthermore, p and q must be relatively prime. The parameters
n and q determine the parameters of the associated NTRU lattice, whereas the integer bounds
restrict the form of the lattice vectors, as will become apparent from the description of the setup.

Before describing the NTRU lattice, some extra notation is needed. Let C denote the cyclic
rotation that sends a vector (x1, x2, . . . , xn)T to (xn, x1, . . . , xn−1)T . Additionally, define for some
x ∈ Rn the circulant matrix of x as

[C∗x] = [x, Cx, . . . , Cn−1x] =




x1 xn · · · x2

x2 x1 · · · x3

...
...

. . .
...

xn xn−1 · · · x1


 .

Note that the convolution product (modulo Xn − 1) of the polynomials f ∗ g is equivalent to the
matrix multiplication [C∗f ]g, where f and g are the coefficient vectors of f and g, respectively.
Furthermore, the following identities can be derived from the properties of the convolution product:

[C∗f ](g + g′) = [C∗f ]g + [C∗f ]g′, (2.21)
[C∗f ][C∗g] = [C∗([C∗f ]g)] (2.22)
[C∗(Cf)]g = [C∗f ](Cg). (2.23)

The setup of NTRUEncrypt starts with the choice of the private key (f ,g), which is a short
vector in Z2n. The vectors f and g are secret, and must satisfy the following properties:

• The matrix [C∗f ] must be invertible mod q and mod p. Denote the inverses by [C∗f ]−1
q and

[C∗f ]−1
p , respectively.

• f and g must be small, i.e., f has df entries equal to 1 and df − 1 entries equal to −1, the
rest being 0. Likewise, g has dg entries equal to 1 and dg entries equal to −1, the rest being
0.

The public key h can now be derived from the private key by the equation

[C∗f ]h ≡ pg (mod q). (2.24)

Since [C∗f ] is invertible mod q, this becomes h = p[C∗f ]−1g mod q.
LetH = p−1

q [C∗h], where p−1
q is the inverse of p mod q. Now, the NTRU lattice is defined by all

integral vectors (x,y) ∈ Z2n that satisfy y ≡ Hx (mod q), Note that for every vector (x,y) in the
lattice, the pairwise rotation (Cx, Cy) will be in the lattice as well, because Cy ≡ C(Hx) ≡ H(Cx)
(mod q), by (2.23). Specifically, (f ,g) and all its pairwise rotations (Ckf , Ckg) are vectors in this
lattice for 0 ≤ k ≤ n− 1. The lattice is spanned by the columns of the matrix

L =
(
In On
H qIn

)
, (2.25)

where In is the n × n identity matrix and On is the n × n all-zero matrix. Although the NTRU
lattice has dimension 2n, its basis can be represented using only the n-dimensional vector h.
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Parameter Description Knowledge
n Degree, prime Public
q Large modulus Public
p Small modulus Public
df Integer bound for f Public
dg Integer bound for g Public
dr Integer bound for r Public
f Coefficient vector of f Private
g Coefficient vector of g Private

h = p[C∗f ]−1
q g (mod q) Coefficient vector of h Public

H = p−1
q [C∗h] (mod q) Circulant n× n matrix Public

Table 2.9: Parameters of NTRU.

2.4.3 Encryption and decryption

Let the parameters of the system be defined as in Table 2.9. Then, encryption and decryption are
performed as follows.

Encryption

To encrypt a message, encode it as a vector m ∈ Zn with coefficients modulo p. Then, randomly
generate a blinding factor r ∈ {−1, 0, 1}n (where r has dr entries 1, dr entries −1 and the rest 0).
Finally, compute the ciphertext

c = [C∗h]r + m (mod q).

Decryption

To decrypt a ciphertext c, reduce

a ≡ [C∗f ]c (mod q),

such that all coefficients of a lie in the interval [−q/2, q/2). Then, retrieve the message by com-
puting

m = [C∗f ]−1
p a (mod p).

2.4.4 Why it works

To decrypt a ciphertext c, it is multiplied with the matrix [C∗f ] to get

[C∗f ]c = [C∗f ]m + [C∗f ][C∗h]r
= [C∗f ]m + [C∗([C∗f ]h)]r
≡ [C∗f ]m + p[C∗g]r (mod q), (2.26)

where the identities (2.21) and (2.22) were used.
Now, f , g and r are by definition “small” polynomials with respect to q, depending on the

integer bounds df , dg and dr. As a result, the entries of the resulting vector [C∗f ]m + p[C∗g]r in
(2.26) are likely to be in the interval [−q/2, q/2), without having to reduce mod q. Thus, reducing
the coefficients of [C∗f ]c mod q such that they lie in the interval [−q/2, q/2) will yield the exact
vector [C∗f ]m + p[C∗g]r over Z, rather than merely an equivalent vector mod q. The message m
is subsequently retrieved by multiplying by [C∗f ]−1

p and reducing modulo p, resulting in

[C∗f ]−1
p ([C∗f ]m + p[C∗g]r) ≡ [C∗f ]−1

p [C∗f ]m + 0 ≡m (mod p).
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The integer bound parameters df , dg and dr are chosen such that even the convolution products
are likely to have small coefficients. The bigger df , dg and dr are, the bigger the probability that
the entries of x = [C∗f ]m + p[C∗g]r are not in the correct interval [−q/2, q/2). If this happens, it
might for example occur that, during the decryption, an entry xi + q is reduced modulo p rather
than xi, and these do not have the same outcome mod p since p and q are co-prime. This will
lead to a decryption error, and since these decryption errors are highly key-dependent, they can
be used to extract the private key in some situations, as shown in [45, 84]. This prompted the
creators of NTRU to change the recommended parameters of the system. For more information on
these new parameters as well as a more detailed analysis on the probability bounds of decryption
errors, see [39, 36].

Example 2.5. The following example shows the system in action for the small parameters n = 7,
q = 32, p = 3 df = 3, and dg = dr = 2. The randomly generated private key consists of
f = (−1, 0, 0, 1, 1,−1, 1) and g = (1,−1, 0, 0,−1, 1, 0). By (2.24), the public key becomes h =
(0, 24, 26, 27, 10, 12, 29). Furthermore, the inverses of [C∗f ] modulo q and p become

[C∗f ]−1
q =




17 28 16 1 30 9 28
28 17 28 16 1 30 9
9 28 17 28 16 1 30
30 9 28 17 28 16 1
1 30 9 28 17 28 16
16 1 30 9 28 17 28
28 16 1 30 9 28 17




, [C∗f ]−1
p =




2 1 2 2 0 1 2
2 2 1 2 2 0 1
1 2 2 1 2 2 0
0 1 2 2 1 2 2
2 0 1 2 2 1 2
2 2 0 1 2 2 1
1 2 2 0 1 2 2




.

Now, a message m = (0,−1, 1,−1, 1, 0,−1) is encrypted using the randomly chosen blinding
factor r = (1, 1, 0, 0, 0,−1,−1). This results in the ciphertext

c = [C∗h]r + m ≡ (11, 2, 14, 30, 29, 25, 16) (mod q).

To decrypt this ciphertext, it is multiplied by [C∗f ] and reduced mod q such that its coefficients
are in the interval [−q/2, q/2):

[C∗f ]c ≡ (4, 4,−4, 1,−7,−4, 5) (mod q). (2.27)

Note that the right-hand side of (2.27) is precisely equal to

[C∗f ]m + p[C∗g]r = (4, 4,−4, 1,−7,−4, 5).

Thus, multiplying by [C∗f ]−1
p and reducing that modulo p gives

[C∗f ]−1
p · (4, 4,−4, 1,−7,−4, 5) ≡ (0,−1, 1,−1, 1, 0,−1) (mod p) = m.

2.4.5 Attack on the private key

This attack on the private key was introduced by Coppersmith and Shamir in [11]. The goal is
to retrieve the secret vectors f and g, or at least vectors that are not too far removed from them,
and can still be used to decrypt ciphertexts.

Now, the vector (f ,g) and its pairwise rotations are vectors in the NTRU lattice. Using the
currently chosen parameters, the Euclidean norm of (f ,g) is given by ‖(f ,g)‖ =

√
2df − 1 + 2dg.

The lattice volume of the NTRU lattice is given by det(L) = qn and the dimension of the lattice
is 2n. Now, the shortest vector is expected to have a length that is approximately det(L)

1
2n =

√
q,

as seen in Chapter 1.
Since

√
2df − 1 + 2dg � √q when using the recommended parameters for NTRUEncrypt, it

becomes highly probable that (f ,g) is a shortest vector of the lattice. Since all the pairwise rota-
tions of (f ,g) are in the lattice, they are candidates for the shortest vector as well. Furthermore,
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they can be used to decrypt messages, since by (2.21), (2.22) and (2.23)

[C∗(Cf)]c = [C∗(Cf)]m + [C∗(Cf)][C∗h]r
= [C∗(Cf)]m + [C∗([C∗f ]h)](Cr)
≡ [C∗(Cf)]m + p[C∗g]r (mod q).

The decryption can now be finished by using the inverse of [C∗(Cf)] mod p and reducing mod p.
To retrieve a short vector in the lattice, any lattice reduction algorithm can be applied. Copper-

smith and Shamir showed that even when the resulting short vector is longer than (f ,g), but still
within some constant factor, several of these vectors can be combined to decrypt the ciphertexts.
However, using the current lattice reduction algorithms, the approximation factor of the short-
est vector problem is still exponential in n. As shown by Howgrave-Graham in [44] this method
can be improved by combining it with a combinatorial attack. These attacks have increased the
recommended parameters, but NTRUEncrypt remains practical for now.

Example 2.6. The example from 2.4.4 is continued here, to describe the attack. For the public
key h = (0, 24, 26, 27, 10, 12, 29), the NTRU lattice is spanned by the columns of the following
matrix:




1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 319 132 110 297 286 264 32 0 0 0 0 0 0

264 0 319 132 110 297 286 0 32 0 0 0 0 0
286 264 0 319 132 110 297 0 0 32 0 0 0 0
297 286 264 0 319 132 110 0 0 0 32 0 0 0
110 297 286 264 0 319 132 0 0 0 0 32 0 0
132 110 297 286 264 0 319 0 0 0 0 0 32 0
319 132 110 297 286 264 0 0 0 0 0 0 0 32




.

Reducing this matrix using LLL gives:



1 −1 −1 −1 1 1 1 1 0 −2 −1 4 7 6
−1 0 1 0 −2 1 1 −2 5 −3 −4 0 −4 1
1 0 −1 1 −1 −1 1 −6 −6 −7 −2 −5 −1 −2
−1 1 0 2 0 1 1 4 −1 6 5 6 3 −6
0 1 0 0 0 −1 1 0 2 4 0 1 −6 4
0 −1 1 0 −1 0 1 −5 6 3 0 −2 −1 0
1 1 1 0 0 0 1 6 −4 0 4 −6 2 −5
−1 1 1 0 0 0 0 −4 −5 −7 2 −3 6 −1
1 −1 0 −1 0 −1 0 5 −4 2 6 5 4 −4
0 0 1 0 0 1 0 −6 1 0 1 4 −5 5
1 0 −1 −1 1 0 0 −3 4 4 7 −1 −3 −6
−1 −1 0 0 −1 1 0 5 −5 4 10 −4 1 −3
0 1 0 1 −1 −1 0 4 6 3 4 5 3 5
0 0 −1 1 1 0 0 −1 3 −6 2 −6 −6 4




.

Now, columns 1, 2, 3 and 6 of this matrix are of the proper form: the entries are ±1 or 0, the
first 7 entries of these columns contain df ones and df − 1 minus ones and the last 7 entries
of these columns contain dg ones and dg minus ones. Thus, the vectors (1,−1, 1,−1, 0, 0, 1),
(−1, 0, 0, 1, 1,−1, 1), (−1, 1,−1, 0, 0, 1, 1) and (1, 1,−1, 1,−1, 0, 0) are obtained. The second vector
is equal to f = (−1, 0, 0, 1, 1,−1, 1), and the other three are pairwise rotations of f . This completes
the attack, because they can all be used to decrypt encrypted messages.
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2.4.6 Practicality of the system

Object Size(bits)
Public key h n log2(q)

Table 2.10: Public key size in NTRU.

The public key of NTRU consists of a vector of length n with entries ranging from 0 to q − 1.
Therefore, it requires O(n log2(q)) bits of storage space. The time complexity of the different
operations depend on both n and the different integer bounds df , dg and dr. The most recent
recommended parameters have appeared in [36, Table 1]. The authors make a distinction between
parameters that are recommended to minimize the cost of space, speed, or a trade-off between
these two. Examples of such parameters for (n, df ) are (449, 134) and (1087, 120) for minimizing
the space cost, and (761, 42) and (1499, 79) for maximizing the speed.

Several improvements have been suggested to increase the efficiency. A private key of the form
f = e1 +pf ′ can be used (where e1 is the first unit vector and the entries of f ′ are randomly 1, 0,−1
depending on df as before), in order to increase efficiency by removing a multiplication step later.
This removes the need for [C∗f ] to be invertible mod p. It is also possible to take p = X+2 rather
than p = 3.

2.4.7 Conclusion

Although the NTRUEncrypt cryptosystem is defined using truncated polynomials, its most effec-
tive attacks make use of the lattice structure of the keys. This gives rise to lattice-based attacks
that use lattice reduction algorithms, which work better than theoretically expected in low dimen-
sions. But unlike GGH and AD, NTRU is efficient enough to raise the security parameters while
staying competitive. This gives rise to the question whether it is possible to add structure to the
lattices used in lattice-based cryptography without decreasing the security, in order to increase
the efficiency.

2.5 Conclusions

In this chapter, three different systems that are somehow related with lattices were described. In
the case of GGH, the cryptosystem is explicitly based on and defined in terms of lattices. The
description of the Ajtai-Dwork system barely mentions lattices at all, yet its security is provably
related to hard lattice problems. The NTRU system is regarded as a lattice-based cryptosystem
due to the lattice structure that arises from the relation between the public and private key. This
structure gives rise to a natural attack using lattice reduction.

Not all of the early lattice-based cryptosystems were successful. The GGH and AD cryptosys-
tems were not efficient enough to cope with the good performance of lattice reduction algorithms
in lower dimensions. The NTRU system is efficient enough to hold out for now, but improvements
in lattice reduction techniques could change this. It appears that lattice reduction is not yet very
well understood. There does not yet seem to be a simple explanation for the fact that lattice
reduction algorithms work better than theoretically expected in low dimensions.

These first systems give rise to some interesting questions about lattice-based cryptography. It
is known that several lattice problems are hard to solve, but is it possible to base a cryptosystem on
these problems without introducing weaknesses such as in GGH? Are there perhaps other (hard)
lattice problems that can be used for cryptosystems? Can extra structure be added to the lattices
without decreasing the security, in order to increase the efficiency of the system such as in NTRU?
These questions will be examined in the following chapter.
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Chapter 3

Current developments in
Lattice-Based Cryptography

New developments in the area of lattice-based cryptography are fueled by the advantages of cryp-
tosystems based on lattices, some of which have already been mentioned. The connection between
worst-case and average-case hardness of certain lattice problems, as shown by Ajtai, remains a
strong reason to create cryptosystems based on these problems. Ideally this would result in a cryp-
tosystem such that breaking the system is provably as hard as solving the problem. Furthermore,
in 1994, Shor invented an algorithm for quantum computers that is able to efficiently factorize
numbers and to solve the discrete logarithm problem[98]. As the research into quantum computers
continues, Shor’s algorithm threatens the security of systems such as RSA, ElGamal and other
cryptosystems based on the discrete logarithm problem. This has prompted a search for so-called
“post-quantum” alternatives to cryptosystems based on these problems. Lattice-based cryptogra-
phy is one of several candidates that are possibly resistant to attacks from quantum computers.
Thus, lattice problems seem to be an attractive option as a basis for public-key cryptography.

However, as shown in Chapter 2, the first attempts at lattice-based cryptosystems demon-
strated several drawbacks. The difficulty of some of the underlying lattice problems was not well
understood and two of the three cryptosystems have been broken – one of those even despite a
security proof. These failures were caused by inefficiency of the cryptosystems (due to relatively
large key sizes), combined with the unexpectedly good performance of lattice reduction algorithms
in practical dimensions. Thus, the following questions arose: Is it possible to provably base cryp-
tosystems on harder lattice problems? Is it possible to increase the efficiency of the cryptosystems
by adding structure to the used lattices, while retaining the provable difficulty of the lattice prob-
lems? And finally, how can the practical security of such cryptosystems be determined, while
taking into account the power of lattice reduction?

The first two questions are examined in this chapter. First, several new (variations of) lattice
problems will be considered in Section 3.1, in order to better understand the difficulty of lattice
problems. In Section 3.2, ideal lattices will be introduced, as a possible solution to the efficiency
problem. Finally, some applications of these new lattice problems and ideal lattices will be con-
sidered in Section 3.3. The final question on the practical security of lattice-based cryptosystems
will be examined in Chapter 4.

3.1 Lattice problems

As mentioned in Section 2.2, the security of the Ajtai-Dwork cryptosystem is provably based on
the nc-unique shortest vector problem, where n is the dimension of the space and c is a constant.
However, not much was known about the hardness of this problem. In 2004, Regev introduced a
new cryptosystem based on the nc-unique shortest vector problem (uSVP) with constant c = 1.5
[85], whereas the Ajtai-Dwork system is based on uSVP with constant c = 8. Later, Regev
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improved his system and introduced the Learning With Errors problem (LWE) [86]. Based on
Regev’s work, Peikert introduced a system whose security is based on the decisional variant of
SVP (GapSVP) rather than uSVP [80]. Lyubashevsky and Micciancio used Peikert’s results to
prove several reductions of uSVP to other lattice problems [62].

The additional problems that were used in these results will be defined in this section. These
problems include the decisional variant GapSVP of the shortest vector problem, the bounded
distance decoding problem, the small integer solutions problem, the shortest independent vector
problem and the learning with errors problem. Often, these problems are variants or special
cases of other lattice problems, but understanding the difficulty of special cases can be useful for
cryptographic purposes. Afterwards, the relation between the different lattice problems will be
discussed in order to give a clear picture of the different reductions between problems.

3.1.1 Decisional Shortest Vector Problem (GapSVP)

The goal of the shortest vector problem is to find an explicit shortest vector. In formal terms, this
means that in Definition 1.23, the shortest vector problem has been described as a search problem,
where the goal is to search for something. There also exist decisional problems, where the goal is
to decide whether a statement is true for the given problem instance. The decisional variant of
SVP (GapSVP) is to decide whether a short vector exists:

Definition 3.1 (GapSVP). Given a basis B of a d-rank lattice L ⊆ Zn, a real number r and
an approximation factor γ, return YES if λ1(L(B)) ≤ r and return NO if λ1(L(B)) > γr. If
r < λ1(L(B)) ≤ γr, both YES and NO can be returned.

Such a problem is called a promise problem, because it is promised that either λ1(L(B)) ≤ r
or λ1(L(B)) > γr is the case. If the promise is not satisfied, the returned result will be useless,
because both YES and NO are acceptable answers. Like the shortest vector problem, GapSVPγ
is NP-hard for any constant approximation factor γ (see [49]).

3.1.2 Bounded Distance Decoding (BDD)

Recall from Chapter 2 that the encryption and decryption of the GGH system is based on the
closest vector problem. However, instances of the closest vector problem that arise from GGH
are easier than general CVP-instances, because the distance of the target vector to the lattice is
always bounded. The following problem formalizes this special case of the closest vector problem:

Definition 3.2 (Bounded Distance Decoding (BDD)). Given a basis B of a d-rank lattice L ⊆ Zn,
a distance parameter α > 0 and a target vector x ∈ span(L) such that dist(x, L) < αλ1(L), find a
lattice vector u ∈ L such that ‖x− u‖ = dist(x, L).

The name bounded distance decoding stems from the similarities between the areas of lattices
and codes. Note that the problem is basically the closest vector problem in the case that the target
vector is not further than αλ1(L) from the lattice. A slightly easier variation on this problem is
to accept any lattice vector within a distance of αλ1(L) from the target vector as a solution. It
has been shown that the BDDα problem is NP-hard for distance parameter α > 1/

√
2 (see [58]).

The BDDα problem becomes harder as α becomes larger.
Recall from Section 2.3.4 that for the GGH cryptosystem, the distance between the target

vector and the lattice is always equal to σ
√
n, where σ and n are system parameters. Thus, this

distance is bounded, which suggests that it gives rise to an instance of BDD. However, instances
of the closest vector problem that arise from GGH are not equivalent to instances of the bounded
distance decoding problem. The error vector of GGH is the difference between the target vector
and the closest lattice vector. In GGH, this error vector is not only bounded in length, but it also
has a particular structure. This structure allowed Nguyen to reduce the problem to a much easier
instance of BDD, as described in Section 2.3.4. In the general case of BDD, the difference vector
between target and lattice does not necessarily have such a structure. Thus, while breaking the
encryption of GGH can be reduced to BDD, the converse is not true.
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3.1.3 Small Integer Solutions (SIS)

Recall the modular lattices from Section 1.6.5. Ajtai used the problem of finding short – not
necessarily shortest – vectors in certain modular lattices as his average-case problem to show the
connection between worst-case and average-case hardness for certain lattice problems. Micciancio
and Regev [70] later introduced a problem similar to Ajtai’s using the following definition:

Definition 3.3 (Small Integer Solution (SIS)). Given a modulus q, a matrix A ∈ Zn×mq where
m ≥ n and a real constant ν, find a nonzero vector u ∈ Zm such that Au ≡ 0 mod q and ‖u‖ ≤ ν.

It is assumed that ν is chosen such that a solution exists. Furthermore, vectors of the form
x = qei always trivially satisfy Ax ≡ 0 mod q. Therefore, the constant ν is usually chosen to be
smaller than q, such that these trivial vectors are not counted as solutions. In the notation of
Section 1.6.5, the goal of this problem is to find a vector of length at most ν in the lattice

Λ⊥q (A) = {x ∈ Zm : Ax = 0 (mod q)} ,

where A is an n×m matrix with coefficients in Zq. Note that this is not equivalent to the shortest
vector problem in the lattice Λ⊥q (A), although closely related. An average-case instance of the
SIS problem arises when the matrix A is taken uniformly at random from all matrices in Zn×mq .
In their paper [70], Micciancio and Regev note that solving SVP in a random lattice Λ⊥q (A) is at
least as hard as solving SIS in the average case, since ν is chosen such that a shortest vector in the
lattice satisfies the length requirement of SIS. They also show that the worst-case of various lattice
problems can be reduced to the average-case of the SIS problem, and hence, to the average-case
of the shortest vector problem. This will be described in more detail in Section 3.1.6.

3.1.4 Shortest Independent Vector Problem (SIVP)

The next problem is similar to Ajtai’s shortest basis problem (SBP), as described in Section 1.6.

Definition 3.4 (Shortest Independent Vector Problem (SIVP)). Given a basis B of a d-rank lat-
tice L ⊆ Zn and an approximation factor γ, find a set of d linearly independent vectors u1, . . . ,ud
such that

d
max
i=1
‖ui‖ ≤ γλd(L). (3.1)

The length restriction only holds for the longest of the vectors. Thus, the independent vectors
do not need to be close to the successive minima λ1(L), . . . , λd−1(L). Blömer and Seifert proved
that SIVP is NP-hard for γ = n1/ log logn [9]. Note that it is not required that the resulting inde-
pendent vectors form a basis of the lattice. Conversely, a basis satisfying the length requirements
in Equation (3.1) does not necessarily exist. Thus, there do not seem to be trivial reductions
between SBP and SIVP. In Section 3.1.6 it will be shown that these problems can nonetheless be
reduced to each other.

3.1.5 Learning With Errors (LWE)

Regev introduced the Learning With Errors problem in [86]. Before giving the problem description,
some extra notation is needed. Let q ≥ 2 be an integral modulus, let s ∈ Znq be an n-dimensional
vector and let χ be a probability distribution on Zq. Now, define As,χ as the probability distribu-
tion on Znq × Zq, where samples of this distribution are obtained by the following procedure:
As,χ:

1. Take a ∈ Znq uniformly at random.

2. Take e ∈ Zq according to the distribution χ.

3. Return the tuple (a, 〈a, s〉+ e) mod q.
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The learning with errors problem can now be formulated as follows:

Definition 3.5 (Learning With Errors (LWE)). Given a size parameter n ≥ 1, a modulus q ≥
2, a probability distribution χ on Zq and an arbitrary number of independent samples from the
distribution As,χ, find s.

For most practical applications, the error distribution χ is taken to be a discrete Gaussian
distribution. This is a normal distribution with mean zero and standard deviation αq that is
rounded to the nearest integer. Here, α > 0 is generally taken such that α−1 is a polynomial in
n, i.e., α ≈ 1/nc for some constant c.

As with the SIS problem, LWE can be described in terms of lattices using the notation of
Section 1.6.5. Consider m LWE samples (ai, bi) = (ai, 〈ai, s〉+ ei) from As,χ for 1 ≤ i ≤ m. Let A
be the n×m matrix that has the vectors ai as its columns. Now, the matrix A has rank n with
high probability. The rows of A give rise to the lattice

Λq(A) =
{
x ∈ Zm : x = ATy (mod q) for some y ∈ Zn

}
.

A secret s ∈ Zn in the LWE problem now corresponds to the lattice vector AT s ∈ Λq(A). The
i’th entry of the vector AT s consists of the inner product 〈ai, s〉 for 1 ≤ i ≤ m. Thus, writing
b = (b1, . . . , bm) and e = (e1, . . . , em), the LWE samples give rise to the equation

b = AT s + e.

The goal of the LWE problem is to find s. This is equivalent to finding AT s, because the matrix
A has rank n with high probability. Since AT s is a lattice vector of Λq(A), LWE can be described
as a closest vector problem on this lattice. Depending on the choice of the error vector e, AT s
will be the closest lattice vector to b in the lattice Λq(A). For practical applications, the error
distribution χ is chosen such that e is bounded with high probability. This means that LWE can
be described as an instance of BDD, rather than the more general case of CVP. It should be noted
that the error distribution gives some information on the structure of the error vector. Thus, the
LWE problem is essentially a bounded distance decoding problem in the lattice Λq(A), given a
hint in the form of samples from the error distribution.

Using this description, the learning with errors problem can be defined using the parameters n
(the length of the secret), m (the number of noisy inner products), q (the modulus) and α, where α
indicates that the error is drawn from the discrete Gaussian distribution with standard deviation
r = αq/

√
2π. Another consequence of this description is that it shows a connection between LWE

and SIS. Recall that the goal of SIS is to find a short vector in the lattice Λ⊥q (A) where A is an
n×m matrix. Now, the goal of LWE is to find a close vector in the lattice Λq(A). As described in
Section 1.6.5, these two lattices are dual to one another, in the sense that Λq(A)× = q−1 · Λ⊥q (A)
and Λ⊥q (A)× = q−1 · Λq(A). Hence, LWE is sometimes described as the ‘dual’ problem of SIS.

Definition 3.5 gives the search variant of LWE. It is also possible to consider a decisional variant,
where the goal is to decide whether a set of independent samples come from the distribution As,χ

or from the uniform distribution on Znq × Zq.

Definition 3.6 (Learning With Errors (decision version)). Given a size parameter n ≥ 1, a
modulus q ≥ 2, a probability distribution χ on Zq and a set of independent samples from Znq ×Zq,
return YES if the samples come from As,χ and NO if they come from the uniform distribution on
Znq × Zq.

Regev showed that the search version can be reduced to the decision version, if q is polynomial
in n, i.e., q ≈ nc for some constant c. Since the decision version can trivially be reduced to
the search version, this means that the search and decision versions of LWE are computationally
equivalent if q is polynomial in n.

It is worth noting that taking q = 2 reduces LWE to the Learning Parity with Noise problem
(LPN), which is a well-known problem in the field of machine learning. However, the hardness
results for LWE, which will be discussed in Section 3.1.6, require q to be at least some polynomial
in n.
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3.1.6 Reductions

Recall from Section 1.2.3 that the difficulty of problems can be compared by using reductions
between these problems. A reduction from a problem A to a problem B (A is reduced to B) is
a transformation from the instances of problem A to instances of problem B. This means that a
method that solves all instances of problem B can be used to solve the instances of problem A.
Intuitively, this means that problem B cannot be easier than problem A or equivalently, problem B
is at least as hard as problem A. This follows from the fact that a solution to problem B immediately
gives a solution to problem A, whereas the converse is not true: a solution to problem A does
not necessarily provide a solution to problem B. A summary of several reductions between the
different lattice problems will be given below, to give an indication of the relative difficulty of these
problems. For a more extensive description of the relation of several classical lattice problems from
a cryptographic perspective, see the book on the complexity of lattice problems by Micciancio and
Goldwasser [69].
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Figure 3.1: Relations among lattice problems.

Figure 3.1 shows the relations among lattice problems by depicting the reductions between
lattice problems. For simplicity, each problem is assumed to be in a full-rank lattice in Zn (Zm for
SIS and LWE). An arrow from a problem A to a problem B means that problem A can be reduced
to problem B (in polynomial time). The subscript γ indicates the approximation factor of the
problems, except for GapSVP, uSVP and BDD. For GapSVP, γ indicates the gap of the promise
problem, for uSVP, γ indicates the gap λ2/λ1 and for BDD, 1/γ indicates the distance bound. If
an arrow from problem A to problem B is labeled with a factor α, this means that approximating
problem A with a factor αγ reduces to approximating problem B with a factor γ. Equivalently,
this means that if it is possible to approximate B with a factor γ, then it is possible to approximate
A with a factor αγ. The SIS and LWE problems do not have approximation versions defined and
depend on several parameters. Their reductions (labeled *, ** and ***) depend on the choice of
these variables, and will be described in more detail. The reduction from SIVP to LWE is labeled
Quantum, as it requires a quantum computer. Note that if there exists a directed path from a
problem A to a problem B, then problem A can be reduced to problem B as well. However, these
composite reductions were omitted to avoid an illegible figure.

Consider the Hermite shortest vector problem, as defined in Section 1.6. By definition of Her-
mite’s constant γn, the length of a shortest vector can be bounded using λ1(L)2/ vol(L)2/n ≤ γn,
which implies λ1(L) ≤ √γn vol(L)1/n. Thus, a solution to approximate SVP with approxi-
mation factor γ is also a solution to HSVP with approximation factor γ

√
γn, since γλ1(L) ≤

γ
√
γn vol(L)1/n. Conversely, Lovász showed in [59] that any algorithm that solves HSVP with

Hermite factor γ can be used to solve approximate SVP with approximation factor γ2.
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Next, recall the shortest independent vector problem and the shortest basis problem. As shown
by Micciancio and Goldwasser in [69], the length of the longest vector in the shortest basis can
be at most

√
n/2λn(L). Thus, any solution to SBP with approximation factor γ is a solution to

SIVP with approximation factor
√
n/2γ. Furthermore, there exists an algorithm that efficiently

computes a basis from any set of n linearly independent lattice vectors, such that the length of each
vector is increased by at most

√
n/2. Thus, any solution to SIVP with approximation factor γ can

be transformed into a solution of SBP with approximation factor
√
n2γ by using this algorithm.

Finally, it is also shown by Micciancio and Goldwasser in [69] that both SBP and SIVP can be
reduced to problems that can themselves be reduced to SVP. However, these reductions are not
tight and a factor

√
n is ‘lost’.

The reduction from SVP to CVP was shown in Section 1.4.3. The reduction from BDD to CVP
is trivial, because CVP is merely BDD without the distance bound. The reduction from GapSVP
to SVP is trivial as well, because a solution to the search problem solves the decision problem. As
for the reduction from uSVP to SVP, any algorithm for SVP that achieves an approximation factor
≤ γ can solve the unique shortest vector problem with gap γ. The algorithm will find a vector v
of length at most ‖v‖ ≤ γλ1(L), which, by definition of the unique shortest vector problem, is a
multiple of u. Consider the coordinates of u with respect to any basis of the lattice. If u is divided
through by the greatest common divisor of these coordinates, the shortest vector is retrieved.

The reductions among uSVP, GapSVP and BDD were formalized by Lyubashevsky and Mic-
ciancio in [62]. Here, it is first shown that BDD with distance bound 1

2γ can be reduced to uSVP
with gap γ, for any γ ≥ 1. Then, it is shown that uSVP with gap γ can be reduced to BDD
with distance bound 1/γ, if γ is polynomially bounded in n, i.e., there exists a constant c such
that γ(n) ≤ nc. For such polynomially bounded γ, it is shown that uSVP with gap γ reduces to
GapSVP with approximation factor γ. Finally, it is shown that, for any γ > 2

√
n/ log n, GapSVP

with approximation factor
√
n/ log nγ can be reduced to BDD with distance bound 1/γ.

When Micciancio and Regev introduced the SIS problem in [70], they also described the reduc-
tions from SIVP and GapSVP to SIS. As mentioned SIS can be trivially reduced to SVP, because
a solution of SVP in the lattice Λ⊥q (A) is a solution of SIS. As for the reduction from SIVP to
SIS (labeled * in Figure 3.1), they showed that for all m = Θ(n log n), there exists a modulus
q = O(n2 log n) such that for all γ = ω(n log n), SIVP with approximation factor γ can be reduced
to the average case of SIS with parameters (n, q,m, ν). Similarly, for the reduction from GapSVP
to SIS (labeled ** in Figure 3.1), they showed that for all m = Θ(n log n), there exists an odd
modulus q = O(n2.5 log n) such that for all γ = O(n

√
log n), GapSVP with approximation factor

γ can be reduced to SIS with parameters (n, q,m, ν).
As mentioned in its description, the learning with errors problem is essentially equivalent to

a bounded distance decoding problem in the lattice Λq(A), with a hint in the form of samples
from the error distribution. Here, the error distribution is the discrete Gaussian distribution. In
[86], Regev gives a reduction from approximate versions of SVP and SIVP to LWE. However,
this reduction uses a quantum computer, which means that solving LWE is at least as hard
as solving SIVP with a quantum computer. This reduction bases the hardness of LWE on the
quantum-hardness of SVP and SIVP and it is not known whether SVP and SIVP are hard to
solve using a quantum computer. However, using the equivalence of LWE and BDD combined
with the reductions from Lyubashevsky and Micciancio in [62], it is possible to reduce GapSVP to
LWE (without a quantum computer). This implies that a solution to LWE provides a solution to
GapSVP, making LWE at least as hard as GapSVP. Thus the hardness of LWE is based on that
of GapSVP. However, there is one caveat: this requires the modulus q to be exponential in n. If q
is polynomial in n, then LWE is as hard as GapSVP, given a ‘hint’ in the form of a ‘short’ basis.

Finally, the reduction from LWE to SIS is described by Micciancio and Regev in [71]. Here it
is shown that a short vector in the dual lattice can be used to solve the decisional LWE problem.
Recall from the description of LWE that finding a short vector in the dual lattice is exactly the
SIS problem. If this vector has a length of at most 1.5

√
2π/(αq), then it can be used to solve the

decisional LWE problem. Thus, LWE with parameters (n, q,m, α) reduces to SIS with parameters
(n, q,m, ν = 1.5

√
2π/α).
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3.2 Ideal lattices

In the description of the NTRU cryptosystem in Chapter 2, it was shown that adding extra struc-
ture to lattices can improve the efficiency of representing these lattices. To see whether such
structured lattices could be used to improve the efficiency of other lattice-based cryptosystems,
Micciancio examined cyclic lattices in [67]. He constructed a one-way function based on a com-
bination of knapsacks and these cyclic lattices, leaving as an open problem whether the one-way
function is also collision resistant. This open problem was independently answered by Lyuba-
shevsky and Micciancio in [61] and by Peikert and Rosen in [81]. It was shown there that the
one-way function is not collision resistant, but can be made collision resistant by some adaptations,
which led to the closer examination of ideal lattices.

3.2.1 Definition

The name ‘ideal lattice’ stems from the fact that the set of all lattice vectors forms an ideal in a
certain ring. An ideal is a special type of subset, defined as follows:

Definition 3.7. Let (R,+, ·) be any ring with ‘addition’ operation + and ‘multiplication’ opera-
tion ·. Denote the inverse of the addition operation by −. Then, a non-empty subset I ⊆ R is
called an ideal of R if

1. for all x, y ∈ I, x− y ∈ I and

2. for all x ∈ I and r ∈ R, r · x ∈ R.

Note that the first requirement on I in Definition 3.7 is equivalent to I being a subgroup of R
under the addition operation. For any subset S ⊂ R, the minimal ideal that contains S is denoted
by 〈S〉. If S consists of one element f ∈ R, then the ideal 〈f〉 consists of all multiples of f , i.e.,
〈f〉 = {x · f : x ∈ R}. Let 0 be the identity element with respect to the addition operation and
let 1 be the identity element with respect to the multiplication operation. Then 〈0〉 = {0} and
〈1〉 = R are two trivial ideals of R.

As an ideal I is a subgroup of R, it is possible to consider the congruence classes of the quotient
R/I. Here, R is divided into congruency classes modulo I, where two ring elements f and g are
congruent modulo I if f − g ∈ I. As these quotient rings are themselves rings, they have ideals as
well. Before formally defining ideal lattices, cyclic lattices will be considered first.

Cyclic lattices

Cyclic lattices are lattices L ⊆ Zn, where for every lattice vector (u1, u2, . . . , un) ∈ L the cyclically
shifted vector (un, u1, . . . , un−1) ∈ L as well. These cyclic lattices are closely related to ideals,
as will be shown in the proposition below. Recall the convolution ring of truncated polynomials
from Section 2.4.1. These are polynomials in the quotient ring Z[x]/〈xn − 1〉, where 〈xn − 1〉 is
the ideal in the ring Z[x] consisting of all multiples of xn − 1.

It is possible to see vectors u ∈ Zn as a coefficient vector of a truncated polynomial in the
quotient ring Z[x]/(xn − 1). The vector u = (u1, . . . , un) corresponds to the polynomial

n∑

i=1

uix
i−1 = u1 + u2x+ . . .+ unx

n−1. (3.2)

In the following, the notation u will be used interchangeably for both the vector and the corre-
sponding polynomial as in (3.2). The fact that L is a cyclic lattice now translates to: for any
lattice vector u, the vector xu is in the lattice as well, since

xu = x

n∑

i=1

uix
i−1 = u1x+ . . .+ unx

n ≡ un + u1x+ . . .+ un−1x
n−1 (mod xn − 1). (3.3)
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Note that the right-hand side corresponds to the cyclic rotation of u: (un, u1, . . . , un−1). Thus, a
cyclic rotation of the vector is equivalent to multiplying the corresponding polynomial by x. This
leads to the following proposition:

Proposition 3.8. Let L be a lattice with a basis {b1, . . . ,bn}. Then L is a cyclic lattice if and
only if it is isomorphic to the ideal I = 〈b1, . . . ,bn〉 ⊆ Zn/〈xn − 1〉.

The following observation explains why a cyclic lattice L always corresponds to an ideal I ⊂
Z[x]/〈xn− 1〉. Because a cyclic rotation in L corresponds to multiplying the polynomial with x as
shown in Equation (3.3), it follows that if u ∈ L, then xu ∈ L as well. Inductively, this means that
xiu is also in L for any integer i, since this corresponds to cyclically rotating u i times. Let u ∈ L
be a lattice vector corresponding to a polynomial and let h ∈ Z[x]/〈xn − 1〉 be a polynomial with
vector representation (h1, . . . , hn). Now consider the vector that corresponds to the polynomial
h ∗ u, where the ∗ is the convolution multiplication as defined in Section 2.4.1:

h ∗ u =

(
n∑

i=1

hix
i−1

)
u (mod xn − 1)

=
n∑

i=1

hi(xi−1u) (mod xn − 1).

Since xi−1u are all lattice vectors and the hi are all integers, the expression in this equation is
merely a linear combination with integral coefficients of lattice vectors. Hence, the result h∗u ∈ L
for any element in Z[x]/〈xn−1〉. The other requirement of an ideal is that I is an additive subgroup,
but this follows from the fact that L itself is an additive subgroup of Rn. Thus, L corresponds to
an ideal in Z[x]/〈xn − 1〉.

Why are cyclic lattices interesting? As shown for the NTRU cryptosystem, lattices with such
extra structure can be represented more compactly. Lattices of rank n can be represented by only
one vector of length n. Furthermore, the algebraic structure allows for fast arithmetic when using
the Discrete Fourier Transform, or rather its fast implementation, the Fast Fourier Transform
(FFT).

However, it turns out that the choice of the polynomial xn − 1 is not optimal. This is because
xn − 1 is not irreducible, i.e., it can be reduced into factors of lower rank such as xn − 1 =
(x− 1)(1 + x+ . . .+ xn−1). Both Peikert and Rosen [81] and Lyubashevsky and Micciancio [61]
used this reducibility to show that Micciancio’s one-way function is not collision resistant. Peikert
and Rosen resolved this weakness by adding constraints on which ring elements (from Z[x]/〈xn−1〉)
should be used in the function. Lyubashevsky and Micciancio [61] instead examined what would
happen if xn − 1 was replaced by a different polynomial, which led to the more general case of
ideal lattices.

Ideal lattices

Ideal lattices are lattices that correspond to ideals in the ring Z[x]/〈f〉 for some monic polynomial
f ∈ Z[x] of degree n. Here, monic means that the leading coefficient of f is equal to 1, i.e., f is of
the form f = xn +

∑n−1
i=0 fix

i. This ensures that reduction modulo f will result in a polynomial
of degree < n.

Note that cyclic lattices are ideal lattices with f = xn − 1. This choice of f did not appear to
be optimal because it can be reduced into factors of lower degree. What would happen if f were
replaced by an irreducible polynomial? The following proposition shows an important consequence
of the irreducibility of f .

Proposition 3.9. Let f ∈ Z[x] be a monic and irreducible polynomial of degree n and let v ∈
Z[x]/〈f〉 be a nonzero polynomial corresponding to a vector in Zn. Then, the vectors corresponding
to v, xv, x2v, . . . , xn−1v are linearly independent.
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Proof. Consider a linear combination of the vectors corresponding to v, xv, . . . xn−1v with integral
coefficients:

n−1∑

i=0

gi(vxi) =

(
n−1∑

i=0

gix
i

)
v = g ∗ v,

where g is the polynomial with corresponding coefficient vector (g0, . . . , gn−1). If this linear
combination is equal to zero, then, equivalently, g ∗ v ≡ 0 mod f . Now, by assumption f is
irreducible, but because Z[x] is a unique factoring domain (which means that every element has a
unique factoring), f is also a prime element of Z[x]. This means that if f divides ab, then f divides
a or f divides b (or both). Since f divides g ∗ v and f is prime, it follows that f must divide g or
v. However, the degree of both g and v is at most n− 1, which means that g must be zero. As a
consequence, the vectors corresponding to v, xv, x2v, . . . , xn−1v are linearly independent.

Proposition 3.9 implies that nontrivial ideal lattices are always full-rank if f is irreducible.
Note that, unlike in cyclic lattices, multiplying by x does not correspond to a cyclic rotation for
a general polynomial f . It is not even guaranteed that the vector corresponding to xv has the
same norm as v, which was the case for cyclic lattices. This all depends on what happens when a
polynomial g of degree ≥ n is reduced modulo f . Consider for example f = xn−2xn−1, v = xn−1

and g = xn−1v. Then, g = x2n−2 ≡ 2n−1xn−1, which has a much higher norm than v.
To solve this, Lyubashevsky and Micciancio consider an extra requirement on the polynomial f .

Informally, this requirement says that for any polynomial g, the ring norm ‖g‖f := ‖g mod f‖∞
cannot be much bigger than ‖g‖∞. To measure the suitability of different polynomials f in this
regard, they define the expansion factor. This gives an indication of how much the coefficients of
a polynomial are expanded by reducing modulo f . By examining this expansion factor, they have
found several appropriate choices for f . Two of these are worth noting here:

• xn−1 + xn−2 + . . .+ x+ 1, where n is prime; and

• xn + 1, where n is a power of two.

Note that the first is one of the factors of xn − 1 and that it is irreducible for prime n. Likewise,
the second is irreducible when n is a power of two. Of these two, xn + 1 has half the expansion
factor of xn−1 +xn−2 + . . .+x+ 1. In the following, several consequences of the choice f = xn+ 1
will be examined.

3.2.2 Lattice problems in ideal lattices

The choice of f strongly influences the hardness of the lattice problems, as will be shown here. Take
for example f = xn + 1 where n is a power of two. Whereas the polynomial xn − 1 leads to cyclic
lattices, xn + 1 will lead to so-called anti-cyclic lattices. Recall that multiplying a polynomial
in the ring Z[x]/〈xn − 1〉 by x corresponds to a cyclic shift in the coefficient vector, as shown
in Equation (3.3). A similar result is possible for the ring Z[x]/〈xn + 1〉. For any polynomial
u ∈ Z[x]/〈xn + 1〉, multiplying by x gives

xu = x

n∑

i=1

uix
i−1 = u1x+ . . .+ unx

n ≡ −un + u1x+ . . .+ un−1x
n−1 (mod xn + 1).

Note that the right-hand side corresponds to a cyclic rotation of u, except that the rotated element
was multiplied by −1: (−un, u1, . . . , un−1). This is also called the anti-cyclic rotation of u.

Consider a lattice L that corresponds to an ideal in the ring Z[x]/〈xn+1〉 and let u ∈ L be a lat-
tice vector. Because xn+1 is irreducible when n is a power of two, the vectors u, xu, x2u, . . . , xn−1u
are linearly independent by Proposition 3.9. These vectors all correspond to anti-cyclic rotations
of u and hence have the same norm as u. This observation has two important consequences in
terms of the hardness of lattice problems.
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The first consequence is that SVP is suddenly equivalent to SIVP. Take u ∈ L to be a shortest
vector. Then u, xu, x2u, . . . , xn−1u are all linearly independent and have the same length as u.
Thus, finding one shortest vector immediately gives n linearly independent shortest vectors that
form a solution for SIVP. Conversely, it follows that λ1(L) = λ2(L) = . . . = λn(L) and therefore
solving SIVP requires n vectors that are also shortest vectors.

The second consequence is that GapSVP√n is suddenly easy, as shown by the following propo-
sition:

Proposition 3.10. Let L be an ideal lattice in Z[x]/〈xn + 1〉. Then vol(L)1/n ≤ λ1(L) ≤√
n vol(L)1/n.

Proof. Recall from 1.4.4 that, by Equation (1.8), λ1(L) ≤ √γn vol(L)1/n. Furthermore, as a
consequence of Theorem 1.33, γn is essentially linear in n as shown in Equation (1.10). Thus,
λ1(L) ≤ √n vol(L)1/n. This holds for any lattice L, whereas the following lower bound is not true
for lattices in general. Consider a shortest vector u of L. As shown, u, xu, x2u, . . . , xn−1u are all
linearly independent and have the same length as u, i.e., λ1(L). Thus, u, xu, x2u, . . . , xn−1u span
a full-rank sublattice L′ of L. By Lemma 1.14 and the fact that the group index is by definition
≥ 1, vol(L) ≤ vol(L′). It follows that vol(L) ≤ vol(L′) ≤ ∏n−1

i=0 ‖xiu‖ = λ1(L)n, which means
that vol(L)1/n ≤ λ1(L), as required.

Proposition 3.10 shows that vol(L)1/n is a
√
n-approximation of λ1(L) for ideal lattices L in

Z[x]/〈xn + 1〉. Recall from Definition 3.1 that for GapSVP√n a real r is given and the goal is to
answer YES if λ1(L) ≤ r and NO if λ1(L) >

√
nr. Either answer is acceptable if r < λ1(L) ≤ √nr.

Thus, a YES answer is acceptable if 0 < λ1(L) ≤ √nr and a NO answer is acceptable if r < λ1(L).
Now, if vol(L)1/n ≤ r, then λ1(L) ≤ √n vol(L)1/n ≤ √nr, which means that YES is an acceptable
answer. Conversely, if vol(L)1/n > r, then r < vol(L)1/n ≤ λ1(L), which means that NO is an
acceptable answer. Thus, for an ideal lattice L in Z[x]/〈xn + 1〉, GapSVP√n can be solved by
computing vol(L)1/n and answering YES if vol(L)1/n ≤ r and NO if vol(L)1/n > r.

This shows that the hardness of lattice problems can be affected by the choice of f . However,
this hardness is still not understood very well for ideal lattices. This gives rise to several open
problems. Is it possible to prove that certain lattice problems in ideal lattices are hard? And if
not, is it possible to create new problems that are hard for ideal lattices? Is it possible to prove
that approximating lattice problems on ideal lattices within certain approximation factors cannot
be hard, akin to the results for CVP by Goldreich and Goldwasser[28]? Do there exist f (not
necessarily irreducible) such that lattice problems in ideals of Z[x]/〈f〉 are easy to solve? Can
quantum computers be used to solve lattice problems on ideal lattices? Current research aims
to answer these questions and to construct more practical schemes and cryptographic primitives
based on ideal lattices. In Section 3.3, some applications of ideal lattices will be described.

3.3 Applications

The LWE problem and its ‘dual’, the SIS problem, have been used to implement several crypto-
graphic primitives using lattices. Additionally, ideal lattices have been used to implement cryp-
tographic primitives based on lattice problems in ideal lattices. In this section, several of these
applications will be described, as well as the cryptographic primitives involved. It should be noted
that most of the applications require special trapdoor constructions. As these constructions can
get quite technical, they will not be fully explained here. For each application, references will be
given where these technical details can be found.

3.3.1 Public Key Encryption

The first primitive is one that has already appeared in Chapter 2: Public Key Encryption (PKE).
In [86], Regev introduced a PKE cryptosystem based on the LWE problem. Its parameters consist
of a security parameter n, the number of equations m, a modulus q and the error parameter α.
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Depending on the security parameter n, which is an integer, choose q to be a prime between n2

and 2n2, set m = 1.1 · n log q and set α = (
√
n log2 n)−1.

Private key: Draw a secret s uniformly from Znq as the private key.

Public key: Choose m samples from the LWE distribution with secret s, modulus q and the discrete
Gaussian distribution with standard deviation αq/

√
2π as error distribution. The public key

consists of these m samples (ai, bi)mi=1.

Encryption: Choose a random subset S ⊂ {1, . . . ,m} uniformly. For a zero bit, the encryption is
(
∑
i∈S ai,

∑
i∈S bi), while the encryption for a one bit is (

∑
i∈S ai,

⌊
q
2

⌋
+
∑
i∈S bi).

Decryption: For any ciphertext pair (a, b), compute (b− 〈a, s〉) mod q. The ciphertext is decrypted as a
zero if this is closer to 0 or q than to q

2 and as a one otherwise.

To see that this system works correctly, first consider the public key. It consists of m LWE
samples with secret s. These samples are of the form (ai, bi)mi=1, such that 〈ai, s〉+ ei ≡ bi mod q.
Here, ei is taken from the discrete Gaussian distribution with standard deviation αq/

√
2π. Now

consider the encryption of a single bit k. This is equal to (
∑
i∈S ai, k

⌊
q
2

⌋
+
∑
i∈S bi) for some

random subset S ⊂ {1, . . . ,m}. Let a =
∑
i∈S ai and let b = k

⌊
q
2

⌋
+
∑
i∈S bi. Then, computing

b− 〈a, s〉 gives

b− 〈a, s〉 = k
⌊q

2

⌋
+
∑

i∈S
bi − 〈

∑

i∈S
ai, s〉

= k
⌊q

2

⌋
+
∑

i∈S
bi − 〈ai, s〉

≡ k
⌊q

2

⌋
−
∑

i∈S
ei (mod q).

Thus, without the errors ei, b − 〈a, s〉 would be equivalent to k
⌊
q
2

⌋
mod q. This suggests that

b − 〈a, s〉 mod q is close to
⌊
q
2

⌋
if k = 1 and close to 0 (or q) if k = 0. Indeed, for a decryption

error to occur,
∑
i∈S ei must be greater than q/4. The sum has at most m terms and each of the

ei is roughly distributed as a normal random variable with mean 0 and standard deviation αq.
Hence, the sum is again roughly normally distributed with mean 0 and a standard deviation of at
most

√
mαq = q 1.1n log q√

n log2 n
< q/ log n. The probability that a normally distributed random variable

of mean 0 and standard deviation q/ log n is greater than q/4 is negligible, as q/ log n � q/4 for
large n.

It is easy to see that retrieving the secret key from the public key amounts to solving the
LWE problem, as the public key consists of LWE samples that correspond to the secret key s.
Proving the security of the encryption is slightly less straightforward. Imagine that there exists
an algorithm that can distinguish between encryptions of zeroes and encryptions of ones, given
the public key. Now consider a similar encryption scheme where the only difference is that the
public key (ai, bi)mi=1 is chosen from the uniform distribution on Znq × Zq, rather than the LWE
distribution. It can be shown that with very high probability, (ai, bi)mi=1 will be chosen such
that the distribution of the random sums (

∑
i∈S ai,

∑
i∈S bi) is ‘extremely close’ to the uniform

distribution in statistical distance. As a result, encryptions of both zeroes and ones are distributed
near to uniform in this scheme and the algorithm that breaks the LWE scheme should not be able
to break this scheme. Now, this algorithm can correctly guess ciphertexts that come from the
LWE distribution, but not ciphertexts that come from the uniform distribution. This allows
the algorithm to distinguish between samples from the LWE distribution and samples from the
uniform distribution, which is the decisional LWE problem. Thus, breaking the encryption implies
a solution to the decisional LWE problem. The decisional LWE problem has been proven to be
equivalent to the LWE problem, as mentioned in Section 3.1.
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3.3.2 CCA-Secure PKE

An interesting type of attack against public key encryption schemes is the Chosen Ciphertext Attack
(CCA). In this attack, an adversary attempts to retrieve the secret key by decrypting several
ciphertexts of his own choosing and looking at the corresponding plaintext. This might seem
counterintuitive, as being able to decrypt should only be possible when possessing the secret key.
However, there are practical applications where an adversary has access to a so-called decryption
oracle which allows him to decrypt (a limited number of) ciphertexts.

In [82], Peikert and Waters present a CCA-secure cryptosystem based on the LWE problem.
To this end, they create a concept they call lossy trapdoors. These lossy trapdoors can behave
in one of two different ways. They can serve as a trapdoor function, allowing someone with the
trapdoor information to obtain pre-images, but they can also be ‘lossy’. Here, being lossy means
that the function loses a lot of information, which means that every output has many pre-images.
These two behaviors are indistinguishable, in the sense that when given a description of the lossy
trapdoor, an adversary cannot tell which behavior it will exhibit. For more details on these lossy
trapdoors, see the article by Peikert and Waters [82].

In [80], the article where Peikert shows a connection between LWE and GapSVP, he also
gives a new construction for a CCA-secure cryptographic scheme. Peikert’s scheme relies on his
earlier work with Waters [82], but uses the trapdoor construction from his work with Gentry and
Vaikuntanathan [26]. Informally, these trapdoors consist of a ‘good’ basis of the lattice created by
the LWE problem, similar to the GGH cryptosystem [30]. For more information on the CCA-secure
cryptosystem, see the article by Peikert [80].

3.3.3 Identity-Based Encryption

Identity-Based Encryption (IBE) is a type of encryption scheme, proposed by Shamir in [97], where
any string can serve as a public key. Specifically, one’s name or identity can serve as a public key.
Secret keys are managed by some authority who has a ‘master secret key’ of the system. Such a
system would remove the need of a central public key repository, since each identity serves as the
public key for that identity. This would reduce the possibility of a man-in-the-middle attack.

In [26], Gentry, Peikert and Vaikuntanathan construct trapdoors for lattices which they use
for several new cryptographic constructions. One of these constructions is an identity-based en-
cryption scheme based on the LWE problem. To this end, they define a ‘dual’ version of the
LWE encryption scheme as described above, where the roles of the keys and the ciphertext are
essentially swapped.

Private key: Draw an error vector e from the discrete Gaussian distribution DZm,r as the private key.

Public key: The public key consists of u = Ae mod q, also called the syndrome of e.

Encryption: Choose a random secret s ∈ Znq uniformly, draw a single error x from the error distribution
χ and create a vector x = (x1, . . . , xm) where each xi comes from χ. Then, compute
p = AT s + x ∈ Zmq and output the ciphertext (p, c = 〈u, s〉 + x) for a zero bit, and
(p, c = 〈u, s〉+ x+

⌊
q
2

⌋
) for a one bit.

Decryption: For any ciphertext pair (p, c), compute (c− 〈e,p〉) mod q. The ciphertext is decrypted as a
zero if this is closer to 0 or q than to q

2 and as a one otherwise.

One advantage of this construction is that the ciphertexts now consist of LWE samples as well
and being able to distinguish them from uniform is equivalent to the decisional LWE problem.
Gentry, Peikert and Vaikuntanathan prove that this system is secure against Chosen-Plaintext
Attacks (CPA) and that it is anonymous. Here, anonymous means that it is not possible to see
which public key was used to encrypt the message, which is a desirable property for identity-based
encryption schemes.

To turn this system into an IBE scheme, the authors use their trapdoor constructions. Specif-
ically, they bind identities to public keys u using a random oracle. Recall that in the dual system,
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u = Ae mod q. To compute the corresponding secret key e = f−1
A (u), they use a pre-image

sampler with the trapdoor information (a ‘good’ basis for the corresponding LWE lattice). The
encryption and decryption is done using the dual encryption scheme as described above. For more
details, see their paper [26].

3.3.4 Hierarchical Identity-Based Encryption

In [43], Horwitz and Lynn introduced Hierarchical Identity-Based Encryption (HIBE) as an ex-
tension of the IBE concept. The idea is that a hierarchy is created to distribute keys. In an IBE
scheme, every user obtains their key from one root that has the master key. In a HIBE scheme,
there is a hierarchy of several levels, each getting their keys from a higher level and distributing
keys to a lower level. For example, in a HIBE scheme of two levels, there is one root who dis-
tributes the keys to ‘domain managers’, who in turn can distribute keys to their users. This leads
to a tree, where each node distributes the keys to its children. To this end, each node can use
its own key to derive the secret key of its children. As a consequence, all ancestors of a node can
derive the secret key of that particular node.

In [10], Cash et al. propose a HIBE scheme based on hard lattice problems. To this end, they
present a new cryptographic notion called bonsai tree and realize the concept using lattices. The
name bonsai tree stems from the art form with the same name, where miniature trees are grown
in containers. In their article, the authors compare the bonsai trees to the tree structure that
appear in HIBE schemes and note several other similarities. They distinguish between natural
and controlled growth and describe cryptographic techniques with similar properties.

As with the system of Gentry, Peikert and Vaikuntanathan [26], the HIBE scheme is based on
the LWE problem. The connection between the hierarchy and lattices can be described using the
tree. Each node in the tree corresponds to some lattice. The corresponding lattice of a node is a
sublattice for each of the lattices that corresponds to a child of the node. The lattice of a ‘parent’
node (in Rm) can be retrieved from the lattice of any ‘child’ node (in Rm+k) by restricting this
lattice to the first m dimensions. Each node also has a ‘short’ basis for the corresponding lattice,
which can easily be extended to a similar basis for the lattices of its children. To achieve this,
Cash et al. adapt a method for generating lattices together with a short basis, which was first
described by Ajtai in [3] and later improved by Alwen and Peikert in [5]. See the article by Cash
et al. [10] for more information on the specific techniques.

3.3.5 Digital Signatures

The concept of digital signatures was first described by Diffie and Hellman as one of the possible
applications of asymmetric cryptography [13]. It can be described as the ‘dual’ of public-key
encryption. In a PKE scheme messages are encrypted using a public key and decrypted using
the corresponding private key. In a digital signature scheme this is reversed: a message is signed
using a private key and this signature can be verified using the corresponding public key. Digital
signatures can be used to authenticate, i.e., prove that a message was signed by the holder of the
private key. They can also be used to check the message integrity, i.e., see if it was not altered
after being sent by the signer. Finally, they are sometimes used for non-repudiation, i.e., prevent
the signer from denying that he signed it.

The first two digital signature schemes based on lattices were proposed by the authors of
GGH [30] and those of NTRU [42]. The authors of GGH mentioned how to construct a signature
scheme from their encryption scheme, but did not analyze this construction further. As a result,
the signature scheme did not generate much interest until later. The authors of NTRU, Hoffstein,
Pipher and Silverman, proposed the NTRU Signature Scheme (NSS) as a complementary scheme
to the NTRU cryptosystem. However, the preliminary version of this scheme was broken by Gentry
et al. [25], and its revision that the authors of NTRU sketched during the presentation of [42] was
broken by Gentry and Szydlo [27]. The next attempt to create a signature scheme based on NTRU
came from Hoffstein et al. in [37]. Here, they proposed a scheme called NTRUSign, which used
the exact same approach as was sketched by the authors of GGH. However, Nguyen and Regev
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broke these schemes in [76], by relating them to a new learning problem, which they subsequently
solved.

Recently, Lyubashevsky proposed new digital signature schemes based on ideal lattices in [60].
His idea is to use the Fiat-Shamir transform [16] that turns identification schemes into digital
signature schemes. However, Lyubashevsky notes that trying to apply this transformation to
existing identification schemes based on lattices does not lead to an efficient scheme. This is a
result of the fact that for all of these identification schemes each challenge bit requires a response of
O
(
n(log n)k

)
bits, for some k ≥ 0 and where n is the security parameter. Lyubashevsky also notes

that number-theoretic identification schemes are efficient in comparison, because they interpret
the challenge string as an integer in some domain, as opposed to a string of separate 0’s and
1’s. This requires some underlying algebraic structure and Lyubashevsky’s main goal is to use
the algebraic structure of ideal lattices to represent the challenge bits collectively as opposed to
individually.

He manages to construct an identification scheme based on the SIS problem for ideal lattices,
but it has one minor defect. The prover cannot respond correctly to all challenges of the verifier,
but fails some constant fraction (≈ 2/3) of the time. In these cases, the prover needs to abort the
protocol and start over. Therefore, the ‘commit’ and ‘challenge’ procedures need to be repeated
a few times, such that the probability that a valid prover is accepted is high enough. However,
the effect of this defect can be minimized using standard techniques that reduce the length of the
‘commit’ part, while the ‘challenge’ part can remain the same. Thus, the length of the ‘response’
dominates the number of transmitted bits. Furthermore, the digital signature scheme that is
obtained from the Fiat-Shamir transform suffers less from the defect in the identification scheme.
The reason is that the signer does not need to add the ‘failed’ attempts to the signature, keeping
its length as short as if no failures had occurred. Thus, the only efficiency that is lost to the
defect is time. For more technical details on both the identification and signature schemes, see
Lybashevsky’s article [60].

3.3.6 Fully Homomorphic Encryption

Homomorphic encryption formalizes the notion of being able to perform computations on en-
crypted data, without having to decrypt the data first. This notion was introduced by Rivest,
Adleman and Dertouzos in [87] under the name privacy homomorphism, not long after Rivest,
Shamir and Adleman invented RSA [88]. Recall the description of RSA from Section 1.2.2. A
message m is encrypted into a ciphertext c by computing c = me mod N , where e is the public ex-
ponent. Consider two messages m1 and m2, as well as their respective ciphertexts c1 = me

1 mod N ,
c2 = me

2 mod N . Multiplying these ciphertexts gives

c1 · c2 ≡ me
1 ·me

2 ≡ (m1 ·m2)e (mod N).

Note that the right-hand side is equal to the ciphertext corresponding to the message m1 · m2.
Thus, using RSA it is possible to compute the multiplication of two encrypted numbers, without
decrypting them in between. This means that RSA is homomorphic with respect to multiplication.

There also exist cryptosystems that are homomorphic with respect to addition. Encryption
schemes that are homomorphic with respect to one operation are also called partial homomor-
phic encryption schemes. A scheme is a Fully Homomorphic Encryption (FHE) scheme if it is
homomorphic with respect to both multiplication and addition. Such a scheme could be used to
perform complex operations on encrypted data, as multiplication and addition can be combined
to create more complex computable functions. The existence of a fully homomorphic encryption
scheme has been an open question in cryptology for over thirty years, until Gentry showed one
in [23] using ideal lattices.

Gentry’s result can roughly be divided into three steps. First, there is an initial construction
using ideal lattices, which is homomorphic for “shallow circuits”. Here, a circuit stands for a
theoretical circuit of electrical gates. The circuits that can be computed using Gentry’s initial
construction are “shallow”, in the sense that this construction can (efficiently) do many additions,
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but only a few multiplications. The reason for this is that each operation introduces a certain
cumulative “error” and multiplications increase this error much faster than additions. Next,
Gentry introduces a technique to “squash the decryption circuit”, which allows him to express
the decryption operation as a circuit that it is supported by his scheme. Lastly, he uses this
to introduce a concept called “bootstrapping”, which is a way to homomorphically decrypt the
ciphertext, thus supposedly “refreshing” it, which decreases the error. As this refreshing requires
two layers of encryption, the error introduced by the additional layer should be smaller than the
one introduced by the original layer. Otherwise, the error will not decrease and no refreshing
occurs.

While the system by Gentry is theoretically a fully homomorphic encryption scheme, it is
not yet very practical. After Gentry’s initial publication, Van Dijk et al. presented a second fully
homomorphic scheme in [104] based on ideals over the integers as opposed to lattices. They still use
many of the other tools that Gentry proposed, such as “squashing the decryption circuit” and the
bootstrapping technique. Next, Stehl and Steinfeld proposed two optimizations to Gentry’s scheme
in [103]. The first implementation of Gentry’s scheme is due to Smart and Vercauteren in [100].
Their scheme uses principal ideal lattices of prime determinant, which are lattices that can be
represented using only two integers regardless of their dimension. Furthermore, their decryption
method required only one integer to represent the secret key. Using this, they implemented
the initial “somewhat homomorphic scheme”, but were not able to implement the “squashing”
technique, because their parameters would become too large. Gentry and Halevi continued in this
direction in [24] and implemented Gentry’s scheme with additional optimizations, which allows
them to implement all aspects of the scheme. However, the parameters are still not fully practical,
as the public-key sizes range from 70 Megabytes to 2.3 Gigabytes, depending on the dimension.
For more technical details, see the respective papers.

3.4 Conclusions

In this chapter, several new lattice problems were introduced. These mostly consist of variants
of classical lattice problems that better fit the standard cryptographic applications. Furthermore,
the relative difficulty of these problems was described, by considering the reductions between
these problems. Additionally, ideal lattices were discussed, as result of an attempt to improve
the efficiency of lattice-based cryptosystems by using lattices with additional algebraic structure.
Both the new lattice problems and ideal lattices gave rise to new applications, some of which were
described in this chapter.

However, this chapter has mostly dealt with the theoretical side of lattice-based cryptography
and its background in lattice theory. This still leaves the final question at the introduction of this
chapter unanswered: how can the practical security of lattice-based cryptosystems be determined,
while taking into account the power of lattice reduction? In the next chapter, lattice reduction
and its practical impact on lattice-based cryptography will be examined in more detail, including
several new developments in the area of lattice reduction.
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Chapter 4

Lattice basis reduction

4.1 Introduction

As shown in Section 1.7, lattice basis reduction algorithms have been used to break cryptosystems
long before lattices were used to build cryptosystems. Although these reduction algorithms only
give approximations to the shortest vector, these approximations were good enough to break the
system for practical dimensions – in special cases, the actual shortest vector would even be found.
Then, in Chapter 2, it was shown that lattice-based cryptosystems are susceptible to attacks by
lattice reduction as well. Again, the lattice reduction algorithms proved too strong for dimensions
where cryptographic schemes such as GGH and Ajtai-Dwork are still practical.

In this chapter, lattice reduction will be examined more closely. As it is the most prominent
tool to attack lattice-based cryptosystems, its performance will affect the security of such cryp-
tosystems. Thus, examining this performance in practice not only shows what lattice reduction
algorithms can do, but also gives a measure of security for lattice-based cryptosystems. Further-
more, new algorithms have been devised after LLL to improve upon its reduction. Some of these
use other techniques for solving the shortest vector problem, such as enumeration, as subroutines.
These will be discussed in this chapter as well.

In Section 4.2, new developments in the area of lattice reduction will be considered and some
methods to solve SVP exactly are described in Section 4.3. Then, the performance of lattice
reduction algorithms in practice will be discussed in Section 4.4. Finally, Section 4.5 describes a
framework to measure the security using similar results on the performance of lattice reduction
algorithms.

4.2 Developments in lattice reduction

Recently an excellent survey of LLL and its applications was published on the occasion of LLL’s
25th birthday [79]. Specifically, it contains two chapters (one by Schnorr [94] and one by Stehlé [102])
on improvements to the original algorithm. The improvements that are described in these chapters
will be discussed here first. Then, the method of enumeration that is used to solve SVP exactly
is introduced, including several improvements.

4.2.1 Floating-point LLL

The original LLL-algorithm was created with rational arithmetic in mind. As it proposed a
breakthrough in lattice reduction with several promising applications, it was implemented soon
after its publication in 1982. Odlyzko tried to use one of these early implementations, which stayed
close to the original description of LLL, to break knapsack-based cryptosystems, as described in
Chapter 1. However, the proposed rational arithmetic turned out to be costly and since computing
power was limited at the time, Odlyzko could only work with lattices in small dimensions. He
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was one of the first who replaced the rational arithmetic by floating-point arithmetic to solve this
problem.

While using floating-point arithmetic does speed up the lattice reduction process, it might also
introduce floating-point errors. These errors can lead to incorrect results, and can even prevent
lattice reduction algorithms from terminating. Therefore, it is interesting to study the behavior
of the floating-point operations used in lattice reduction. The first implementations that used
floating-point approximations as opposed to rational arithmetic were not yet theoretically sound.
Thus, the correctness of the computations could not be proven by theoretical methods. The first
provable variant of LLL with floating-point arithmetic was introduced by Schnorr [92] in 1988.
Recently, a more efficient provable variant, dubbed L2 was described by Nguyen and Stehlé in [77].

While provable results are useful, sometimes heuristic methods suffice. If a method works
efficiently and with a high probability in practice, it is not important whether this stems from
a theoretic proof or a heuristic method. One important heuristic method is due to Schnorr and
Euchner [95], as it describes an actual implementation. As such, it has been the basis for all
fast implementations of floating-point LLL until recently, when new algorithms such as L2 were
introduced. It closely follows the original LLL, with some additional checks to prevent problems
caused by floating-point errors.

4.2.2 LLL with deep insertions

In addition to their floating-point variant on LLL, Schnorr and Euchner introduced another in-
teresting variant on LLL in [95]. They describe a new step that replaces the swapping step of
the original LLL algorithm (recall Algorithm 3 from Chapter 1) with a “deep insertion” step,
which improves the quality of the resulting basis. The resulting algorithm is called LLL with deep
insertions, or DEEP.

Rather than swapping the vectors bk−1 and bk when the Lovász condition is violated (see
Equation (1.16)), the new step “inserts” the vector bk somewhere in place i for 1 ≤ i ≤ k − 1.
Starting at i = 1 and moving upwards, the length of πi(bk) is compared to πi(bi) = b∗i . For
the first i that δb∗i > πi(bk) (where δ is as in Equation (1.16)), the basis is rearranged from
(b1, . . . ,bk, . . . ,bd) to (b1, . . . ,bi−1,bk,bi, . . . ,bk−1,bk+1, . . . ,bd). This step is equivalent to
replacing the Lovász condition (Equation (1.16)) by the following condition:

δ‖b∗i ‖2 ≤ ‖πi(bk)‖2

=

∥∥∥∥∥∥
b∗k +

k−1∑

j=i

µk,jb∗j

∥∥∥∥∥∥

2

,

for all 1 ≤ i < k ≤ d.
This replacement seems to improve the quality of the resulting basis considerably, as will be

shown in Section 4.4. However, no provable theoretical bounds on the length of the resulting
shortest vector are known, except for the bounds that follow from the underlying LLL. Further-
more, it is unknown whether the running time is polynomially bounded in the lattice rank and
the length of the input basis in bits. The time complexity is possibly superexponential. However,
as will be shown in Section 4.4, DEEP appears to run reasonably fast in practice.

4.2.3 Block-Korkine-Zolotarev reduction

In 1987, Schnorr introduced a hierarchy of new reduction algorithms generalizing LLL [91]. These
algorithms trade running time for the quality of the solution by compromising between HKZ-
reduction and LLL-reduction(recall Definitions 1.41 and 1.44 from Chapter 1). To this end,
Schnorr defines a new reduction notion, which he calls block Korkine-Zolotarev reduction.

Definition 4.1 (Block Korkine-Zolotarev reduction). Let L ⊂ Rn be a lattice of rank d and let β be
an integer such that 2 ≤ β ≤ d. A basis {b1, . . . ,bd} of L is called block Korkine-Zolotarev-reduced
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(BKZ-reduced) with blocksize β and factor δ ∈ ( 1
4 , 1) if it is size-reduced and if

δ‖b∗i ‖2 ≤ λ1

(
πi
(
L
(
b1, . . . ,bmin(i+β−1,d)

)))2
, (4.1)

for 1 ≤ i ≤ d− 1.

Equation (4.1) is equivalent to the statement that the i’th GSO vector b∗i is at most δ−1 times
as long as a shortest vector in the lattice that is spanned by the first β vectors of πi(L). This
lattice can also be expressed as L

(
πi(bi), . . . , πi(bmin(i+β−1,d))

)
.

To see that this reduction notion is a compromise between the LLL and HKZ-reduction notions,
consider the following facts. For β = d and δ = 1, BKZ-reduction is equivalent to HKZ-reduction.
Furthermore, for β = 2, BKZ-reduction with factor δ is equivalent to LLL-reduction with factor
δ. A proof of this last fact is given by Schnorr and Euchner in [95]. Here, they also provide a
practical algorithm that produces a basis satisfying this reduction notion. This algorithm is called
BKZ and it is currently one of the most (if not the most) practical lattice reduction algorithms.

Recall that the LLL algorithm considers two vectors at a time and swaps them if they violate
the Lovász condition. This condition ensures that the swap results in a sufficient “gain” in the
norms of the Gram Schmidt vectors. The BKZ algorithm considers a block of β vectors at a time
and uses a subroutine to find a shortest vector in the lattice spanned by those vectors. If this new
vector, whose norm is equal to the right hand side of Equation (4.1), causes the condition of this
equation to be violated, it is inserted at place i. This is repeated while the index i is cycled from
1 to d− 1, until it is satisfied for all 1 ≤ i ≤ d− 1 (as it is trivially satisfied for i = d).

The main difference with LLL is that the condition of BKZ is not as easily checked as the
Lovász condition. Checking the BKZ condition requires the knowledge of a shortest vector in the
projected lattice L

(
πi(bi), . . . , πi(bmin(i+β−1,d))

)
, whereas checking the Lovász condition can be

done by a simple computation with the norms and coefficients of Gram Schmidt vectors. Therefore,
the BKZ algorithm cannot check all conditions simultaneously, which makes it harder to see when
the algorithm is done. To solve this problem, BKZ cyclically shifts the index i and inserts short
vectors where the BKZ condition is violated. It continues this process until no new vectors have
been inserted d − 1 times, in which case the lattice has not changed and the BKZ condition was
not violated for each index i. But even in the steps where the shortest vector is not inserted, it has
been computed using the subroutine, which is costly. The subroutine is an enumeration method
that will be examined more closely in Section 4.3.

In a simple form, the BKZ algorithm looks like the following:

Algorithm 4 BKZ lattice reduction algorithm
Apply LLL to the basis {b1, . . . ,bd}
i← 0
repeat
i← (i (mod d− 1)) + 1
Find bnew

i such that ‖bnew
i ‖ = λ1

(
L
(
πi(bi), . . . , πi(bmin(i+β−1,d))

))

if δ‖b∗i ‖2 > ‖bnew
i ‖2 then

{b1, . . . ,bd} ← {b1, . . . ,bi−1,bnew
i ,bi, . . . ,bd}

end if
Apply LLL to the basis {b1, . . . ,bd}

until No new vector was inserted for d− 1 times in a row

As mentioned, the index i is cyclically shifted from through 1, . . . , d−1. For each index i, the vector
bnew
i is the shortest vector in the lattice L

(
πi(bi), . . . , πi(bmin(i+β−1,d))

)
. Hence, if δ‖b∗i ‖2 >

‖bnew
i ‖2, this means the BKZ condition of Equation (4.1) is violated. In this case, bnew

i is inserted
into the basis. The LLL algorithm ensures that the basis is size-reduced at all times and removes
dependent vectors from the basis. In the practical algorithm due to Schnorr and Euchner, the LLL
algorithm is not applied to the full basis, but only to a smaller subset of relevant basis vectors. If
no new vector was inserted for d− 1 times in a row, this means that the BKZ-condition was not
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violated for d− 1 times in a row, which means that it must hold for all indices 1 ≤ i ≤ d− 1. As
the basis is also size-reduced by the LLL-algorithm, this proves that a basis is BKZ-reduced with
blocksize β and factor δ after performing Algorithm 4.

While BKZ is a blockwise generalization of the polynomial-time LLL algorithm, no good upper
bound is known on its complexity. As with the DEEP algorithm, the best upper bound known is
super-exponential in the lattice rank. However, as will be shown in Section 4.4, this bound seems
overly pessimistic. In fact, both the BKZ and DEEP algorithms outperform other blockwise gen-
eralizations of LLL (that are polynomial-time) in practice, despite their possibly super-exponential
complexity.

4.3 Enumeration

The idea of enumeration dates back to Pohst [83], Kannan [47] and Fincke-Pohst [17]. The concept
of enumeration consists of trying all possible combinations of the basis vectors and noting which
vector is the shortest. Since “all possible combinations” means an infinite number of vectors, this
number needs to be bounded somehow. As with lattice reduction, the concept of enumeration
in lattices relies on the Gram Schmidt orthogonalization of the lattice basis. Consider a basis
b1, . . . ,bd of a lattice L and its GSO b∗1, . . . ,b

∗
d. Now let u ∈ L be a shortest vector of L and let

R > 0 be a bound such that λ1(L) = ‖u‖ ≤ R, e.g. R = ‖b1‖. Recall that every basis vector bi
can be written as a sum of Gram Schmidt vectors:

bi = b∗i +
i−1∑

j=1

µijb∗j .

Now, using this and the fact that u is a lattice vector, it is possible to write

u =
d∑

i=1

λibi =
d∑

i=1

λi


b∗i +

i−1∑

j=1

µijb∗j




=
d∑

j=1


λj +

d∑

i=j+1

λiµij


b∗j .

By representing the shortest vector u as a sum of Gram Schmidt vectors, projections of u can
suddenly be represented easily as well:

πk(u) = πk




d∑

j=1


λj +

d∑

i=j+1

λiµij


b∗j




=
d∑

j=k


λj +

d∑

i=j+1

λiµij


b∗j .

Furthermore, since the Gram Schmidt vectors are by construction orthogonal, the squared norms
of u and its projections are given by

‖πk(u)‖2 =

∥∥∥∥∥∥

d∑

j=k


λj +

d∑

i=j+1

λiµij


b∗j

∥∥∥∥∥∥

2

=
d∑

j=k


λj +

d∑

i=j+1

λiµij




2

‖b∗j‖2
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Using this observation, it is possible to bound the number of vectors that needs to be enumerated
until the shortest vector is found. Recall that the bound R was chosen such that ‖u‖ ≤ R. Since
the projection of a vector cannot be longer than the vector itself, it follows that

‖πd(u)‖2 ≤ ‖πd−1(u)‖2 ≤ . . . ≤ ‖π1(u)‖2 = ‖u‖2 ≤ R2.

Combining the previous two equations gives d inequalities of the form

d∑

j=k


λj +

d∑

i=j+1

λiµij




2

‖b∗j‖2 ≤ R2, (4.2)

for k = 1, . . . , d. Equation (4.2) can be used to give bounds for the unknowns λd, . . . , λ1, in that
order. The first inequality is given by

λ2
d‖b∗d‖2 = ‖πd(u)‖2 ≤ R2.

Thus, it follows that −R/‖b∗d‖ ≤ λd ≤ R/‖b∗d‖. Now, for any fixed λd = λ′d in this interval, the
next inequality becomes

(λd−1 + λ′dµd,d−1)2‖b∗d−1‖2 + λ′2d ‖b∗d‖2 = ‖πd−1(u)‖2 ≤ R2.

This inequality can be rewritten as

(λd−1 + λ′dµd,d−1)2 ≤ R2 − λ′2d ‖b∗d‖2
‖bd−1‖2

.

Taking the square root on both sides shows that λd−1 must lie in the interval

−λ′dµd,d−1 −
√
R2 − λ′2d ‖b∗d‖2
‖bd−1‖

≤ λd−1 ≤ −λ′dµd,d−1 +

√
R2 − λ′2d ‖b∗d‖2
‖bd−1‖

.

Repeating this process leads to an iterative method to derive the interval of λk once λk+1, . . . , λd
are fixed. To see this, rewrite Equation (4.2) as

(
λk +

d∑

i=k+1

λiµik

)2

≤
R2 −∑d

j=k+1

(
λj +

∑d
i=j+1 µijλi

)2

‖b∗j‖2

‖b∗k‖2
.

Thus, for fixed λk+1 = λ′k+1, . . . , λd = λ′d, λk must be in the interval

−
d∑

i=k+1

λ′iµik −K ≤ λk ≤ −
d∑

i=k+1

λ′iµik +K,

where

K =

√
R2 −∑d

j=k+1

(
λ′j +

∑d
i=j+1 µijλ

′
i

)2

‖b∗j‖2

‖b∗k‖
.

Note that it is possible that the interval for λk is empty (or does not contain integers) for fixed
λ′k+1, . . . , λd. By trying all possible combinations of λ1, . . . , λd that satisfy these inequalities, all
lattice vectors of norm smaller than R are obtained. Thus, by keeping track of the shortest vector
so far, the result will be one of the shortest vectors in the lattice.

It is perhaps simpler to view the enumeration vectors as a search through a tree where each
node corresponds to some vector. The i’th level of the tree (where the 0th level is the root)
consists of all vectors of πd−i+1(L), for 0 ≤ i ≤ d. Let v be a node on the i’th level of the tree, i.e.,
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v ∈ πd−i+1(L). Then, its children consist of all vectors u ∈ πd−i+2(L) that get projected onto v
when applying πd−i+1, i.e., u = πd−i+1(L). Thus, the root of the tree consists of πd+1(L) = {0},
the zero vector. The first level of the tree consists of all vectors in πd(L) = L(b∗d) of norm at most
R, i.e., all multiples of b∗d of norm at most R. The second level of the tree consists of the children
of nodes on the first level. This continues until level d, which contains all vectors of π1(L) = L of
norm at most R.

Figure 4.1 depicts a part of the first two levels of such an enumeration tree. Each block
consists of a node containing a vector. The first level contains all integer multiples λdb∗d such that
−R/‖b∗d‖ ≤ λd ≤ R/‖b∗d‖. On the second level, three children of b∗d are drawn. These correspond
to taking λd = 1 in the enumeration and then taking λd−1 in the appropriate interval. If a vector
v = λ1b1 + . . .+ λd−1bd−1 + λdbd, then

πd−1(v) = πd−1(λdbd) + πd−1(λd−1bd−1) = λdb∗d + (λdµd,d−1 − λd−1)b∗d−1.

Note that this is exactly the form of the children of b∗d in the figure. The other children of the node
corresponding to b∗d are omitted, as well as the children of the other nodes. Note that the tree is
symmetric, as for each vector v in the tree, −v is in the tree as well. During the enumeration,
only one side of the tree needs to be explored.

0πd+1(L)

. . .

0 b∗d−b∗d

1λd

πd(L)

bR/||b∗d||c
. . .

πd−1(L)

λd−1

0

b∗d + (µd,d−1 − bµd,d−1e)b∗d−1

−bR/||b∗d||c

bR/||b∗d||cb∗d−bR/||b∗d||cb∗d

−bµd,d−1e −bµd,d−1e+ 1−bµd,d−1e − 1

b∗d + (µd,d−1 − bµd,d−1e − 1)b∗d−1 b∗d + (µd,d−1 − bµd,d−1e+ 1)b∗d−1

−1

Figure 4.1: First two levels of the enumeration tree.

Such enumeration trees grow quite large. In fact, they become exponentially large, dependent
on the precision of the bound R. The lower this bound, the smaller the corresponding enumeration
tree. Thus, while such methods give an exact solution to the shortest vector problem, their
running time is not polynomially bounded. In order to optimize the running time, lattice reduction
algorithms are often used before enumerating. This improves the GSO of the basis, reduces the
numbers µij by size-reduction and additionally gives an exponential approximation to the shortest
vector (which in turn gives exponential bounds for the running time of the enumeration).

4.3.1 Pruned enumeration

As mentioned, Schnorr and Euchner incorporated an enumeration method in BKZ as a subrou-
tine. A later improvement by Schnorr and Hörner [96] uses pruned enumeration. Essentially,
the basic enumeration algorithm by Schnorr and Euchner can be seen as a depth-first search in
the aforementioned enumeration tree. In pruned enumeration, so-called branches or subtrees are
excluded from the search. These subtrees are chosen in such a way that the probability that the
shortest vector is inside that subtree is too small compared to some threshold. This means that
with some small probability, the shortest vector may not be found. However, the vector that is
found instead is still reasonably short and depending on the thresholds, the running time should
decrease enough to justify this error probability.
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Recently, Gama, Nguyen and Regev introduced a new concept called extreme pruning [20].
Their main idea is to prune a large number of branches, thus significantly reducing the search
tree. As a result, the probability that the shortest vector is found becomes very low. However,
the running time of the enumeration is reduced by a much bigger factor. Therefore, the pruned
enumeration can be executed several times until the shortest vector is found. As the running time
of a single enumeration was reduced significantly, this results in a net decrease in running time
when performing several enumerations. Their method requires a very sharp (if not exact) bound
on the length of the shortest vector to be known beforehand, however. Using this bound, whenever
a vector on the highest level of the tree is found (i.e., in the lattice itself) it must be a shortest
vector. This allows the algorithm to terminate whenever such a vector is found, as opposed to
Schnorr-Euchner enumeration, where the whole tree must be searched.

Gama, Nguyen and Regev also introduce so-called bounding functions to improve the analysis
of pruned enumeration methods, and show that the analysis of the original method by Schnorr
and Hörner was not optimal. Additionally, Schnorr recently introduced new enumeration methods
[93], using results of Gama, Nguyen and Regev from [20]. It would be interesting to study the
possible improvements of the performance of lattice reduction algorithms, such as BKZ, when
combining them with these new methods.

4.4 Performance of lattice reduction algorithms

As mentioned in Chapter 2, the behavior of lattice reduction algorithms when applied to lat-
tices of different ranks is not well understood. Therefore, Gama and Nguyen [19] examined the
performance of several reduction algorithms on a variety of lattices. Their goal was to show
the possibilities of current lattice reduction algorithms, and to use these results to compare the
practical difficulty of the HSVP, uSVP and approximate SVP problems, which were described in
Chapter 1. This section gives a description of their methods and results.

First, their method of lattice generation is described. Then, the lattice reduction algorithms
that they use in their experiments will be discussed. The quality of the resulting bases in the
experiments will be considered afterwards, as well as the running time of the experiments.

4.4.1 Methodology

Generating lattices

To determine the performance of lattice reduction algorithms, lattices are required. Thus, the first
issue that arises is the method of lattice generation. For examining the average case performance
of the algorithms on HSVP and approximate SVP, Gama and Nguyen took a large sample of
lattices from a distribution due to Goldstein and Mayer [32]. These lattices have the property
that the successive minima of the lattice satisfy

λi(L) ≈ σ(L) =
√

n

2πe
(vol(L))1/n,

for all 1 ≤ i ≤ n. This means that all minima are close to the expected shortest length σ(L) as
defined in Chapter 1.

One problem with this approach is that the unique shortest vector problem requires extra
structure in the lattice. The lattice gap λ2(L)/λ1(L) needs to exceed a value γ, but there is
no ‘standard’ way to construct lattices with a prescribed gap. To solve this, Gama and Nguyen
considered two classes of lattices where they could choose the approximate lengths λ1(L) and λ2(L)
and then used orthogonality to ensure that the appropriate vectors have these lengths. It is not
entirely clear how these choices affect the performance of lattice reduction. The lattice reduction
algorithms may be able to exploit the orthogonality in order to perform better. Therefore, aside
from the two aforementioned classes, they also perform experiments on lattices that arise from
knapsack problems (see Section 1.7). However, there is no known formula for the second minimum
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λ2 of such lattices. As a result, the second minimum needs to be approximated heuristically in
order to prescribe the gap.

Once these random lattices are generated, they need to be represented by means of a basis.
A given basis might have special properties that influence the performance of a lattice reduction
algorithm. To remove such influences, Gama and Nguyen want to work with random bases.
However, there is no standard notion of random bases for a given lattice. Gama and Nguyen
define a random basis as a basis consisting of relatively large lattice vectors that are chosen using
a randomized heuristic. They do not explicitly give their methods to randomly generate lattice
bases, but they refer to the description of the GGH-cryptosystem [30], which details heuristics to
randomize a lattice basis. In the experiments, they performed the lattice reduction on at least
twenty randomized bases for each lattice. This was done to prevent the reduction algorithms from
taking advantage of special properties of the bases.

Algorithms

Lattice reduction algorithms give an approximate solution to the different variants of the shortest
vector problem. They produce bases {b1, . . . ,bn} that contain a short vector b1. To measure the
quality of this short vector, the approximation factor is defined as ‖b1‖/λ1(L) and the Hermite
factor is defined as ‖b1‖/ vol(L)1/d, where d is the lattice rank. These factors try to capture how
“close” b1 is to the shortest vector.

As mentioned in Section 4.3, there also exist algorithms that solve SVP exactly. The algorithms
mentioned in that section perform an exhaustive search based on enumeration methods, which
has a complexity that is at least exponential in the lattice rank. Gama and Nguyen pose that
these algorithms cannot be run on lattices where the rank is greater than 100. For such ranks,
only approximation algorithms such as basis reduction algorithms are practical. However, this
observation was made before the introduction of extreme pruning by Gama, Nguyen and Regev
in [20]. Extreme pruning has been used to find the shortest vector in lattices of rank 110 (with a
running time of 62.12 CPU days).

For their experiments, Gama and Nguyen use three different reduction algorithms: LLL [54],
DEEP [95] and BKZ [95]. The LLL-algorithm has been described in Chapter 1, the DEEP-
algorithm was described in Section 4.2.2 and the BKZ-algorithm was described in Section 4.2.3.

Gama and Nguyen used the NTL [99] (version 5.4.1) implementations of BKZ and DEEP in
their experiments. In NTL, both BKZ and DEEP use a ‘blocksize’ parameter β. For higher values
of β, the quality of the reduction increases, but the running time increases as well. In addition
to the quality of the reduced bases, Gama and Nguyen examined the running times of BKZ and
DEEP in their experiments.

4.4.2 Results

The results of the experiments by Gama and Nguyen will be discussed here. In the cases of
HSVP and approximate SVP, the performance of the lattice reduction algorithms is respectively
measured by the Hermite and approximation factors of the resulting vector. In the case of uSVP,
the only measure of performance is whether the shortest vector is retrieved or not.

For each of the three lattice problems, the theoretical expectations of the performance of the
lattice reduction algorithms will be examined first. Then, these expectations will be compared to
the experimental results and an attempt will be made to explain the difference between theory
and practice. Finally, the experimental running time of BKZ and DEEP will be considered, as
well as the running time of an exhaustive enumeration method.

HSVP

Recall the definition of Hermite SVP from Section 1.6. The goal is to find a vector of norm at
most γ vol(L)1/d in a d-rank lattice L for some approximation factor γ. Theoretically, lattice
reduction algorithms solve HSVP with a Hermite factor ‖b1‖/ vol1/d = (1 + ε)d, where ε depends
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on the algorithm and its parameters. For LLL with appropriate reduction parameters, the Hermite
factor is theoretically provable to be / (γ2)(n−1)/2 = (4/3)(n−1)/4 ≈ 1.0746, where γ2 is Hermite’s
constant for rank 2 lattices. Note that this bound corresponds to Theorem 1.45(i).

The DEEP algorithm is based on the LLL algorithm and theoretically it is not known to
perform better than LLL. In other words, there is no upper bound known for the Hermite factor
of DEEP, except the upper bound of LLL. However, DEEP is expected to perform better than
LLL in practice. BKZ does have theoretical upper bounds. By using arguments similar to those in
[91], it can be proven that the Hermite factor of BKZ is √γβ1+(d−1)/(β−1), where β is the blocksize
parameter. For β = 20 the Hermite factor is approximately 1.0337d and for β = 28 the Hermite
factor is approximately 1.0282d. Are these theoretical bounds tight in practice?

The first observation that Gama and Nguyen make from their experiments is that the Hermite
factor of the result of lattice reduction does not seem to depend on the lattice. Only when the
lattice has exceptional structure will the Hermite factor be relatively small compared to the general
case. Here, exceptional structure means that either λ1(L) is very small, or the lattice contains a
sublattice (of lower rank) of very small volume, i.e., a sublattice spanned by a few relatively short
vectors.

The next observation is that, when there is no such exceptional structure in the lattice, the
Hermite factor appears to be exponential in the lattice rank. This agrees with the theoretical
predictions. However, the specific constants that are involved appear to differ in practice. The
experiments show that the Hermite factor is approximately of the form ead+b, where d is the lattice
rank and the constants a and b depend only on the reduction algorithm. Gama and Nguyen are
only interested in rough estimations and they simplify ead+b to δd. Table 4.1 shows the base δ of
the average Hermite factors that were derived from the experiments.

Algorithm-β LLL DEEP-50 BKZ-20 BKZ-28
Experimental δ = Hermite factor1/d 1.0219 1.011 1.0128 1.0109

Theoretical proven upper bound 1.0746 1.0746 1.0337 1.0282

Table 4.1: Experimental Hermite factor compared to theoretical upper bounds.

Table 4.1 shows that DEEP and BKZ perform roughly the same as LLL, except that their
constants are smaller. The constants for BKZ and DEEP are roughly the square root of the
constants for LLL. To give a concrete example what these constants mean in practice, consider
lattices of rank d = 300. According to these experimental constants, LLL will obtain a vector
with Hermite factor of approximately 1.0219300 ≈ 665, while the theoretical upper bound is
1.0746300 ≈ 2958078142. Furthermore, BKZ-20 will obtain a vector with a Hermite factor of
approximately 1.0128300 ≈ 45, while the theoretical upper bound is 1.0337300 ≈ 20814.

The results of LLL are quite interesting. It is known that in the worst-case, the Hermite factor
of LLL is equal to the theoretical upper bound γ

(n−1)/2
2 = (4/3)(n−1)/4. This occurs when the

input is a lattice basis such that all its 2-rank projected lattices are critical, i.e., they reach equality
in Equation (1.8). However, this behavior is caused by a worst-case basis and not by a worst-case
lattice. The experiments showed that when a random basis of these lattices was reduced instead
of this worst-case basis, the resulting Hermite factor was again 1.0219d.

It is harder to explain the gap between theory and practice for the BKZ algorithm. The BKZ
algorithm uses projected lattices of rank β, where β is the blocksize. Although it is known that
these projected lattices do not have the same distribution as random lattices of rank β, no good
model for their distribution is known. This makes it difficult to analyze the performance of BKZ
theoretically.

Based on their results, Gama and Nguyen conclude that the best algorithms can reach a
Hermite factor of roughly 1.01d. They also conclude that solving HSVP for Hermite factor d using
BKZ is currently ‘easy’ for d ≤ 450, as δd is approximately linear in this case, e.g., 1.013450 ≈
334 ≤ 450. However, they note that a Hermite factor of 1.005d cannot be reached for rank d = 500
in practice, unless the lattice has an exceptional structure as discussed before.
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Approximate SVP

Recall from 3.1.6 that any algorithm that solves HSVP with Hermite factor γ can be used to
solve approximate SVP with approximation factor γ2. This leads to the expectation that the
reduction algorithms can solve approximate SVP with an approximation factor that is equal to
the square of the Hermite factor. Since the experimental results for HSVP show that the Hermite
factor is approximately δd with δ as in Table 4.1, it is to be expected that the approximation
factor is roughly (δd)2 = (δ2)d. Assuming that the best reduction algorithms can reach a Hermite
factor of roughly 1.01d, it is expected that they will reach an approximation factor of roughly
1.012d ≈ 1.02d.

The experiments showed that this expectation was true in the worst-case. Gama and Nguyen
constructed lattices where the approximation factor was the square of the Hermite factor. However,
on the average it appeared that the approximation factor was in fact roughly the same as the
Hermite factor 1.01d, rather than its square 1.012d ≈ 1.02d. A possible explanation is that in
lattices where λ1(L) ≥ vol(L)1/d, any algorithm that reaches a Hermite factor ‖b1‖/ vol(L)1/d

will reach an approximation factor ‖b1(L)‖/λ1(L) ≤ ‖b1(L)‖/ vol(L)1/d. Thus, approximate SVP
can only be harder than HSVP in lattices where λ1(L) ≤ vol(L)1/d. However, if λ1(L) becomes
too small compared to vol(L)1/d, the lattice will have an exceptional structure. This structure
can then be exploited by lattice reduction algorithms in order to improve their results.

The worst-case results are based on experiments with LLL, but Gama and Nguyen note that
BKZ and DEEP perform essentially the same except for the better constants. They conclude that
current algorithms can reach approximation factors of 1.01d on the average and 1.02d in the worst
case. This suggests that solving approximate SVP with approximation factor d is easy on the
average for d ≤ 500, because 1.01d is approximately linear in d for these values of d.

uSVP

Recall the definition of uSVP from Section 1.6. The goal is to find the shortest vector in a lattice
L where the shortest vector u is unique. Here, unique means that all vectors of length ≤ γ‖u‖
are a multiple of u for some gap constant γ. Recall from Section 3.1.6 that any algorithm that
achieves an approximation factor ≤ γ can solve the unique shortest vector problem with gap γ.
Thus, using the results of the approximate shortest vector problem, the expectation is that uSVP
can be solved for gap roughly ≥ 1.02d, the square of the Hermite factor.

As mentioned in the part about lattice generation, Gama and Nguyen constructed two classes
of lattices where they could choose the lattice gap. For these lattices they found that LLL would re-
trieve the unique shortest vector whenever the gap was exponential in the lattice rank, as predicted.
However, the gap did not need to be the square of the Hermite factor, which is approximately
1.042d for LLL. Instead, LLL obtains the unique shortest vector with high probability as soon
as the gap becomes a fraction of the Hermite factor (and not its square). For the first class this
happened whenever λ2/λ1 ≥ 0.26 · 1.021d and for the second class whenever λ2/λ1 ≥ 0.45 · 1.021d.
For BKZ, the constants were so close to 1 that lattices of rank < 200 did not provide sufficient
accuracy on the constants. The results from higher ranks seemed to indicate that BKZ could find
the unique shortest vector whenever the gap was greater than 0.18 · 1.012d in the first class.

However, these constructions had an exceptional structure when compared to general uSVP-
instances, which could affect the performance of reduction algorithms. Thus, Gama and Nguyen
repeated their experiments for so-called Lagarias-Odlyzko lattices [51], which are lattices that arise
from knapsack problems. Using heuristical estimates to determine the gap, they found that LLL
could retrieve the unique shortest vector whenever the gap was greater than 0.25 ·1.021d and BKZ
achieved this whenever the gap was greater than 0.48 · 1.012d. This confirmed their earlier result
that uSVP is easy to solve whenever the gap is a fraction of the Hermite factor, rather than its
square.
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Experimental running time

As mentioned in their description, no tight bounds are known for the BKZ and DEEP algorithms.
Furthermore, while exhaustive enumeration methods are not practical in higher ranks, they are
used as a subroutine in BKZ to search for short vectors in blocks. Therefore, Gama and Nguyen
examined the experimental running time of such methods as well.

For their experiments on exhaustive enumeration, Gama and Nguyen used a method due
to Schnorr and Euchner [95]. This method is used as a subroutine in BKZ and it seems to
outperform other theoretical algorithms in practice. On input of a lattice basis, the algorithm
finds a shortest vector. The enumeration becomes faster as the input basis is more reduced. From
their experiments, Gama and Nguyen note that SVP can be solved within an hour for rank d = 60,
whereas the curve of their results shows that solving it for rank d = 100 would take at least 35000
years. This can be improved by better preprocessing such as basis reduction, but still Gama and
Nguyen think that enumeration is not possible for lattices of rank d ≥ 100.

The best known upper bound for BKZ is superexponential, while BKZ with blocksize β = 20
can reduce the basis of a lattice of rank d = 100 in a few seconds. This suggests that the
superexponential bound is not tight. Thus, Gama and Nguyen measured the running time of BKZ
in their experiments for several blocksizes and on lattices of varying rank. They observed that
the running time increased with the blocksize exponentially, as expected. However, for blocksizes
20 ≤ β ≤ 25, the running time started to increase disproportionately. The slope of the running
time suddenly increased as seen on a logarithmic scale. This effect increased further for lattices of
higher rank. It follows that BKZ with blocksize β > 25 is infeasible for lattices with high rank.

The running time of the DEEP algorithm seems to increase more regularly for increasing
blocksize. It increases exponentially in the blocksize, just like the running time of BKZ. As
opposed to BKZ, there is no sharp increase for higher blocksizes. This allows for DEEP to be
run on high-ranked lattices with relatively high blocksizes. However, the experimental results on
the quality of the bases showed that even with higher blocksizes, the Hermite factor achieved by
DEEP is not expected to improve significantly beyond 1.01d.

Results for cryptography

What do these different results mean for cryptography? The experiments show that the Hermite
and approximation factor that can be reached by lattice reduction algorithms are exponential in
the dimension, as was expected from the theory. However, the base of this exponential is much
lower in practice than the theory would predict. This means that, although approximating these
problems is still hard asymptotically, i.e., for sufficiently large lattice rank, the lattice rank needs
to be at least 500 before this hardness emerges. For instance, from the results of these experiments
it follows that approximating either of these problems within a factor γ = d is easy for d ≤ 450,
because the Hermite factor δd reached in practice is approximately linear in d. Furthermore, the
experiments show that uSVP is easy to solve whenever the gap λ2/λ1 is a fraction of the Hermite
factor. However, by focusing on the base δ of the Hermite factor δd and considering what is feasible
and what is not, some information is lost. The parameter δd predicts the quality of the resulting
vectors in terms of the lattice rank d, but it does not say anything about the effort in relation to
the rank of the lattice.

It should be noted that these results apply to the specific distribution of lattices described
in [32]. Unless the lattices that arise from cryptographic situations come from this distribution,
some additional experiments are required to determine the actual performance of lattice reduction
algorithms on these ‘cryptographic’ lattices. Rückert and Schneider performed similar experiments
for lattices that come from cryptographic examples in [89]. These results will be discussed in
Section 4.5.

Another point of interest is that these conclusions change as time goes on. As computing
power increases, it becomes practical to break lattices of higher rank. This should be taken into
account when determining the performance of lattice reduction algorithms, and especially in the
context of lattice-based cryptography. Finally, improvements in the area of lattice reduction will
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improve the performance of lattice reduction algorithms. As with computing power, this affects
the security of all lattice-based cryptosystems.

While Gama and Nguyen have given much insight into the practical behavior of lattice reduc-
tion algorithms, there is still work to be done. The biggest downside to the method of Gama and
Nguyen is that they only distinguish between lattice problems that are ‘within reach’ and those
that are ‘not within reach’ given the current lattice reduction algorithms and computing power.
They do not provide a method to measure the actual cost or required effort of these algorithms,
nor a way to predict how hard the problems will be in the future. In the next section, a framework
that attempts to solve these problems for lattice-based cryptosystems will be discussed.

4.5 Bit-security for lattice-based cryptosystems

Most of the results in the area of lattice-based cryptography are of a theoretical nature. These
results do not always give an accurate picture of the practical aspects of the cryptosystems. As
seen in Chapter 2, there are several issues with (purely) theoretical results. First of all, the security
proofs that accompany cryptosystems are asymptotic statements, i.e., they describe the behavior
of the cryptosystem for large values of the involved parameters. Furthermore, the hardness of
breaking the cryptosystems can be controlled by several interdependent variables, which increases
the difficulty of deriving the practical security from the parameters. Thus, it is interesting to
consider how to determine the practical security of lattice-based cryptosystems.

Rückert and Schneider created a framework to determine the practical security of cryptosys-
tems based on the SIS and LWE problems from their parameters in [89]. The framework allows
them to relate the security to bit security, just like the standard expression of the security of
symmetric algorithms. They also use the framework to derive recommended parameters for these
systems, using results on the performance of lattice-reduction algorithms to gauge the possibilities
of attackers. Their framework will be discussed here and then the recommended parameters will
be considered.

4.5.1 Framework

The idea of a unified framework to consider the security of all lattice-based cryptosystems is not
entirely new. It was inspired by the works of Lenstra and Verheul [55] and the subsequent update
by Lenstra [53]. The framework of Rückert and Schneider is explained in three steps. First, they
show how to represent the hardness of the SIS and LWE problems with a single parameter. Then,
they perform experiments to relate this parameter to the attack effort. Finally, they apply their
framework to several cryptographic schemes to measure and compare their security.

Before the framework is explained, the notion of attack effort will be examined. Afterwards,
the three steps of the framework will be explained in more detail.

Measuring security

When measuring practical security, it is useful to take the capabilities of the attacker into account.
Furthermore, advances in both computing power and cryptanalytic methods will increase these
capabilities in the future. Therefore, Rückert and Schneider model the attacker in their framework
as well. In order to measure the attack effort, they use the notion of dollar-days, which was
introduced by Lenstra in [53]. Dollar days are the cost of equipment in dollars multiplied by the
time spent on the attack measured in days. Thus, using a $1000 computer and spending 4 days
to break a system costs as much in terms of dollar days as using a $2000 computer and spending
2 days.

Consider a cryptographic system with security parameter k. Assume that the best known
attack against this system requires t(k) seconds on a computer that costs d dollars. The cost of
this attack, as represented in dollar days, is given by

T (k) = d · t(k)/(3600 · 24).
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If (an estimation of) the function T (k) is known, recommended parameters can be chosen as
follows. Assume an attacker has Ty0 dollar days at his disposal, where y0 stands for a certain year.
To be secure against this particular attacker, the security parameter of the system must exceed a
value k∗ such that T (k∗) ≥ Ty0 .

It is also possible to consider future developments and estimate what the security of the system
will be in the future. To this end, Rückert and Schneider consider a rule that Lenstra calls the
“double Moore law”. Moore’s law states that the computing power doubles every 18 months. The
double Moore law also takes advances in the field of cryptanalysis into account. Each year, the
security is expected to degrade by a factor of 2−12/9. However, this function is based on algorithmic
progress in the area of integer factorization. Rückert and Schneider adopt it because they find the
algorithmic progress of lattice basis reduction hard to judge. To be secure up until year y against
an attacker that has Ty0 dollar days at his disposal in year y0, the security parameter must satisfy
T (k) ≥ Ty0 · 2(y−y0)·12/9.

Some cryptographic schemes also use symmetric cryptographic primitives. Rückert and Schnei-
der assume that these primitives are always available and that they are only affected by Moore’s
law. Their reason is that symmetric primitives can be replaced more easily when attacks are found
than asymmetric ones.

Measuring the hardness of SIS and LWE

Both the SIS and LWE problems have several parameters that can influence their hardness. How-
ever, it is desirable to represent the security of cryptographic systems with a single parameter.
First, Rückert and Schneider analyze the hardness of the SIS problem, introducing a parameter
that corresponds to the best known attack. Then, they provide some experimental data to show
that this parameter influences the result the most. Finally, they show how to reduce LWE to SIS,
which allows them to reuse the hardness results of SIS for LWE.

Recall from the description of SIS in Section 3.1 that it has the four parameters n, m, q and
ν and that the corresponding lattice is of the form

Λ⊥q (A) = {x ∈ Zm : Ax = 0 (mod q)} ,

where A is an n ×m matrix with entries in Zq. If the rows of A are linearly independent, then
Λ⊥q (A) is a full-rank lattice in Zm. Furthermore, it contains qm−n lattice vectors that are in Zmq
and hence its volume is qn.

Practical hardness is measured by the resistance against attacks. Thus, in order to measure the
practical hardness of SIS, the best way to attack it must be determined. At this time, no methods
are known to perform better than lattice reduction algorithms. Recall that lattice reduction
algorithms are δ-HSVP solvers that find a vector of norm at most δd vol(L)1/d in a lattice L,
where d is the lattice rank.

The system Ax = 0 is underdetermined. Therefore, it is possible to fix k coordinates of x
to zero, and attempt to solve the problem using the other m − k coordinates. This results in
a sublattice of Λ⊥q (A) of lower rank, which still has volume qn with high probability. Using this
observation, Micciancio and Regev [71] introduced a sub-lattice attack on the SIS problem. Instead
of trying to solve SIS in the lattice Λ⊥q (A), they propose to solve it in the lattice Λ⊥q (A′), where
A′ is obtained by removing some columns from A. As the resulting lattice is contained in a space
of lower dimension, the obtained vectors should be padded with zeroes where the columns of A
were removed. Let A′ have m − k = d columns, which means the lattice Λ⊥q (A′) has rank d.
Applying a lattice reduction algorithm to the sublattice Λ⊥q (A′) gives a vector of norm at most
δd vol(Λ⊥q (A′)) = δdqn/d. Micciancio and Regev showed that the minimum of this function is
obtained for d =

√
n log2 q/ log2 δ. For this d, δ satisfies the equation

δ = 2n log2 q/d
2

Using a sufficiently strong HSVP solver will result in a vector that has norm at most δdqn/d = q2n/d.
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Rückert and Schneider note that the above analysis does not include the parameter ν of the SIS
problem. Micciancio and Regev assume that the δ of the HSVP solver is fixed, but an attacker
might employ lattice reduction algorithms of varying strength, until a suitably short vector is
found. Therefore, they propose to take ν into account when determining the strongest attack.
This results in the following proposition:

Proposition 4.2. Let n ≥ 128, q ≥ n2 and ν < q. The optimal lattice rank for solving
SIS(n,m, q, ν) with a δ-HSVP solver for variable δ is d = min

{
x ∈ N : q2n/x ≤ ν

}
.

In their proof, Rückert and Schneider show that the solver must be able to solve δ-HSVP for
δ ≤ d

√
ν/qn/d. They also prove that the minimum attack rank d must be at least 2n = 256, since

if d ≤ 2n then q ≤ q2n/d ≤ ν < q, which gives a contradiction. They sum up the basis of their
analysis in the following conjecture:

Conjecture 4.3. Let n > 128, a constant c ≥ 2, a prime q ≥ nc, m = Ω(n log2(q)) and ν < q
be given. Then, the best known approach to solve SIS(n,m, q, ν) is to solve δ-HSVP in rank
d = min

{
x ∈ N : q2n/x ≤ ν

}
with δ = d

√
ν/qn/d.

This conjecture assumes that the best possible attack on the SIS-problem consists of solving the
Hermite shortest vector problem in a suitable lattice. Now, Rückert and Schneider posit that the
most natural approach to solve the decision version of the LWE-problem is by solving an instance
of the SIS problem. By reducing LWE to SIS, they can use hardness estimates for SIS to provide
hardness estimates for LWE. This reduction was mentioned in Section 3.1.6 and is formalized in
the following proposition:

Proposition 4.4. Any algorithm that solves SIS with the parameters (n, q,m, ν = 1.5
√

2π/α) can
be used to solve LWE with parameters (n, q,m, α).

Next, Rückert and Schneider performed experiments to see the influence of the different pa-
rameters on the hardness of the SIS problem.

Experimental data

In the experiments, Rückert and Schneider apply BKZ (as implemented in NTL [99]) to sublattices
of the optimal rank d (as defined by Proposition 4.2). They gradually increase the blocksize β of
BKZ – thus decreasing δ – until a vector of the desired length is found. Then, they measure the
running time of the reduction algorithm and compare these for varying n, m and q.

Their first observation is that for δ ∈ (1, 1.02], q has but a relatively minor impact on the
running time of the reduction algorithm. Secondly, they note that the lattice rank m influences
the running time more noticeably. However, they claim that the most influential parameter is
δ. For δ < 1.015, the running time increases rapidly as δ decreases. Thus, they conclude that δ
should be considered the main security parameter.

Finally, in order to obtain the security estimates, Rückert and Schneider fix m = 175, n > 128
and q ≈ n3. With δ as the main security parameter, they consider the cost function to be
T (δ) = a21/(log2(δ)

b)+c dollar days, where a, b and c are constants. Next, they use the experimental
data to approximate the constants a, b and c, resulting in the values a ≈ 10−15, b ≈ 1.001 and
c = 0.005. They consider c to be negligible for small δ, which leads to the following conjecture:

Conjecture 4.5. Let n > 128, a constant c ≥ 2, a prime q ≥ nc, m = Ω(n log2(q)) and ν < q be
given. Then, for any δ ∈ (1, 1.015], solving δ-HSVP in (normalized) q-ary lattices of rank d costs
at least T (δ) = 10−1521/(log2(δ)

1.001) dollar days.

Using this cost function, Rückert and Schneider predict parameters δ for HSVP that are
infeasible for certain attackers. They distinguish between the three classes of attackers, inspired
by works of Blaze et al. ([8]) and Lenstra ([53]). These classes are Hacker, Lenstra and Intelligence
agency, each having a different budget. The Hacker has access to 400 dollar days, the attacker
Lenstra possesses 40 million dollar days and the Intelligence agency has 108 billion dollar days
at its disposal. The infeasible values for δ that they computed using the cost function are shown
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in Table 4.2. The table also includes values for the corresponding bit security. The derivation
of the bit security follows from the work of Lenstra and Verheul. It is computed by the formula
d56 + 12(y − 1982)/18e, where y is the year. The significance of this formula is that 56 is the bit
security of DES, which was considered to be secure until the year 1982, “even against the strongest
attacker”. The factor 12/18 follows from the simple Moore law, and thus the formula is based on
the assumption that DES was secure in 1982 and that since then, attackers have become able to
break 12(y − 1982)/18 more bits of security.

Year 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Bit security 75 82 88 95 102 108 115 122 128 135
Hacker 1.01177 1.00965 1.00808 1.00702 1.00621 1.00552 1.00501 1.00458 1.00419 1.00389
Lenstra 1.00919 1.00785 1.00678 1.00602 1.00541 1.00488 1.00447 1.00413 1.00381 1.00356
Int. Agency 1.00799 1.00695 1.00610 1.00548 1.00497 1.00452 1.00417 1.00387 1.00359 1.00336

Table 4.2: Values of δ predicted to be infeasible to break for the attackers.

Sadly, this does not give a direct relation between bit security and the feasibility of lattice
problems. It merely lists values of δ such that breaking some cryptosystem is infeasible for a given
attacker in a given year next to the number of bits such that breaking a symmetric algorithm with
this key length is infeasible for all attackers in a given year. It would be interesting to consider a
more direct relation between the effort required to achieve such δ and the effort required to break
a system with such a key length.

Furthermore, the decision to consider only δ for the effort function T , while ignoring parameters
such as the dimension n and the lattice rank m seems questionable. Even if the effect of δ on
the effort is much more noticeable than the effect of other parameters such as m and n, it is
still interesting to consider the effects of the parameters δ, m and n on the efficiency of the
cryptosystem. It might be that changing the δ is much more costly than changing the m or n
parameters. In any case, it seems prudent to keep the effort function more general, and include
other parameters as well. However, it should be noted that this will increase the complexity of
the model.

4.5.2 Recommended parameters

Here, the framework will be applied to several cryptosystems that were described in Section 3.3.
For each application, Rückert and Schneider choose different parameters and apply their framework
to see whether the resulting cryptosystems are resilient against the attacker ‘Lenstra’ (40 million
dollar days).

Encryption with LWE

Recall the encryption scheme based on LWE as described in Section 3.3.1. Rather than applying
their framework to this system, Rückert and Schneider consider a multi-bit variant that encrypts
κ bits at once. As with the single-bit variant, the other parameters consist of the dimensions n
and m, modulus q and error parameter α.

Year 2010 2020 2030 2040 2050 2060
Bit security 150 164 176 190 204 216
n 191 221 253 283 314 346
q 72973 97687 128021 160183 197203 239441

α 5.51 · 10−4 5.12 · 10−4 4.80 · 10−4 4.54 · 10−4 4.30 · 10−4 4.10 · 10−4

m 3665 4234 4815 5400 6006 6609

Table 4.3: Recommended parameters for multi-bit LWE against attacker ‘Lenstra’.

Rückert and Schneider choose α = (30
√
m)−1 to restrict the probability of decryption errors

to negligible levels. Furthermore, they set the modulus q = q(n) as the smallest prime between
2n2 and 4n2. Finally, they choose m = d(n+ κ) log2(q) + 2κe, to ensure that ciphertexts are close
to uniform. They note that there exist some trade-offs, such as choosing a different alphabet,
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or increasing the randomness of the blinding factor of the ciphertexts. However, they choose to
consider only the basic examples for simplicity. The resulting recommended parameters are shown
in Table 4.3.

Encryption with Dual LWE

Consider the ‘dual’ encryption scheme based on LWE from Section 3.3.3, as used by Gentry, Peikert
and Vaikuntanathan [26] for the creation of an identity-based encryption scheme. Rückert and
Schneider apply their framework to a variant of the scheme from another article by Peikert [80].
This variant encrypts κ bits at once. As with the original system, it is parameterized by dimensions
n and m, modulus q and error parameter α.

Year 2010 2020 2030 2040 2050 2060
Bit security 150 164 176 190 204 216
n 190 220 253 284 314 347
q 72211 96821 128021 161323 197203 240829

α 5.65 · 10−4 5.21 · 10−4 4.82 · 10−4 4.52 · 10−4 4.27 · 10−4 4.04 · 10−4

m 3367 3972 4645 5294 5932 6636

Table 4.4: Recommended parameters for multi-bit Dual LWE against attacker ‘Lenstra’.

It should be noted that Rückert and Schneider choose not to use exponential moduli q, as
used in the hardness reduction without a quantum computer (see Section 3.1.6). They justify
this choice by noting that the key size would grow too much, as well as lead to a slightly more
complicated encryption process. Instead, they choose q = q(n) as the smallest prime between 2n2

and 4n2. They also observe that it is possible to choose the secret key from a somewhat larger
set, which would increase its size, but decrease the size of the ciphertexts. Furthermore, they
choose m = d(n log2(q) + 2κe, to ensure that the public key is close to uniform and they choose
α = (30(

√
m + 1))−1 to ensure that the errors do not become too big. This leads to several sets

of recommended parameters, which are shown in Table 4.4.

Digital Signatures

Recall the digital signature scheme from Section 3.3.5 by Lyubashevsky [60]. As it is based on SIS,
it is not necessary to convert the problem to SIS before applying the framework. Furthermore,
Lyubashevsky proposed his own recommended parameters, so Rückert and Schneider can apply
their framework to analyze these.

n 512 512 512 1024
q 231.727 259.748 295.747 295.872

ν 5.6 · 108 1.3 · 1010 2.6 · 1010 6.4 · 1010

d 1118 1823 2835 5471
δ 1.0091 1.0064 1.0042 1.0023
Year 2010 2035 2077 2180
Bit security 75 92 120 188

Table 4.5: Analysis of the recommended parameters for Lyubashevsky’s digital signature scheme.

The system is parameterized by dimensions n and m and modulus q, as well as some other
parameters that were omitted in the system description for simplicity. Rückert and Schneider
compute the corresponding norm bound ν from the dimensions and the norm bounds for signing
keys and hashed message lengths. For each parameter set, they give an optimal attack dimension
d, as well as the corresponding δ. Finally, they use their earlier results on the relation between δ
and bit-security to provide the bit-security, as well as the year when attacker ‘Lenstra’ is about to
break the system. These parameters are shown in Table 4.5. Rückert and Schneider conclude that,
although the underlying hash-functions may be broken by the year 2018, the lattice parameters
are quite reasonable.
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4.6 Conclusions

In this chapter, several aspects of lattice basis reduction were considered. Basis reduction is one
of the most prominent tools when attacking lattice problems and, by extension, lattice-based
cryptosystems. Therefore, new developments in the area of lattice reduction were considered.
Furthermore, lattice reduction is often used in conjunction with enumeration methods, in order
to improve the quality of the reduction at the cost of a larger running time. Conversely, these
enumeration methods, which solve SVP exactly, often rely on lattice reduction algorithms to
improve their running time. New developments in the area of enumeration were explored as well.

Additionally, the practical implications of lattice reduction were considered. The performance
of lattice reduction algorithms is much better than previous theoretical results indicate. This gives
a reasonable explanation for why early lattice-based cryptosystems were broken by attacks based
on lattice reduction. Furthermore, this performance can be used to give a measure of security of
lattice-based cryptosystems.

The parameter δ, which stands for the Hermite factor, has been used to measure the perfor-
mance of lattice reduction algorithms. This δ gives a relation between the lattice rank and the
length of the short vector that is found by lattice reduction. The expected amount of effort that
must be invested to achieve such a δ is based upon the extrapolation of experiments in lattices of
a rank where this is still feasible. It would be interesting to examine the relation between δ and
this effort more closely, for varying lattice rank.

While much progress has been made on understanding the practical side of lattice reduction,
there is still some work to be done. The work by Gama and Nguyen does not provide methods
to estimate the cost of lattice reduction of varying strength in varying dimensions. Such methods
could be used to predict the hardness of problems in the future, when more computing power
becomes available. The work by Rückert and Schneider attempts to solve this by defining the
‘effort’ using a cost function depending on δ, but it disregards the relation to other parameters,
such as the dimension and lattice rank. Some thoughts on these problems will be discussed in the
next chapter.
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Chapter 5

Measuring the work factor of SVP

5.1 Introduction

As mentioned in the previous chapters, it is important to understand the performance of lattice
reduction algorithms. In Sections 4.4 and 4.5, two different approaches to this problem have been
described. These approaches each have their own drawbacks. In this chapter, a different approach
will be suggested and discussed.

Section 5.2 contains the motivation for this new approach. In Section 5.3, the measurements
of the experiment will be considered. The setup of the experiments is described in Section 5.4.
Finally, the results will be discussed in Section 5.5 and possibilities for the future will be discussed
in Section 5.6.

5.2 Motivation

If lattice-based cryptography is to be used in practical applications, there needs to be a way to
determine the security of lattice-based cryptosystems. In practice, the security of a cryptosystem
is determined by the strength of the best attack that is known, i.e., the amount of ‘effort’ that is
needed to break the system using this best attack. For lattice-based cryptography, the best attacks
currently consist of lattice basis reduction (sometimes combined with enumeration). Thus, it is
vital to understand the practical performance of basis reduction algorithms in order to understand
the security of lattice-based cryptosystems.

Two approaches to this problem have been described in the previous chapter. The first ap-
proach, due to Gama and Nguyen in [19], considers basis reduction algorithms in a general,
non-cryptographic sense. It focuses on the Hermite factor δd reached by algorithms such as LLL
and BKZ. They observe that each algorithm corresponds to some base δ, such that the algorithm
returns a vector of length approximately δd vol(L)1/d when applied to a lattice L of rank d. How-
ever, their results are aimed at which δ’s are feasible and which are not, rather than the relation
between δ and the effort or time spent. The second approach, due to Rückert and Schneider
in [89], is aimed at basis reduction in the cryptographic setting, in order to determine the security
of lattice-based cryptosystems. It builds on the ideas of Gama and Nguyen and focuses on the
effort required to reach Hermite factors with base δ by lattice reduction algorithms. However, they
do not incorporate the lattice rank d, nor the space dimension n in this relation, as they deem it
to be less influential than the base δ.

Here, a different approach is proposed. The goal of this approach is to examine the relation be-
tween the rank of a lattice, the quality (or “shortness”) of the shortest vector found when applying
a basis reduction algorithm and the effort required to reach this solution. Hopefully, this leads to a
better understanding of the interaction between the different parameters. Furthermore, once this
relation is better understood, it becomes possible to fine-tune the parameters of a cryptosystem to
reach certain security levels. For example, the creator of such a cryptosystem could first compute

93



the quality of vectors that can be used to break the system. Then, he chooses a threshold for the
effort needed to break the system. Finally, he uses the relation to find a dimension n and possibly
a rank d such that no adversary is able to break the system by putting in less effort than the
chosen threshold using the best (known) attack.

5.3 Measurements

To reach a better level of understanding about this relation, experiments with lattice basis reduc-
tion algorithms will be performed. But what will be measured in these experiments? First of all,
each experiment starts by creating a (basis of a) lattice L of a fixed rank d. These lattices are all
full-rank, i.e., n = d. Then, this basis is reduced using some basis reduction algorithm, resulting
in a short vector b1 as part of a reduced basis. The time it takes to perform this reduction is
measured, and the Hermite factor ‖b1‖/ vol(L)1/d is computed. Thus, the effort is measured in
seconds, and the quality of the shortest vector is measured using the Hermite factor.

The lattice basis reduction algorithms that are used in the experiments are LLL and BKZ.
Applying LLL will result in a vector of decent quality in a reasonable amount of time, whereas
BKZ is expected to take more time but provide shorter vectors. As BKZ becomes more costly to
run with higher block sizes, a range of block sizes will be used in the experiments. Hopefully, this
gives insight into the relation between effort and quality.

5.4 Experiment setup

The experiments are performed on an Intel Pentium 4, with two cores of 2.80GHz. The im-
plementations of LLL and BKZ come from the number-theoretic library NTL (version 5.5.2) by
Shoup [99]. All experiments are compiled using Microsoft Visual C++ 2005 (options /O2 /GL).
The lattices are generated using the generator used in the SVP challenge [21]. This generator uses
a random seed to generate a random lattice in the sense of Goldstein and Mayer, as described
in [32].

To measure time, the Performance Counter is used, which is accessible through functions in
the Windows API. However, it should be noted that this measures time spent on the dedicated
computer, and not necessarily on the reduction alone. In order to reduce the “noise” caused by
the computer, the experiments are performed multiple times for each lattice. The minimum of the
resulting time measurements is then used for the analysis.

5.5 Results

The data gathered in the experiments were transformed into triples of data points of the form
{d, t, γ}, where d is the dimension of the lattice L, t is the time spent on the reduction and γ is the
Hermite factor ‖b1‖/ vol(L)1/d reached by the algorithm. For each dimension, 10 seeds were used
to generate different lattices. These 10 results were combined by computing the mean of both the
running time and Hermite factor. Thus, for each dimension and each algorithm, there is one triple
that expresses how much time the algorithm used and what the quality of the found vector is.

Figure 5.1 contains the results of the experiments. Each color corresponds to a different
algorithm. For lower dimensions, the points are quite close together, as the difference between
the algorithms is still small here. In higher dimensions, different behaviors appear for different
algorithms. These will now be examined more closely.

Figure 5.2 depicts the average running time for the lattice reduction algorithms as a function
of the dimension. It shows that BKZ with lower block sizes behaves similar to LLL, at least in
these low dimensions. Higher block sizes appear to grow significantly faster with the dimension
than lower block sizes, as expected when taking the results of Gama and Nguyen into account.
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Figure 5.1: Average of the results of the experiments.
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Figure 5.2: Average running time of lattice reduction algorithms in the dimension.

Figure 5.3 shows the Hermite factor of the reduced vectors that are found by the reduction
algorithms as a function of the dimension. It appears to be linear, which can be explained by the
fact that δd is approximately linear for δ close to 1, as Gama and Nguyen described.

The relation between the running time and the Hermite factor is shown in Figure 5.4. This
figure shows the relation per algorithm and seems to suggest that the quality decreases as the
running time increases. However, this is an illusion, caused by the fact that the dimension is not
explicitly shown, as it is a projection of a 3-dimensional graph. To give a better view of the relation
between running time and Hermite factor, Figure 5.5 shows the relation per dimension. For each
dimension, the algorithms are joined into a line, with the left-hand endpoint corresponding to the
LLL algorithm and the right-hand endpoint corresponding to the BKZ algorithm with block size
25. This picture suggests some sort of logarithmic relation between quality and running time, but
it is unclear if this result remains true for higher dimensions. The results of Gama and Nguyen
indicate that the Hermite factor is exponential in the dimension, while the running time of LLL is
polynomial. As not much is known about the the running time of BKZ yet, it is unknown whether
the Hermite factor will increase faster than the running time for higher dimensions.

To summarize, the results of these experiments appear to agree with the earlier results of
Gama and Nguyen. However, as only small dimensions were included, the picture is still not yet
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Figure 5.3: Average Hermite factor of reduced vectors in the dimension.
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Figure 5.4: Relation between average running time and average Hermite factor per algorithm.

complete. How can it be completed? In the work of Gama and Nguyen as well as that of Rückert
and Schneider, extrapolation is used to acquire information on higher dimensions. The problem
with extrapolation is that it requires some knowledge of the underlying model, in order to ‘fit’ the
experiment data to some function. But since the original problem is that the behavior of lattice
reduction algorithms was not understood, how can extrapolation be done in a meaningful way?

This is a major roadblock for the assessment of the practical performance of basis reduction
algorithms. As it stands now, these results are not enough to predict what happens on higher
dimensions. Thus, they are not enough to determine the security of lattice-based cryptography
either. But without extrapolation, it is very hard to get an idea about dimensions that will be
used in practice. So, what does the way forward look like?

5.6 The way forward

5.6.1 Choosing parameters for NTRU

Before discussing a general way to move forward, it is a good idea to look at work that has been
done in this area. Recall the NTRU system from Chapter 2. In an article by Hirshhorn et al. [36],
the authors note the following: “The paper [19] sounds promising but, despite the title, it does
not allow us to predict lattice reduction times for a given quality of reduced basis if we, say, had
computing power equivalent to 280 operations.”

Rather than the δ used by Gama and Nguyen, Hirschhorn et al. use a slightly different measure
of quality. This measure is called α and a higher α stands for a better quality. It is only based
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Figure 5.5: Relation between average running time and average quality per dimension.

on the reduction of the first y2 rows, because this notion fits better in the setting of the Meet-
in-the-middle attack, where an attacker combines reduction with combinatorial methods. They
continue by assuming several things, most important of which is that the running time of lattice
reduction depends polynomially on the dimension (i.e. n3) and singly exponential on 1/δ′ (i.e.
e1/δ′). Here, the parameter δ′ is the average of δi = log |b∗i | − log |b∗i+1|, where i lies in a specific
interval (y1, y2]. Based on the Geometric Series Assumption (GSA), which was introduced by
Schnorr [90], δ′ = (1− α)2/(2(y2 −N)).

Finally, they suggest two levels by extrapolating the best known running times in low di-
mension. They note that the veracity of their model needs further examination, especially when
α > 0.

5.6.2 Other possibilities

Can anything else be done in the future to better understand the behavior of lattice reduction in
practice? The experiments and subsequent results in this work are quite limited (only lattices of
dimension up to 50 are used). One possible way forward is to perform more extensive experiments
on lattices of higher rank in higher dimensions. However, this does not solve the problem of
extrapolation.

So how to move forward? In order to make extrapolation more meaningful, there needs to be a
better understanding of the theory and specifically of the running time of algorithms such as BKZ.
This better understanding can then be used to model the running time, which allows for better
extrapolation of experimental results. One of the problems that needs solving here is that there
are no ‘standard operations’ of basis reduction algorithms to express their complexity. Expressing
the complexity in actual running time gives different results for different implementations and
different platforms.

Another interesting question is whether basis reduction algorithms perform differently on lat-
tices with extra structure, such as ideal lattices, than they do on other lattices. This would give
more insight into the practicality of the more efficient lattice-based cryptosystems. In conclu-
sion, there is still much to be done in the area of lattice-based cryptography, and especially in
understanding the practical security of lattice-based cryptosystems.
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[103] D. Stehlé and R. Steinfeld. Faster fully homomorphic encryption. In M. Abe, editor, Ad-
vances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Sci-
ence, pages 377–394. Springer Berlin / Heidelberg, 2010.

[104] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryp-
tion over the integers. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer Berlin /
Heidelberg, 2010.

106


	Acknowledgements
	Contents
	1. Public Key Cryptography and Lattices
	2. Early Lattice-based Cryptography
	3. Current developments in Lattice-Based Cryptography
	4. Lattice basis reduction
	5. Measuring the work factor of SVP
	Appendix A
	Bibliography

