653 research outputs found

    Randomized SMILES strings improve the quality of molecular generative models

    Get PDF
    Recurrent Neural Networks (RNNs) trained with a set of molecules represented as unique (canonical) SMILES strings, have shown the capacity to create large chemical spaces of valid and meaningful structures. Herein we perform an extensive benchmark on models trained with subsets of GDB-13 of different sizes (1 million, 10,000 and 1000), with different SMILES variants (canonical, randomized and DeepSMILES), with two different recurrent cell types (LSTM and GRU) and with different hyperparameter combinations. To guide the benchmarks new metrics were developed that define how well a model has generalized the training set. The generated chemical space is evaluated with respect to its uniformity, closedness and completeness. Results show that models that use LSTM cells trained with 1 million randomized SMILES, a non-unique molecular string representation, are able to generalize to larger chemical spaces than the other approaches and they represent more accurately the target chemical space. Specifically, a model was trained with randomized SMILES that was able to generate almost all molecules from GDB-13 with a quasi-uniform probability. Models trained with smaller samples show an even bigger improvement when trained with randomized SMILES models. Additionally, models were trained on molecules obtained from ChEMBL and illustrate again that training with randomized SMILES lead to models having a better representation of the drug-like chemical space. Namely, the model trained with randomized SMILES was able to generate at least double the amount of unique molecules with the same distribution of properties comparing to one trained with canonical SMILES

    A de novo molecular generation method using latent vector based generative adversarial network

    Get PDF
    Deep learning methods applied to drug discovery have been used to generate novel structures. In this study, we propose a new deep learning architecture, LatentGAN, which combines an autoencoder and a generative adversarial neural network for de novo molecular design. We applied the method in two scenarios: One to generate random drug-like compounds and another to generate target-biased compounds. Our results show that the method works well in both cases. Sampled compounds from the trained model can largely occupy the same chemical space as the training set and also generate a substantial fraction of novel compounds. Moreover, the drug-likeness score of compounds sampled from LatentGAN is also similar to that of the training set. Lastly, generated compounds differ from those obtained with a Recurrent Neural Network-based generative model approach, indicating that both methods can be used complementarily.[Figure not available: See fulltext.

    Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES

    Full text link
    Using generative deep learning models and reinforcement learning together can effectively generate new molecules with desired properties. By employing a multi-objective scoring function, thousands of high-scoring molecules can be generated, making this approach useful for drug discovery and material science. However, the application of these methods can be hindered by computationally expensive or time-consuming scoring procedures, particularly when a large number of function calls are required as feedback in the reinforcement learning optimization. Here, we propose the use of double-loop reinforcement learning with simplified molecular line entry system (SMILES) augmentation to improve the efficiency and speed of the optimization. By adding an inner loop that augments the generated SMILES strings to non-canonical SMILES for use in additional reinforcement learning rounds, we can both reuse the scoring calculations on the molecular level, thereby speeding up the learning process, as well as offer additional protection against mode collapse. We find that employing between 5 and 10 augmentation repetitions is optimal for the scoring functions tested and is further associated with an increased diversity in the generated compounds, improved reproducibility of the sampling runs and the generation of molecules of higher similarity to known ligands.Comment: 25 pages and 18 Figures. Supplementary material include

    Autonomous design of new chemical reactions using a variational autoencoder

    Get PDF
    Artificial intelligence based chemistry models are a promising method of exploring chemical reaction design spaces. However, training datasets based on experimental synthesis are typically reported only for the optimal synthesis reactions. This leads to an inherited bias in the model predictions. Therefore, robust datasets that span the entirety of the solution space are necessary to remove inherited bias and permit complete training of the space. In this study, an artificial intelligence model based on a Variational AutoEncoder (VAE) has been developed and investigated to synthetically generate continuous datasets. The approach involves sampling the latent space to generate new chemical reactions. This developed technique is demonstrated by generating over 7,000,000 new reactions from a training dataset containing only 7,000 reactions. The generated reactions include molecular species that are larger and more diverse than the training set

    Language models in molecular discovery

    Full text link
    The success of language models, especially transformer-based architectures, has trickled into other domains giving rise to "scientific language models" that operate on small molecules, proteins or polymers. In chemistry, language models contribute to accelerating the molecule discovery cycle as evidenced by promising recent findings in early-stage drug discovery. Here, we review the role of language models in molecular discovery, underlining their strength in de novo drug design, property prediction and reaction chemistry. We highlight valuable open-source software assets thus lowering the entry barrier to the field of scientific language modeling. Last, we sketch a vision for future molecular design that combines a chatbot interface with access to computational chemistry tools. Our contribution serves as a valuable resource for researchers, chemists, and AI enthusiasts interested in understanding how language models can and will be used to accelerate chemical discovery.Comment: Under revie

    LibINVENT: Reaction-based Generative Scaffold Decoration for in Silico Library Design

    Get PDF
    Because of the strong relationship between the desired molecular activity and its structural core, the screening of focused, core-sharing chemical libraries is a key step in lead optimization. Despite the plethora of current research focused on in silico methods for molecule generation, to our knowledge, no tool capable of designing such libraries has been proposed. In this work, we present a novel tool for de novo drug design called LibINVENT. It is capable of rapidly proposing chemical libraries of compounds sharing the same core while maximizing a range of desirable properties. To further help the process of designing focused libraries, the user can list specific chemical reactions that can be used for the library creation. LibINVENT is therefore a flexible tool for generating virtual chemical libraries for lead optimization in a broad range of scenarios. Additionally, the shared core ensures that the compounds in the library are similar, possess desirable properties, and can also be synthesized under the same or similar conditions. The LibINVENT code is freely available in our public repository at https://github.com/MolecularAI/Lib-INVENT. The code necessary for data preprocessing is further available at: https://github.com/MolecularAI/Lib-INVENT-dataset

    Testing the limits of SMILES-based de novo molecular generation with curriculum and deep reinforcement learning

    Get PDF
    Deep reinforcement learning methods have been shown to be potentially powerful tools for de novo design. Recurrent-neural-network-based techniques are the most widely used methods in this space. In this work we examine the behaviour of recurrent-neural-network-based methods when there are few (or no) examples of molecules with the desired properties in the training data. We find that targeted molecular generation is usually possible, but the diversity of generated molecules is often reduced and it is not possible to control the composition of generated molecular sets. To help overcome these issues, we propose a new curriculum-learning-inspired recurrent iterative optimization procedure that enables the optimization of generated molecules for seen and unseen molecular profiles, and allows the user to control whether a molecular profile is explored or exploited. Using our method, we generate specific and diverse sets of molecules with up to 18 times more scaffolds than standard methods for the same sample size; however, our results also point to substantial limitations of one-dimensional molecular representations, as used in this space. We find that the success or failure of a given molecular optimization problem depends on the choice of simplified molecular-input line-entry system (SMILES)
    • …
    corecore