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ARTICLE

Autonomous design of new chemical reactions
using a variational autoencoder
Robert Tempke1 & Terence Musho 1✉

Artificial intelligence based chemistry models are a promising method of exploring chemical

reaction design spaces. However, training datasets based on experimental synthesis are

typically reported only for the optimal synthesis reactions. This leads to an inherited bias in

the model predictions. Therefore, robust datasets that span the entirety of the solution space

are necessary to remove inherited bias and permit complete training of the space. In this

study, an artificial intelligence model based on a Variational AutoEncoder (VAE) has been

developed and investigated to synthetically generate continuous datasets. The approach

involves sampling the latent space to generate new chemical reactions. This developed

technique is demonstrated by generating over 7,000,000 new reactions from a training

dataset containing only 7,000 reactions. The generated reactions include molecular species

that are larger and more diverse than the training set.

https://doi.org/10.1038/s42004-022-00647-x OPEN

1 Department of Mechanical & Aerospace Engineering, West Virginia University, Morgantown, WV 26525, USA. ✉email: tdmusho@mail.wvu.edu

COMMUNICATIONS CHEMISTRY |            (2022) 5:40 | https://doi.org/10.1038/s42004-022-00647-x |www.nature.com/commschem 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-022-00647-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-022-00647-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-022-00647-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42004-022-00647-x&domain=pdf
http://orcid.org/0000-0003-3743-4390
http://orcid.org/0000-0003-3743-4390
http://orcid.org/0000-0003-3743-4390
http://orcid.org/0000-0003-3743-4390
http://orcid.org/0000-0003-3743-4390
mailto:tdmusho@mail.wvu.edu
www.nature.com/commschem
www.nature.com/commschem


Artificial Intelligence has become one of the most impor-
tant tools in the scientific community; it is used for
everything from fundamental characterization to real-

world applications. This is especially true in the field of chemistry
and chemical engineering, where machine learning, a subset of
artificial intelligence, has been used in conjunction with density
functional theory (DFT), as well as on its own, to produce unique
insight and provide rapid results1,2. Machine Learning has also
been used in the chemical engineering field to help search the
solution space of possible reactions to help save both time and
resources3–7. With the increased use of machine learning in
chemistry, researchers have begun to see that a biased problem
exists in every available dataset of chemical reactions8–10. Most
chemistry datasets come from a collection of patents and research
articles that exist on the internet, however, this does not complete
the continuous chemical reaction solution space9,11. This is often
a sparse representation of the space. This study aims to utilize the
predictive abilities of deep learning to synthetically generate a
chemical reaction dataset that is less biased and more robust than
the ones currently available or that can be data mined. This is
accomplished using a generation deep learning technique known
as a variational autoencoder (VAE)12. It is hypothesized that a
VAE will form a sort of custom chemical compression intelli-
gence that will provide efficient generation of new reactions by
sampling the latent space of the VAE. This is a unique approach
that relies on artificial intelligence to generate new reactions
rather than retrosynthesizing5–7 or breaking apart reactions and
tracking the molecular species.

The issue with biased datasets in the teaching of machine
learning algorithms comes down to a common principle of
inherited bias evident in most artificial intelligence techniques,
sometimes colloquially known as, “garbage in, garbage out”13.
Having good data is the most important aspect of any artificial
intelligence technique. However, good data is not just having
optimized data or accurate data. Machine learning techniques do
much better when taught on a range of inputs and outputs and
the space is continuous13,14. In essence, a machine learning
technique needs to learn everything, so it can know everything. In
the paper by Jia et al., a detailed explanation is given on how
researchers’ biases go into the creation and design of almost all
experiments. They go on to show how this can be combined with
other types of biases to skew reported data9. Their work is further
backed up by the Griffiths et al. study of biases in the natural
sciences. A detailed explanation of this influence is based on the
effects of data splitting noisy datasets as well as the influence that
contextual variables can have on the outcome of experiments8.
Kovács et al. do an excellent job of illustrating the direct effects
that a biased and unbiased dataset can have on the quality of a
machine learnings’ outputs10. All of these different studies com-
bine to show that the current methodology for creating datasets
from publications or other open-source resources is flawed and
will limit the ability of future machine learning algorithms. Gla-
vatskikh et al. explains how the lack of diversity in data limits
machine learning potential to predict15. Meanwhile, the cost of
building an unbiased, continuous dataset is potentially an infinite
feat when everything must be learned to know everything.

Despite the limited dataset availability and potential biases in
datasets, research is currently demonstrating the employment of
artificial intelligence techniques in the field of reaction chemistry.
In the organic chemistry field, Kayala, and Baldi demonstrated
how machine learning can be utilized to predict multistep reac-
tions that take place over a range of reactants and thermodynamic
conditions4. Moreover, they demonstrate how machine learning
can be employed despite the limitations of the training dataset,
while still being able to predict mechanistic reactions. In their
study, they discuss the necessity of manually sorting the dataset

for the reactions they could utilize16. A follow-on study by Kovács
et al. dissected their paper and concluded that the Clever Hans
effect was apparent. This is essentially a failure of the double-
blind condition. It was claimed that the correct prediction of the
reactions was achieved but only because of a resulting reaction
bias10. Similarly, Mater and Coote emphasize the common pro-
blem of bias in chemical reaction datasets17. These examples
illuminate that while it is understood that bias plays an important
role in the predictions of machine learning, no consensus has
been reached on how to deal with these issues stemming from
datasets.

However, in many different fields that face similar dataset
issues, the use of generational techniques has shown excellent
progress. The most famous examples of these are typically found
in the medical field, where it is notoriously difficult to share
patient data (due to Health Information Privacy) amongst sci-
entists and researchers. Choe et al. devised a way to generate
realistic synthetic data that contained high-dimensional discrete
variables18. Their network, known as MedGAN, has shown
excellent comparative performance to real-world datasets. Rig-
orous analysis has been done on the generated datasets, including
distribution statistics, predictive modeling tasks, as well as expert
review18. These findings are backed up by the research of Camino
et al. and Gulrajani et al., who demonstrated that generative
networks can be used to generate multi-categorical outputs
completely synthetically19,20. This is an important aspect of
generational techniques, especially VAEs. It demonstrates the
autonomous synthetic generation of data for both discrete and
continuous variables21,22.

A popular generative technique is known as generative
adversarial networks (GAN), as demonstrated by Choe et al. in
MedGAN. These have notably outperformed VAE on various use
cases, such as image generation and discrete variable repre-
sentations of problems23. However, they are notoriously hard to
work with, resulting in very unstable networks. More importantly,
GAN needs a lot of data and a lot of tuning. This makes it
undesirable for smaller datasets typically found in experimental
chemical reaction datasets. In addition, there is not a latent space
generation when using a GAN. This limits the usability in future
use cases such as using latent space as an input into a generational
network24.

Variational autoencorders are a very active area of research
where Yu et al. have demonstrated that generative networks can
be used to model long sequences that rely on earlier segments to
be semantically correct25. More important, generative networks
have been shown to be able to generate missing data within a
dataset26. This means that these deep learning techniques can
interpret between existing data points to generate new synthetic-
derived points that share the same characteristics as the original
dataset.

One approach, and a competing approach to the proposed
method, that has been recently employed for the generation of
chemical reactions is the approach of retrosynthesizing known
reactions5–7. The idea of retrosynthizing involves subsequently
breaking the reaction products down by putting them back into
the reaction process as reactants. This provides a complete con-
tinuous space of intermediate molecular species, but it is limited
on the generation of new reaction molecular species that are not
subspecies of the initial species database. Chemist have been
taking retrosynthesis farther by combining artificial intelligence
into the process. The work by Segler et al. show a promising route
of combining Monte Carlo tree search with symbolic artificial
intelligence. Which leds to a speed up of 30 times over traditional
methods27.

Other work has been done by several research groups that
focus on improving the outcome of chemical reaction predictions.
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Research by Shields et al. shows how Bayesian optimization can
be used to fine-tune neural networks in synthetic chemistry28. In
their research, they demonstrate how Bayesian optimization can
essentially be thought of as an autonomous tool for limiting
human biases. They then go on to demonstrate how removing
expert chemists and engineers in real-life experiments and instead
of using autonomous optimization of experiments they can get
both a higher optimization efficiency and a better consistency.
However, the Bayesian optimization only optimizes parameters
that a human has set and cannot create new parameters as it
learns.

A review of reaction prediction methods by Gale and Durand
shows how almost all areas of machine learning in chemistry are
in need of improvement and are active areas of research29. Some
of the important topics they touch on are the need for datasets to
have not only error-free reactions but also negative results. They
discuss the difficulty in encoding chemical information for a
machine-readable format. Another key point in their discussion is
how you can use generative, discriminative deep neural networks
to assess chemical reaction synthesis. Unfortunately, there is no
discussion on how latent representations of chemical data can be
used to generate feasible reaction synthesis.

Research by Iovanac et al. is a great example of how an encoder
and decoder style neural network can be used to represent a
continuous chemical latent space. Their research uses both
experimental and density functional theory predicted models to
predict properties of various pKa prediction of moderately sized
molecular species30. However, this is just an illustrative example,
what they clearly show is how scarce data can be overcome in the
chemical space by using a latent representation of chemical
molecules. They even demonstrate how that latent space can be
used as training data for a neural network. This study takes this
work a step farther and expands this methodology not only to
single molecules but to whole equations containing a variety of
molecules of different sizes. Unlike previous studies that focus on
reactants predicting products or vice versa, this study instead
allows for the latent representation of the data to predict both
parts of an equation.

Other methods found in literature have demonstrated the
ability of neural networks to autonomously predict chemical
attributes of equations. Take the research from Zhang et al. where
they use a combination of unsupervised K-means clustering and
support vector machines to help in the prediction of activation
energy of catalytic chemical reactions. They use the outputs of
these unsupervised methods as inputs to a trained neural net-
work. This is another way of generating a latent space repre-
sentation of the dataset31. In comparison to the study by Iovanac
et al. the K-means clustering, and the classification can be thought
of as the encoder while the predictive neural networks would be
the decoder. The focus of Zhang et al. research was on using the
whole chemical reaction and their physical quantities to predict
the activation energy.

This study introduces a method referred to as AGoRaS for the
synthetic production of large quantities of balanced chemical
reactions that can be utilized for the unbiased training of artificial
intelligence techniques. It can also help in generating new tar-
geted reactions, which can help guide experimental studies. Pre-
vious research by Amini et al. demonstrated how VAE can be
used to generate unbiased synthetic machine learning training
data for the training of more robust and accurate algorithms32.
The following study proves that VAEs can be applied to chem-
istry to generate a large number of both new reactions and new
species. This will allow not only for the improvement of machine
learning algorithms but also offer significant time and cost sav-
ings to experimental studies. The ability of these networks to
generate a near-continuous and infinite space of new reactions

will allow for researchers to sort the data for specific products and
reactants for a given thermodynamics condition.

Results
AGoRaS machine learning model. This study utilized the
probabilistic sampling of the latent space by VAE to explore the
solution space for a dataset of gas-phase reactions. The model
VAE model that was created was named AGoRaS. The VAE
procedure employed is illustrated in Fig. 1A. Once the VAE is
trained the new reactions can be generated by sampling the latent
space, as illustrated in Fig. 1B. The only information given to
AGoRaS-VAE is the encoded SMILES string and the only output
is an encoded SMILES string, in which hydrogen atoms are
implicit. The VAE approach can be thought of as a custom
compression technique for these chemical reactions. Moreover,
the latent space can be thought of as the memory of artificial
intelligence. While it is not apparent by looking at the weights of
the system, the artificial intelligence is empirically learning about
the underlying physics and chemistry of the process. At the very
essence, this is why it is necessary to remove bias. With bias
present, there is a skew in the memory of the network. A unique
approach applied in this research is that instead of each latent
variable being encoded with a discrete value, as with a traditional
autoencoder, instead, the latent variable has an associated prob-
ability distribution. Once trained, the probability distributions of
each variable can be sampled to generate new output features or
chemical equations. By using continuous values instead of a
discrete value it forces a smooth latent space representation of the
data, Gaussian in nature. In the case of AGoRaS, each SMILES
character is represented uniquely as a digit and the entire equa-
tion string is encoded. By sampling different points along the
latent variable Gaussian curves, a new reaction can be generated.
While this new reaction is not guaranteed to be balanced, it is
necessary to check for compliance. Once trained, AGoRaS can
generate new reactions quickly with the gained knowledge of the
input dataset.

Validation workflow for AGoRaS. Due to the inherently com-
plex nature of chemical reactions, as well machine learning
algorithms’ susceptibility error generation based on training data
and trained knowledge, it was important to set up a stringent
pipeline or workflow for the training, validation, and analysis of
the chemical reactions. To develop the training dataset, it was
critical that the dataset being used for training contained mole-
cular species could be converted to the SMILES format. This
ensured that each chemical reaction in the dataset was unique and
could be balanced. Each species contained in the training dataset
was also checked in RDKit33 and PubChem34. Once trained, the
network was continually sampled to generate hundreds of thou-
sands of equations. These equations were then fed through a
series of validation steps using both RDKit, PubChem, and semi-
empirical modeling software33–35 to ensure validity and stability.
These steps were used to validate that the equations were
balanced, and the SMILES species represented physically possible
chemical species. Figure 2 illustrates a simplified flow chart of the
steps needed to accomplish the training and validation of
AGoRaS. The semi-empirical modeling technique used the gen-
erated SMILES notation that is converted to an atomistic
description to predict the thermodynamics properties.

To allow for the independent validation of the network, it was
decided to use an easily accessible dataset for training. To that
end, the NIST chemical kinetics database was selected based on
being open access and well-documented sources36. Since the
dataset is comprised of solely published reactions, it was
determined that it would make an excellent case study of the
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ability of AGoRaS to generate a wide variety of equations from a
sparse dataset. After data collection and cleaning a core number
of 7000 chemical reactions, this resulted in ~2000 unique gas-
phase molecular species.

Validating generated equations. Once the original dataset had
been created and cleaned the VAE was trained, and the latent
space was sampled. Sampling was stopped once 7,000,000 valid
equations had been disseminated. This was selected as an

Fig. 1 Workflow of the AGoRaS-based VAE network. As illustrated in (A), the chemical database information is compressed and decompressed to form a
high-dimensional latent space. B illustrates the workflow of how the trained latent space is sampled to generate new chemical equations.

Fig. 2 Flow diagram of the data collection, training, and validation steps taken by AGoRaS to generate synthetic data. The generated equation is
checked for both balance and existence. The semi-empirical calculation receives a SMILES descriptor and conducts an independent series of processes to
generate a clean atomistic description prior to calculation of thermodynamics data.
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arbitrary stopping criteria of 1000 times the size of the original
dataset. Among these new equations, AGoRaS was also able to
generate ~20,000 new species, with both subspecies and com-
pletely new molecular species. The ability to predict new and
larger molecular species owes to the success of this approach over
other approaches, such as retrosynthesizing. All species were
checked using the validation pipeline to ensure their uniqueness
and stability.

To apply utility to the generated dataset and check stability of
individual molecular species, the Gibbs free energy of each
molecular species, along with the overall reaction energy, were
determined at the standard state using a semi-empirical
computational technique35,37. Furthermore, the difference in
the dipole moments of the overall reactions was also predicted.
The Gibbs free energy was selected because it is a good
quantitative measure of the thermodynamics of the reaction.
The dipole moment was also selected because of its thermo-
dynamic relationship and application to electrocatalysis.

To calculate the Gibbs free energy of each reaction, the
individual molecular species’ entropy and enthalpies were
calculated. The Gibbs energy of the reaction is defined as the
following,

ΔGo
reaction ¼ ΔGo

products � ΔGo
reactants; ð1Þ

where the Gibbs energy of the reactant and products are based on
the following relationship:

ΔGo ¼ ΔHo þ TΔSo: ð2Þ
Here the change in enthalpy (ΔH) is based on the total energy of
the semi-empirical calculation that is calibrated to the standard
state in the semi-empirical calculation. The zero-point energy in
this case is encapsulated within the enthalpy. The change in
entropy (ΔS) is based on the vibrational frequencies, moments of
inertia of the molecule, and its symmetry number.

Similarly, the difference in entropy is calculated between the
product and reactant species as follows:

ΔSoreaction ¼ ΔSoproducts � ΔSoreactants; ð3Þ
where the entropy terms (ΔSop;r) are corrected for the standard
state. While this metric is encompassed in the overall Gibbs
energy, it provides quantitative values for the amount of energy
that is contributing to vibrational energy. Moreover, it provides a
quantitative measure of the size of the molecules.

While more advanced, first principle DFT calculations are
potentially desired in this application, the computational expense
of 7,000,000 simulations outweighs the accuracy required for this
study. The assumed approach will be to conduct a higher fidelity
modeling approach for promising reactions, when applied to
practice.

Due to the reporting bias in the original dataset, selection of
best reaction, or thermodynamically favorable reactions (±1 eV)
was known to be skewed towards reactions with low reaction
energies. This was assumed to generate a bias in the network.
However, it was found that generated equations ~97% fell within
a ΔGo of ±5 eV. This is important for the practical use cases of
AGoRAS, as it shows that even without providing any context on
thermodynamic properties during training the network is able to
produce stable results over a much larger range than the
training data.

The dipole moment, was also derived from the semi-empirical
calculation. The dipole moment is calculated based on the partial
charge of the atoms and the position of the atom. The following
expression is used in the calculation:

μ ¼ ∑
N

a¼1
qara; ð4Þ

where N is the total number of atoms, qa,i is the partial charge of
atom a, and ra,i is the position vector of the atom a. In this study,
the difference between the product and reactant dipole moments
were calculated using the following:

Δμ ¼ μproducts � μreactants: ð5Þ

To visually and statistically compare trained and generated
datasets of vastly different sizes, a random sample of 7000
equations was subselcted out of the generated dataset. An
overlapping comparison between datasets was performed to
confirm a correlation between the two datasets. This comparison
is shown in Fig. 3, where A is a plot of the Gibbs free energy, B is
a plot of the entropy, and C is a plot of the dipole moment. In all
of these plots, the training dataset is pictured in blue in the
background with the generated dataset in the foreground in red.
The y-axis in all the plots is the frequency of occurrence and the
x-axis is the associate thermodynamic property. It should be
noted that 7,000,000 reaction equations were generated and this is
a flat random selection of those generated. In subfigure plots A
and B, there is a noted tri-modal distribution, which is a result of
the tri-modal distribution of the training data. This is evidence of

Fig. 3 Histograms of the thermodynamics values comparing the training
data (original equations) and the generated data (generated equations).
A is the Gibbs energy associated with Eq. (1). B is the difference in entropy
between the product and reactant molecular species. C is the difference
between the product and reactant dipole moment.
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the inherited bias in the training data that is being used. The
AGoRaS is picking up on this knowledge as it generates a similar
tri-modal distribution. The important region is the regions
between and outer peaks of the input data. The AGoRaS is able to
fill in these regions, which are either new or intermediate
reactions. This generation ability is not based on retrosynthesiz-
ing previous reactions, but rather on the knowledge it has gained
during training of the latent space variables. It can be shown, if all
seven million generated reactions are plotted, that the distribution
becomes more continuous.

Another interesting finding is apparent in the entropy plot of
Fig. 3B. It is noted in this figure that AGoRaS has an flat
distribution below −400 eV and above 400 eV. As seen in Eq. (3),
a negative difference means the entropy is greater on the reactant
side, or smaller on the product side. A thorough inspection of the
generated dataset confirms that AGoRaS is generating larger
molecules species on the reactant side. The size of these new
species is beyond the size (number of atoms) of the input
molecules species in the training dataset. This is a significant
advantage of this approach, the ability to generate larger
molecular species. Likewise, in Fig. 3A, there is bias arising from
the training data, but the AGoRaS can fill in between the tri-
modal peaks and extend beyond. It is also able to generate larger
species on the product size as demonstrated with large positive
values in Fig. 3B.

Figure 3C is a plot of the difference in dipole defined by Eq. (5).
From a molecular point of view, this has the opposite trend of the
entropy, as the molecule get larger (increased number of atoms) it
is more likely the charge will be neutral for the molecule and have
a corresponding negligible dipole moment. Therefore, as seen in
Fig. 3, both the original and generated datasets have a single peak
near zero. This means most molecular species have near-zero
dipole moments, as expected. Moreover, the generated dataset
contains some cases which have large negative differences in
dipole moment. This means the reactants have a larger dipole
moment than the products. This is significant because, based on
Eq. (4), the position and charge of the atoms are critical to the
dipole. This alludes to the fact that the AGoRaS has the ability to
place atoms with ionic bonding tendencies further out from the
center of charge, resulting in increased dipole moment. More
succinctly said, AGoRaS is placing atoms beyond radii provided
in the training data.

Solution space. An important aspect of VAEs and AGoRaS is the
ability to map the latent probabilistic solution space of the pro-
blem using unsupervised learning and then sampling that solu-
tion space to generate new data. The latent space is hard to
visualize conceptualized, especially as the size of the data being
represented in it grows exponentially. As discussed in the pre-
vious section, it is the aim to demonstrate that the newly gen-
erated equations are filling in the solution space compared to the
input and ultimately removing bias. Using a t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) plot, as seen in Fig. 4, it was
possible to get a two-dimensional representation of what was
happening in the high dimensional latent space. This is possible
because t-sne plots use an unsupervised learning method of sto-
chastic neighbor embedding to give high-dimensional data a
single point on a two-dimensional grid. Figure 4 illustrates the
t-SNE plot for AGoRaS. The blue circles represent the generated
data set and the red circles represent the training data. The size of
the sphere is proportional to the Gibbs free energy (Eq. (1)). The
t-SNE algorithm groups data together based solely on their
SMILES representations. After their placement on the t-SNE plot
their thermodynamic properties were applied to the radius of
each point. Figure 4A is a plot of the original 7000 equation in the

training dataset with a sub-selection of an equivalent number of
points for the generated dataset. Figure 4B is a similar plot with
increased sampling of 70,000 generated equations. It is noted
from these plots that generated data sets are not only filling
between the training data but also extending out beyond the
training data.

Targeted reactions. Another important application of AGoRaS is
the ability to conduct targeted reaction searches. Researchers can
utilize AGoRaS’ ability to generate massive datasets comprised of
new, unique reactions to search for a targeted molecular species
and reactions38. To demonstrate this application, the original and
generate datasets were searched for reactions containing CO2 and
reactions containing CH4. The original dataset had approximately
150 unique reactions that contained CO2, while the generated
dataset had approximately 6000 reactions. For CH4, the training
dataset had approximately 700 reactions and the generated
dataset had approximately 91,000 reactions. The generated data
provided 40 times as many reactions to examine further from a
thermodynamic perspective. As discussed above, AGoRaS is able
to generate intermediate molecular species and new molecular
species beyond the descriptions of the training dataset. Figure 5 is
a histogram of the selection of both CO2 and CH4 for the training
dataset and the generated dataset. The selection for both cases
was down-selected to Gibbs reaction energies, ranging between
ΔG ± 5 eV. Again, the network is able to avoid the bias of the
training dataset demonstrating the utility of this approach com-
pared to other approaches.

Discussion
In this article, a new method for synthetic data generation of
chemical equations known as AGoRaS was introduced. This
article focused on AGoRaS’ application for only gas-phase reac-
tions but has applicability well beyond. The aim of AGoRaS was
the avoidance of bias inherent to all training data in the

Fig. 4 T-SNE plot of the training dataset (original equations) and the
generated dataset (generated equations). The size of the sphere is
proportional to ΔG at standard conditions. A All 7000 equations from the
training dataset and randomly sampled 7000 equations from the generated
dataset. B 70,000 equations from the generated dataset.
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generation of continuous synthetic datasets. In this study,
AGoRaS was trained on a core dataset comprised of only ~7000
reactions and 2000 molecular species and was able to generate
7,000,000 reactions with 20,000 molecular species. This is an
extremely high return for such a small training set. The most
exciting aspect of the results of AGoRaS was its ability to create a
large quantity of new molecular species and overall reactions that
were stable. AGoRaS implemented a unique approach of selecting
from the latent space to generate the new reactions. This is a
different approach as the typical usually involves retrosynthesis of
existing reactions. An advantage of this approach is that the VAE
gathers the knowledge of the physics and chemistry that it is
trained on. This allows AGoRaS to generate new molecular spe-
cies and reactions beyond the size and description of the
training data.

It should not be overlooked that the generated results of
AGoRaS have not been experimentally synthesized. Other studies
in the past have noted that many molecules derived from gen-
erative networks cannot be synthesized39. This is even in light of
the generated molecules scoring well on various quantitative
benchmarks. While this may be the case for some of the mole-
cules generated in the study. By using a semi-empirical technique,
which has been calibrated with experiments, there is added

confidence many of these reactions and molecular species can be
synthesized Moreover, this study attempted to mitigate this risk
by checking all molecules against existing databases such as
RDKit and Pubchem, in addition to conducting the semi-
empirical calculations. Reactions that did not pass this check with
both RDKit and the semi-empirical technique were eliminated
from the final dataset.

To demonstrate the utility of AGoRaS the generated reaction
equations were filter for reaction containg CO2. Table 1 is a
summary of a select number of these reactions that demonstrate
the complexity of the reactions that were discovered. Note the
equations displayed in Table 1 were not part of the training data.

One of the limitations of AGoRaS is that the synthetic gener-
ated data still may share similar distributions and biases with the
training data. However, this approach is an improvement on
the current techniques as it has the ability to expand beyond the
molecular description of the training dataset. As the AGoRaS is
trained on larger datasets and potentially fed back generated data,
the bias will diminish. It would be trivial to analyze the training
dataset for biases and introduce synthetic equations that balance
out the biases. The network could be retrained and sampled again
to check for biases. This process could be repeated until the
network is no longer producing biased outputs. While the
uniqueness of the dataset can be satisfied, the completeness of
the dataset will never be achieved due to the continuous nature of
the data. However, this provides a tool for achieving completeness
over a bound design space and satisfying the local continuity. But
this may be acceptable for engineering applications where abso-
lute knowledge is not necessary.

Methods
The AGoRaS method was developed to synthetically generate chemical equations
without the need for human interaction. As discussed above, a pipeline or workflow
was created to accomplish the following steps outlined in Fig. 2. The motivation
behind having a pipeline set up was so that new data could easily be ingested into
the pipeline to quickly and effectively train AGoRaS on a variety of data. The use of
data pipelines and their effect on code quality and robustness is a well-studied
topic40–42. This ability takes a considerable amount of data preconditioning out of
the hands of the user, which will allow AGoRaS to be more accessible to a non-data
scientist. It will instead allow chemists and engineers to utilize the network using
their own data. This has historically been a problem, where the lack of data science
skills and the steep learning curve of network development can hold back a field
from utilizing the power of artificial intelligence43.

Data collection. The chemical equations used to train this network were provided
by the NIST chemical kinetics database36. The data was received from them as two
separate CSV files. One file contained a column of 15,000 id numbers and several
other columns that all had different naming conventions. These included chemical
formula, hill sorted formula, and IUPAC name. The second CSV file contained
rows corresponding to different chemical reactions in the dataset. Each of the
reactions was represented by the id numbers from the first CSV. The first CSV was
read into python using a pandas dataframe44 where each possible naming con-
vention was a different column.

Convert data to SMILES notation. SMILES was chosen to be used as the ground
truth representation of chemical species due to its ability to represent species with
the same chemical formula but different structures uniquely45. SMILES is widely
used in chemical artificial intelligence and has shown excellent results from other

Table 1 Selected results from the AGoRaS network that illustrates the SMILES notation and equivalent chemical equation
representation.

SMILES equation Chemical equation ΔG (eV)

[O]=[C]=[O] + 2[H][H]→ [H][C]([H])=[O]+ [H][O][H] CO2+ 2H2→ CH2O+H2O 0.204
1[H][C]+ 2H][O][H]→ 4[H][H]+ 1[O]= [C]=[O] CH4+ 2H2O→ 4H2+ CO2 0.047
[H][O][C]([H])([H])[C](=[O])[O][C]([H])([H])[H]→ [H][O][C]([H])([H])[C]([H])([H])[H]
+ [O]=[C]=[O]

C3H6O3→ C2H6O + CO2 −0.486

The rightmost column is the associated predicted Gibbs energy from the semi-empirical calculation.

Fig. 5 Histogram of the Gibbs energy at room temperature for specific
molecular species. A 168 unique equations containing CO2 selected from
both the training dataset (original equations) and generated dataset
(generated equations). B 688 unique equations containing CH4 selected
from both the training dataset and generated dataset.
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techniques46–50. Despite its popularity, there is no easy and open-source way to
convert different chemical names into SMILES. The pipeline utilizes several dif-
ferent techniques to convert the different names into SMILES notation.

Since the available names of the 15,000 species were uploaded into a pandas
DataFrame, it was possible to check each one on an open-source website for
conversion. In the end, two main servers were used for conversions due to their
large repositories and their trustworthy data sources: the CADD Group
Chemoinformatics Tools and User Services51 and PubChem34. Each possible name
of the 15,000 different species was put through both PubChem and the CADD
groups databases.

Preprocessing the data. Once all species were converted, a comparison was done
between both databases results and any species that could not be converted, or that
was not in agreement between the two was eliminated from the pool of valid
species. This was part of our attempts to be both rigorous and autonomous in our
species data pipeline. It would have been possible to manually go through the
different disagreements and correct them, but this fell outside of the aims of this
study. Since one of the main goals was reproducible, this was deemed the best
strategy. A tertiary check of the species was performed; each of the species was
checked for stability and feasibility using the RDkit package in Python33. RDkit is
another widely used and well-verified package for computational chemistry that is
often paired with SMILES notation machine learning algorithms1,3,9,46,49,50,52.

Once the number of available species had been reduced, the remaining species
could be mapped to the CSV file containing the actual reaction equations. Any
equation that did not have a SMILES identifier for a given species was eliminated
from the dataset. An additional check was performed where each of the reaming
equations was checked to be sure they were balanced. This was done to catch any
equations that may have had incorrect ids for reactants or products. A further
criterion was placed on the equations, where all equations with more than three
species on the product or reactant sides of the equations were eliminated. This was
done to facilitate the convergence of the VAE during training by having similar
length character vectors and the limited availability of training data with more than
three species. Research by Dwarampudi et al. and Prusa et al. demonstrated that
padding the LSTM and neural networks can cause instability and result in poor
network performance53. To this end, it was decided that using character-level
embedding offered an advantage over word-level embedding53,54. This would allow
for the generative network to not just use the same species it had been trained with,
but instead allow for it to generate new species based on information gained in the
training process. The embedding was done using TensorFlow’s built-in embedding
techniques and was based on a universal alphabet created from all the equations55.
Additionally, Gaspar et al. demonstrated how molecule embedding can mirror that
of NLP embedding. They go on to demonstrate how improvements can be made to
the predictive power of machine learning models by formulating the inputs into
sequence embeddings56. This is an extremely interesting avenue to pursue and
could lead to an increased number of attractive and viable reactions for AGoRaS.

AGoRaS VAE structure. AGoRaS takes in a vector representation of length n,
where n is the maximum length character-level representation of any equation in
the training dataset. This vector is then fed forward into a TensorFlow embedding
layer that projects the input into a higher dimensionality. This is an important step
because the projection fits numeric values to a high dimensionality space, removing
the intrinsic value from the values themselves. This is done because in the two-
dimensional space, the numeric values have no intrinsic value (i.e. five is not
greater than six they just represent two different characters). The projected vectors
are then fed into a bidirectional LSTM (BiLSTM) layer with a recurrent dropout of
0.2. The mean and log variance is created from the output of the BiLSTM layer. A
sampling function is used to randomly sample this solution space based on the
mean and log variance. The network then decodes the sampled solution space
using a RepeatVector layer that is wrapped around the output of the latent space,
thus turning it into a tensor vector that an LSTM layer could read. The Repeat-
Vector is fed as an input into an LSTM layer, whose output is projected into a
vector of length n. The output of this projection is what is used to calculate the loss
of the network. AGoRaS uses a sequence-to-sequence style loss function common
to variation autoencoders. The metric used for monitoring the network during
training is also the standard kl loss. The network was trained for 500 epochs using a
batch size of 25, an embedding dimensionality of 500, and a latent dimensionality
of 350. The kl weight used was 0.1 and the activation function was a softmax
function. The optimizer function was Adam and the learning rate was 1 × 10−5.

Training AGoRaS. Once the training data had been cleaned and embedded in a
numerical format readable by a neural network architecture, it is split into three
sections. The training set utilized 70% of available data. The validation set was 20%
of available data, and test data was 10% of the data. Even though AGoRaS utilizes a
generative technique, it can still be validated using traditional methods. The VAEs
was validated by testing the ability of the network to encode the validation set and
decode it back to the original string construction with no loss of information.

Autonomously sampling the latent space. Once a trained network has been
created, it is possible to construct a sampler that directly interfaces with the latent

representation. This is shown in Fig. 1B where the neural net layers responsible for
the encoding are removed from the network. It is possible to then start sampling
the different latent representations randomly using a randomized point for each
element and having the decoder part of the network constructing equations. The
decoder takes the randomized points and applies the learned weights to construct
new equations. Due to the probabilistic nature of the latent representations, it is
possible to take an almost unlimited number of sample points and continue to
generate new equations. Of course, there would be diminishing returns on this, as
there are only so many chemically feasible equations possible.

Validating generated equations. The methodology for determining the chemical
validity of equations was extremely like that of the data cleaning process. The first
step was to eliminate duplicate equations. The second step was to check if the
generated equations were balanced. This offered a computationally inexpensive
way to cut down on the number of equations present in the generated dataset. The
third step was to check each species for chemical validity using RDKit, where any
physically or chemically unstable species should be rejected by the software33. This
is a common practice when using a neural network with generated SMILES
species9,46,47,50,57.

Perform semi-empirical calculation. Using the SMILES notion provided in the
generated dataset output, a custom Pipeline Pilot protocol58 was written that would
take the SMILES entry and convert it to an atomistic description. Once the data
was converted to an atomistic description, a semi-empirical calculation was con-
ducted to predict the thermodynamic properties. Pipeline Pilot58 developed by
Dassault Systems is a powerful tool capable of manipulating and analyzing large
quantities of scientific data by using automated processes. The input to Pipeline
Pilot was a CSV file containing and the SMILES description for all molecular
species. The output was the thermodynamic data in a CSV format. Over 7,000,000
chemical equations were processed through the automated Pipeline Pilot protocol
to generate the thermodynamics data for this study.

The semi-empirical calculation is a well-developed method that supersedes
many of the more rigorous quantum chemistry methods employed in similar
studies. Semi-empirical calculations are a good starting point for many of these
more rigorous density functional theory techniques. The approximations for the
complex interactions in the Hamiltonian are accounted for using empirical
parameters tuned to reproduce experimental results. The semi-empirical method
determines the molecular wavefunction, which in turn provides a prediction of the
thermodynamic properties. The molecular wavefunction is constructed using a
linear combination of atomic orbital (LCAO) method. The molecular orbitals are
determined based on a linear combination of Slater-type atomic orbitals. The semi-
empirical method uses Slater functions by evaluating the two-electron integral via a
multipole approximation35.

The semi-empirical model that was implemented in the Pipeline Pilot protocol
was based on the Materials Studio provided VAMP software package35,37.
Geometry optimization was conducted with a range of Hamiltonian models that
include a diatomic differential overlap (NDDO) and PM6 Hamiltonian, Auto
multiplicity, and a spin state unrestricted Hartree-Fock (UHF), restricted Hartree-
Fock (RHF), or annihilated unrestricted Hartree-Fock (A-UHF). Several spin states
were tested based on convergence. A Paulay/IIS convergence scheme with a
convergence energy tolerance of 2 × 10−4. The approach began with the most
restrictive spin state Hamiltonian model and if convergence was not met, a less
restrictive Hamiltonian was tried. Once convergence was achieved for one of the
models, the thermodynamics information and total dipole moment were outputted
from the Pipeline Pilot script to a CSV file.

The Pipeline Pilot protocol script conducted a series of preparation steps before
the semi-empirical calculation. After data was read in using the SMILES format the
SMILES formula was checked for consistency, followed by constructing the
atomistic description of the molecule to provide an initial geometry. The molecule
was generated from the SMILES, centered in the domain, hydrogen atoms were
added to achieve the correct overall charge, and the molecule was cleaned to
provide a initial atomistic geometry. The cleaning step conducted a quick empirical
electrostatic relaxation of the structure to refine the initial geometry. The structure
was provided to a programmed series of VAMP calculations starting with the most
rigorous spin state, as stated above.

Calculation of thermodynamics properties. Once the quantities of interest for
each molecular species had been calculated using the semi-empirical model, the
thermodynamics for each reaction were determined. For each molecular species,
the entropy, enthalpy, and dipole moments were provided at the standard state at
room temperature. The Gibbs free energy for each reaction was calculated using
Eq. (1). Any overall reaction Gibbs energy that exceeded ±5 eV was eliminated due
to concern with chemical stability. Once this step was completed, the equations
were deemed safe to publish and for engineers to interpret.

Data availability
Machine learning model is available on github repository with accompanying filtered
experimental datasets and semi-empirical datasets. Unfiltered datasets and Pipeline
Pilot protocols used to generate filtered datasets can be requested from corresponding
author.
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Code availability
AGoRaS Git: https://github.com/Dr-Musho-Research-Group/AGoRaS-VAE.git.
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