3,548 research outputs found

    Logging Stress and Anxiety Using a Gamified Mobile-based EMA Application, and Emotion Recognition Using a Personalized Machine Learning Approach

    Get PDF
    According to American Psychological Association (APA) more than 9 in 10 (94 percent) adults believe that stress can contribute to the development of major health problems, such as heart disease, depression, and obesity. Due to the subjective nature of stress, and anxiety, it has been demanding to measure these psychological issues accurately by only relying on objective means. In recent years, researchers have increasingly utilized computer vision techniques and machine learning algorithms to develop scalable and accessible solutions for remote mental health monitoring via web and mobile applications. To further enhance accuracy in the field of digital health and precision diagnostics, there is a need for personalized machine-learning approaches that focus on recognizing mental states based on individual characteristics, rather than relying solely on general-purpose solutions. This thesis focuses on conducting experiments aimed at recognizing and assessing levels of stress and anxiety in participants. In the initial phase of the study, a mobile application with broad applicability (compatible with both Android and iPhone platforms) is introduced (we called it STAND). This application serves the purpose of Ecological Momentary Assessment (EMA). Participants receive daily notifications through this smartphone-based app, which redirects them to a screen consisting of three components. These components include a question that prompts participants to indicate their current levels of stress and anxiety, a rating scale ranging from 1 to 10 for quantifying their response, and the ability to capture a selfie. The responses to the stress and anxiety questions, along with the corresponding selfie photographs, are then analyzed on an individual basis. This analysis focuses on exploring the relationships between self-reported stress and anxiety levels and potential facial expressions indicative of stress and anxiety, eye features such as pupil size variation and eye closure, and specific action units (AUs) observed in the frames over time. In addition to its primary functions, the mobile app also gathers sensor data, including accelerometer and gyroscope readings, on a daily basis. This data holds potential for further analysis related to stress and anxiety. Furthermore, apart from capturing selfie photographs, participants have the option to upload video recordings of themselves while engaging in two neuropsychological games. These recorded videos are then subjected to analysis in order to extract pertinent features that can be utilized for binary classification of stress and anxiety (i.e., stress and anxiety recognition). The participants that will be selected for this phase are students aged between 18 and 38, who have received recent clinical diagnoses indicating specific stress and anxiety levels. In order to enhance user engagement in the intervention, gamified elements - an emerging trend to influence user behavior and lifestyle - has been utilized. Incorporating gamified elements into non-game contexts (e.g., health-related) has gained overwhelming popularity during the last few years which has made the interventions more delightful, engaging, and motivating. In the subsequent phase of this research, we conducted an AI experiment employing a personalized machine learning approach to perform emotion recognition on an established dataset called Emognition. This experiment served as a simulation of the future analysis that will be conducted as part of a more comprehensive study focusing on stress and anxiety recognition. The outcomes of the emotion recognition experiment in this study highlight the effectiveness of personalized machine learning techniques and bear significance for the development of future diagnostic endeavors. For training purposes, we selected three models, namely KNN, Random Forest, and MLP. The preliminary performance accuracy results for the experiment were 93%, 95%, and 87% respectively for these models

    A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition

    Get PDF
    Electroencephalography (EEG)-based emotion recognition is an important element in psychiatric health diagnosis for patients. However, the underlying EEG sensor signals are always non-stationary if they are sampled from different experimental sessions or subjects. This results in the deterioration of the classification performance. Domain adaptation methods offer an effective way to reduce the discrepancy of marginal distribution. However, for EEG sensor signals, both marginal and conditional distributions may be mismatched. In addition, the existing domain adaptation strategies always require a high level of additional computation. To address this problem, a novel strategy named adaptive subspace feature matching (ASFM) is proposed in this paper in order to integrate both the marginal and conditional distributions within a unified framework (without any labeled samples from target subjects). Specifically, we develop a linear transformation function which matches the marginal distributions of the source and target subspaces without a regularization term. This significantly decreases the time complexity of our domain adaptation procedure. As a result, both marginal and conditional distribution discrepancies between the source domain and unlabeled target domain can be reduced, and logistic regression (LR) can be applied to the new source domain in order to train a classifier for use in the target domain, since the aligned source domain follows a distribution which is similar to that of the target domain. We compare our ASFM method with six typical approaches using a public EEG dataset with three affective states: positive, neutral, and negative. Both offline and online evaluations were performed. The subject-to-subject offline experimental results demonstrate that our component achieves a mean accuracy and standard deviation of 80.46% and 6.84%, respectively, as compared with a state-of-the-art method, the subspace alignment auto-encoder (SAAE), which achieves values of 77.88% and 7.33% on average, respectively. For the online analysis, the average classification accuracy and standard deviation of ASFM in the subject-to-subject evaluation for all the 15 subjects in a dataset was 75.11% and 7.65%, respectively, gaining a significant performance improvement compared to the best baseline LR which achieves 56.38% and 7.48%, respectively. The experimental results confirm the effectiveness of the proposed method relative to state-of-the-art methods. Moreover, computational efficiency of the proposed ASFM method is much better than standard domain adaptation; if the numbers of training samples and test samples are controlled within certain range, it is suitable for real-time classification. It can be concluded that ASFM is a useful and effective tool for decreasing domain discrepancy and reducing performance degradation across subjects and sessions in the field of EEG-based emotion recognition

    The challenges of emotion recognition methods based on electroencephalogram signals: a literature review

    Get PDF
    Electroencephalogram (EEG) signals in recognizing emotions have several advantages. Still, the success of this study, however, is strongly influenced by: i) the distribution of the data used, ii) consider of differences in participant characteristics, and iii) consider the characteristics of the EEG signals. In response to these issues, this study will examine three important points that affect the success of emotion recognition packaged in several research questions: i) What factors need to be considered to generate and distribute EEG data?, ii) How can EEG signals be generated with consideration of differences in participant characteristics?, and iii) How do EEG signals with characteristics exist among its features for emotion recognition? The results, therefore, indicate some important challenges to be studied further in EEG signals-based emotion recognition research. These include i) determine robust methods for imbalanced EEG signals data, ii) determine the appropriate smoothing method to eliminate disturbances on the baseline signals, iii) determine the best baseline reduction methods to reduce the differences in the characteristics of the participants on the EEG signals, iv) determine the robust architecture of the capsule network method to overcome the loss of knowledge information and apply it in more diverse data set

    Cross-Subject Domain Adaptation for Multi-Frame EEG Images

    Full text link
    Working memory (WM) is a basic part of human cognition, which plays an important role in the study of human cognitive load. Among various brain imaging techniques, electroencephalography has shown its advantage on easy access and reliability. However, one of the critical challenges is that individual difference may cause the ineffective results, especially when the established model meets an unfamiliar subject. In this work, we propose a cross-subject deep adaptation model with spatial attention (CS-DASA) to generalize the workload classifications across subjects. First, we transform time-series EEG data into multi-frame EEG images incorporating more spatio-temporal information. First, the subject-shared module in CS-DASA receives multi-frame EEG image data from both source and target subjects and learns the common feature representations. Then, in subject-specific module, the maximum mean discrepancy is implemented to measure the domain distribution divergence in a reproducing kernel Hilbert space, which can add an effective penalty loss for domain adaptation. Additionally, the subject-to-subject spatial attention mechanism is employed to focus on the most discriminative spatial feature in EEG image data. Experiments conducted on a public WM EEG dataset containing 13 subjects show that the proposed model is capable of achieve better performance than existing state-of-the art methods

    Multimodal emotion recognition based on the fusion of vision, EEG, ECG, and EMG signals

    Get PDF
    This paper presents a novel approach for emotion recognition (ER) based on Electroencephalogram (EEG), Electromyogram (EMG), Electrocardiogram (ECG), and computer vision. The proposed system includes two different models for physiological signals and facial expressions deployed in a real-time embedded system. A custom dataset for EEG, ECG, EMG, and facial expression was collected from 10 participants using an Affective Video Response System. Time, frequency, and wavelet domain-specific features were extracted and optimized, based on their Visualizations from Exploratory Data Analysis (EDA) and Principal Component Analysis (PCA). Local Binary Patterns (LBP), Local Ternary Patterns (LTP), Histogram of Oriented Gradients (HOG), and Gabor descriptors were used for differentiating facial emotions. Classification models, namely decision tree, random forest, and optimized variants thereof, were trained using these features. The optimized Random Forest model achieved an accuracy of 84%, while the optimized Decision Tree achieved 76% for the physiological signal-based model. The facial emotion recognition (FER) model attained an accuracy of 84.6%, 74.3%, 67%, and 64.5% using K-Nearest Neighbors (KNN), Random Forest, Decision Tree, and XGBoost, respectively. Performance metrics, including Area Under Curve (AUC), F1 score, and Receiver Operating Characteristic Curve (ROC), were computed to evaluate the models. The outcome of both results, i.e., the fusion of bio-signals and facial emotion analysis, is given to a voting classifier to get the final emotion. A comprehensive report is generated using the Generative Pretrained Transformer (GPT) language model based on the resultant emotion, achieving an accuracy of 87.5%. The model was implemented and deployed on a Jetson Nano. The results show its relevance to ER. It has applications in enhancing prosthetic systems and other medical fields such as psychological therapy, rehabilitation, assisting individuals with neurological disorders, mental health monitoring, and biometric security

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Interpretable and Robust AI in EEG Systems: A Survey

    Full text link
    The close coupling of artificial intelligence (AI) and electroencephalography (EEG) has substantially advanced human-computer interaction (HCI) technologies in the AI era. Different from traditional EEG systems, the interpretability and robustness of AI-based EEG systems are becoming particularly crucial. The interpretability clarifies the inner working mechanisms of AI models and thus can gain the trust of users. The robustness reflects the AI's reliability against attacks and perturbations, which is essential for sensitive and fragile EEG signals. Thus the interpretability and robustness of AI in EEG systems have attracted increasing attention, and their research has achieved great progress recently. However, there is still no survey covering recent advances in this field. In this paper, we present the first comprehensive survey and summarize the interpretable and robust AI techniques for EEG systems. Specifically, we first propose a taxonomy of interpretability by characterizing it into three types: backpropagation, perturbation, and inherently interpretable methods. Then we classify the robustness mechanisms into four classes: noise and artifacts, human variability, data acquisition instability, and adversarial attacks. Finally, we identify several critical and unresolved challenges for interpretable and robust AI in EEG systems and further discuss their future directions
    corecore