478 research outputs found

    Improving Data Locality in Distributed Processing of Multi-Channel Remote Sensing Data with Potentially Large Stencils

    Get PDF
    Distributing a multi-channel remote sensing data processing with potentially large stencils is a difficult challenge. The goal of this master thesis was to evaluate and investigate the performance impacts of such a processing on a distributed system and if it is possible to improve the total execution time by exploiting data locality or memory alignments. The thesis also gives a brief overview of the actual state of the art in remote sensing distributed data processing and points out why distributed computing will become more important for it in the future. For the experimental part of this thesis an application to process huge arrays on a distributed system was implemented with DASH, a C++ Template Library for Distributed Data Structures with Support for Hierarchical Locality for High Performance Computing and Data-Driven Science. On the basis of the first results an optimization model was developed which has the goal to reduce network traffic while initializing a distributed data structure and executing computations on it with potentially large stencils. Furthermore, a software to estimate the memory layouts with the least network communication cost for a given multi-channel remote sensing data processing workflow was implemented. The results of this optimization were executed and evaluated afterwards. The results show that it is possible to improve the initialization speed of a large image by considering the brick locality by 25%. The optimization model also generate valid decisions for the initialization of the PGAS memory layouts. However, for a real implementation the optimization model has to be modified to reflect implementation-dependent sources of overhead. This thesis presented some approaches towards solving challenges of the distributed computing world that can be used for real-world remote sensing imaging applications and contributed towards solving the challenges of the modern Big Data world for future scientific data exploitation

    A Study of Energy and Locality Effects using Space-filling Curves

    Full text link
    The cost of energy is becoming an increasingly important driver for the operating cost of HPC systems, adding yet another facet to the challenge of producing efficient code. In this paper, we investigate the energy implications of trading computation for locality using Hilbert and Morton space-filling curves with dense matrix-matrix multiplication. The advantage of these curves is that they exhibit an inherent tiling effect without requiring specific architecture tuning. By accessing the matrices in the order determined by the space-filling curves, we can trade computation for locality. The index computation overhead of the Morton curve is found to be balanced against its locality and energy efficiency, while the overhead of the Hilbert curve outweighs its improvements on our test system.Comment: Proceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops (IPDPSW

    AUTOMATING DATA-LAYOUT DECISIONS IN DOMAIN-SPECIFIC LANGUAGES

    Get PDF
    A long-standing challenge in High-Performance Computing (HPC) is the simultaneous achievement of programmer productivity and hardware computational efficiency. The challenge has been exacerbated by the onset of multi- and many-core CPUs and accelerators. Only a few expert programmers have been able to hand-code domain-specific data transformations and vectorization schemes needed to extract the best possible performance on such architectures. In this research, we examined the possibility of automating these methods by developing a Domain-Specific Language (DSL) framework. Our DSL approach extends C++14 by embedding into it a high-level data-parallel array language, and by using a domain-specific compiler to compile to hybrid-parallel code. We also implemented an array index-space transformation algebra within this high-level array language to manipulate array data-layouts and data-distributions. The compiler introduces a novel method for SIMD auto-vectorization based on array data-layouts. Our new auto-vectorization technique is shown to outperform the default auto-vectorization strategy by up to 40% for stencil computations. The compiler also automates distributed data movement with overlapping of local compute with remote data movement using polyhedral integer set analysis. Along with these main innovations, we developed a new technique using C++ template metaprogramming for developing embedded DSLs using C++. We also proposed a domain-specific compiler intermediate representation that simplifies data flow analysis of abstract DSL constructs. We evaluated our framework by constructing a DSL for the HPC grand-challenge domain of lattice quantum chromodynamics. Our DSL yielded performance gains of up to twice the flop rate over existing production C code for selected kernels. This gain in performance was obtained while using less than one-tenth the lines of code. The performance of this DSL was also competitive with the best hand-optimized and hand-vectorized code, and is an order of magnitude better than existing production DSLs.Doctor of Philosoph

    Exploiting Locality and Parallelism with Hierarchically Tiled Arrays

    Get PDF
    The importance of tiles or blocks in mathematics and thus computer science cannot be overstated. From a high level point of view, they are the natural way to express many algorithms, both in iterative and recursive forms. Tiles or sub-tiles are used as basic units in the algorithm description. From a low level point of view, tiling, either as the unit maintained by the algorithm, or as a class of data layouts, is one of the most effective ways to exploit locality, which is a must to achieve good performance in current computers given the growing gap between memory and processor speed. Finally, tiles and operations on them are also basic to express data distribution and parallelism. Despite the importance of this concept, which makes inevitable its widespread usage, most languages do not support it directly. Programmers have to understand and manage the low-level details along with the introduction of tiling. This gives place to bloated potentially error-prone programs in which opportunities for performance are lost. On the other hand, the disparity between the algorithm and the actual implementation enlarges. This thesis illustrates the power of Hierarchically Tiled Arrays (HTAs), a data type which enables the easy manipulation of tiles in object-oriented languages. The objective is to evolve this data type in order to make the representation of all classes for algorithms with a high degree of parallelism and/or locality as natural as possible. We show in the thesis a set of tile operations which leads to a natural and easy implementation of different algorithms in parallel and in sequential with higher clarity and smaller size. In particular, two new language constructs dynamic partitioning and overlapped tiling are discussed in detail. They are extensions of the HTA data type to improve its capabilities to express algorithms with a high abstraction and free programmers from programming tedious low-level tasks. To prove the claims, two popular languages, C++ and MATLAB are extended with our HTA data type. In addition, several important dense linear algebra kernels, stencil computation kernels, as well as some benchmarks in NAS benchmark suite were implemented. We show that the HTA codes needs less programming effort with a negligible effect on performance

    Cache Conscious Data Layouting for In-Memory Databases

    Get PDF
    Many applications with manually implemented data management exhibit a data storage pattern in which semantically related data items are stored closer in memory than unrelated data items. The strong sematic relationship between these data items commonly induces contemporary accesses to them. This is called the principle of data locality and has been recognized by hardware vendors. It is commonly exploited to improve the performance of hardware. General Purpose Database Management Systems (DBMSs), whose main goal is to simplify optimal data storage and processing, generally fall short of this claim because the usage pattern of the stored data cannot be anticipated when designing the system. The current interest in column oriented databases indicates that one strategy does not fit all applications. A DBMS that automatically adapts it’s storage strategy to the workload of the database promises a significant performance increase by maximizing the benefit of hardware optimizations that are based on the principle of data locality. This thesis gives an overview of optimizations that are based on the principle of data locality and the effect they have on the data access performance of applications. Based on the findings, a model is introduced that allows an estimation of the costs of data accesses based on the arrangement of the data in the main memory. This model is evaluated through a series of experiments and incorporated into an automatic layouting component for a DBMS. This layouting component allows the calculation of an analytically optimal storage layout. The performance benefits brought by this component are evaluated in an application benchmark
    • …
    corecore