
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Masterarbeit

Improving Data Locality in
Distributed Processing of

Multi-Channel Remote Sensing
Data with Potentially Large

Stencils

Philipp Patrick Posovszky





INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Masterarbeit

Improving Data Locality in
Distributed Processing of

Multi-Channel Remote Sensing
Data with Potentially Large

Stencils

Philipp Patrick Posovszky

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Pascal Jungblut
Roger Kowalewski
Marc Jäger (DLR e.V.)

Abgabetermin: 06. February 2020





Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 06. Februar 2020

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift des Kandidaten)





Abstract

Distributing a multi-channel remote sensing data processing with potentially large stencils
is a difficult challenge. The goal of this master thesis was to evaluate and investigate the
performance impacts of such a processing on a distributed system and if it is possible to
improve the total execution time by exploiting data locality or memory alignments. The
thesis also gives a brief overview of the actual state of the art in remote sensing distributed
data processing and points out why distributed computing will become more important for
it in the future. For the experimental part of this thesis an application to process huge
arrays on a distributed system was implemented with DASH, a C++ Template Library for
Distributed Data Structures with Support for Hierarchical Locality for High Performance
Computing and Data-Driven Science. On the basis of the first results an optimization model
was developed which has the goal to reduce network traffic while initializing a distributed
data structure and executing computations on it with potentially large stencils. Furthermore,
a software to estimate the memory layouts with the least network communication cost for a
given multi-channel remote sensing data processing workflow was implemented. The results
of this optimization were executed and evaluated afterwards. The results show that it is
possible to improve the initialization speed of a large image by considering the brick locality
by 25%. The optimization model also generate valid decisions for the initialization of the
PGAS memory layouts. However, for a real implementation the optimization model has to
be modified to reflect implementation-dependent sources of overhead. This thesis presented
some approaches towards solving challenges of the distributed computing world that can be
used for real-world remote sensing imaging applications and contributed towards solving the
challenges of the modern Big Data world for future scientific data exploitation.

vii





Contents

1 Introduction 1
1.1 Task and Definition of Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Processing of Large Scale Multi-Channel Remote Sensing Data 5
2.1 Remote Sensing Images and Processing Images . . . . . . . . . . . . . . . . . 5

2.1.1 Efficient Management of the Large Data Volumes . . . . . . . . . . . . 6

2.1.2 Loading and Distribution of RS Data . . . . . . . . . . . . . . . . . . 6

2.1.3 Irregular Data Access on Parallel File Systems . . . . . . . . . . . . . 6

2.1.4 Complex Dependencies between Tasks and Data . . . . . . . . . . . . 6

2.1.5 Efficient and Productive Programming of RS Applications on Dis-
tributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Hardware Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Distributed RS Image Processing 13
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Stencil Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 DASH - a PGAS Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Patterns in DASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Multi-channel RS Processing Workflow . . . . . . . . . . . . . . . . . . . . . . 18

3.7 Brick and Data Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Optimization Model for Data Locality 23
4.1 Parameter Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Surface-to-volume and height-to-width Ratio . . . . . . . . . . . . . . . . . . 24

4.3 Costfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Optimization and Worker Software . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.1 Locality Optimizer for Remote Sensing Data . . . . . . . . . . . . . . 30

4.5.2 Remote Sensing Image Distributor and Processor . . . . . . . . . . . . 31

5 Results & Discussion 35
5.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Read/Write Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.2 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.4 Strong and Weak Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



Contents

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.1 Brick Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Locality in Multi-Channel RS Image Processing with Potentially Large

Stencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3 Layout Performance with Different Stencils . . . . . . . . . . . . . . . 46
5.3.4 Weak/Strong Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Outlook - Interaction with Python 67

7 Conclusion 69

Symbols 73

List of Figures 75

List of Tables 79

Bibliography 81

x



1 Introduction

Remote Sensing (RS) imagery provides an important source of information about our planet
e.g. allowing to monitor traffic of ships in the ocean or detect oil spilling [Vel16], to identify
damage on buildings after earth quakes [YIL+13], to detect deformation and seismic activity
of volcanoes [JDT+15], and to generate Digital Elevation Models (DEM) of the Earth
[ZMB+16]. These applications emphasize the huge significance of RS imagery in business,
society and research today.

The information required for these applications is provided by spaceborne as well as air-
borne systems which generate a large amount of data on a daily basis. In total more than
200 orbital senors on weather satellites, space telescopes, and observation orbiters capture
remote sensing data of the Earth [MWW+15]. An example for such a system are the satel-
lites from the Copernicus Sentinel-2 mission from the European Space Agency (ESA) whose
optical sensors cover the whole Earth every 5 days. The data collected between 2015 and
December 2018 accumulates to a total of 6.7 petabytes (PB) which are structured in more
than 13 million products [Sen18]. The sheer volume of the sensor data is a great challen in
terms of storage, management, processing and analysis a challenge. The German Aerospace
Center (DLR) approached these challenges in its TanDEM-X mission by a fully automated
process that achieved to generate a DEM of the Earth out of more than 500,000 data sets
[ZMB+16].

This illustrates that the processing of RS imagery can be defined as a Big Data task.
Because the term Big Data is relatively new and there is no exact definition, this work will
refer to it using the 4 V’s definition: Volume, Variety, Velocity, Value [HJ13]. The increasing
volume of data caused by more and more satellite missions that provide a growing variety
of RS imagery with increasing velocity can be used for greater value applications [HSHH15].
Table 1.1 lists exemplary volumes and velocities of current satellite missions.

Because of the growth in data volume and the increasing amount of observing spaceborne
and airborne missions, it seems valid to define RS as a Big Data discipline. It covers all of
the 4 V’s of Big Data: (1) A large volume of data from the global missions. (2) A variety
of data from different sensors. (3) An increasing value of the data for emerging businesses.
(4) A high velocity of the data transfer from the sensors to the scientists. The latter is
especially boosted by the change from a traditional order-request producing mode to an
on-line data-triggered producing mode, which allows the scientist to have real time data
access [MWW+14]. Handling the 4 V’s is a challenging task that requires modern hardware
systems, high-performance data management approaches and efficient processing algorithms.

The Microwaves and Radar Institute (HR) of the DLR in Oberpfaffenhofen with its
TerraSAR-X/TanDEM-X mission and additional airborne platforms is one of the main play-
ers in generating and processing a large amount of Synthetic Apreature Radar (SAR) RS
data. Figure 1.1 illustrates a data sets generated by a SAR sensor and the multi-temporal
dimensionality. These data becomes increasingly extensive as new sensors and systems are
developed. With more channels as well as a higher resolution of the imagery, the data vol-
ume will likely exceed more than 1 terabyte (TB) per data set in the future. Handling such

1



1 Introduction

Satellites Velocity Volumes Volumes Year
(Mbps) (GB/Day) (TB/Year)

HJ-1B 60.00 57 20.32 2015
HJ-1A 120.00 114 40.64 2015

[...] [...] [...] [...] [...]
LANDSAT5 85.00 28.02 9.99 2015

RADARSAT-2 105.00 57.68 20.56 2015
LANDSAT8 440.00 241.70 86.16 2015

TanDEM-X* 40.00 140.00 50.00 2018
SENTINEL-2 2933.00 4124.53 1470.17 2018

Total 30143 4620 1648

Table 1.1: Satellite data center: the volume and velocity of RS data [MWW+15], [Sen18],
(*Projected based on [RMW+18])

large data sets is a challenge in itself.

Figure 1.1: The dimensionality of the multi-temporal RS data.

Current techniques used to process and analyze RS data are time consuming and expensive
in terms of computational costs and related infrastructure [Vel16]. Because of optimizations
of the execution time, the Input/Output (I/O) times become critical factors for the economic
and scientific value of the processed data. This is particularly important for applications
where a time-criticality is a requirement, such as the monitoring of the soil moisture of
farmland for finding places to irrigate or oil spills to hunt the polluting ships.

Parallel programming promises a significant speedup of the processing in data-intensive RS
applications. Frameworks like Message Passing Interface (MPI) [CGH94] allow to distribute

2



1.1 Task and Definition of Goals

the computational costs to distributed systems for a faster execution of the algorithms. Nev-
ertheless, the required handling of multilevel hierarchies and increasingly complex distributed
systems turned out to be difficult and error-prone [MWW+14]. A variety of frameworks on
the market exist which proclaim to solve the issue to handle complex implementations with
MPI, such as UPC [UPC05], Titanium [YSP+98], Chapel [CCZ07] and DASH [FFK16].
These frameworks provide an abstraction layer taking care of e.g. data synchronization to
simplify the algorithm development. The possible speedup of existing RS algorithms using
parallel programming combined with the simplified development using a MPI abstraction
framework makes the investigation of a respective solution a worthwhile project.

1.1 Task and Definition of Goals

DLR’s Microwaves and Radar Institute investigates new approaches for the processing of
raw SAR data and high level products in a reliable and fast way. One of the goals is to
speedup the processing time to be able to produce more and faster high level products on
a big scale, like the DEM from the TanDEM-X mission [ZMB+16]. The respective RS
imagery is processed requiring large stencil operations, see for a definition in Section 3.3
in Chapter 3. In the RS image processing such stencils are required to solve dependencies
between several pixels in the image, e.g. to focus the image. These operations are similar
to normal image processing operations like a smoothing filters, but with a way more larger
extent in the stencil dimensions. Normally the stencils are in a rectangular shape. These
large stencils make it difficult to parallelize the processing of the algorithm because of the
data synchronization between the different nodes in the distributed system.

This work evaluates the improvement of the data locality and the data layout in a dis-
tributed environment for the processing with potentially large stencils in order to reduce
the communication overhead. Therefore the impact of large stencils on the communication
and network saturation is analyzed and possible hardware bottlenecks in terms of network
capacity and disk I/O are identified. Furthermore, a possible distribution of the data on
disk aligned to the DASH patterns is investigated. At the end of the work the new approach
towards optimize network traffic of the processing queue of a multi-channel RS data process-
ing with prior knowledge of the stencils is evaluated. The goal is to minimize the network
traffic with exploiting the locality on disk and the data layout in memory with respect to
the given processing task.

1.2 Structure

The remainder of this work is structured as follows: Chapter 2 introduces the theoretical
background of this work. It covers an introduction to the basics of SAR data and the
processing of multi-channel data. Furthermore, a small excerpt of the current state of the
art in distributed computing of RS data is summarized.

Based on this, chapter 3 defines the problem investigated in this work as well as the
structure of the data used throughout this work. In addition the Portal Global Address
Space (PGAS) High Performance Computing (HPC ) programming models are described
together with an introduction to the DASH framework for parallel computing.

Chapter 4 covers the optimization approach of this work. An overview over optimization
strategy and the cost calculations are given. The chapter also describes the foundations of

3



1 Introduction

the approach and the resulting implemented software. The software is split in one part for
creating an execution plan, written in Python, and another part for processing the images,
written in C++. The results of the evaluation experiments are presented and discussed in
chapter 5. Afterwards, a short envision of a potential SAR HPC Processing Python API
based on DASH is shown in chapter 6. The work is concluded in chapter 7.

4



2 Processing of Large Scale Multi-Channel
Remote Sensing Data

Multi channel data sets have become important in many fields of science. The mankind is
developing better methods to measure physic abilities with increasing rapidity and so also
the data sets are growing in dimensionality and size, see Figure 1.1. Especially the earth
observation scientists were able to increasing the data amount in the last decades with more
and cheaper satellites. Handling this amount of data is a huge challenge. In the next section
an overview about the challenges in working with a large amount of RS data is given. In
the follow section the physical limits of processing on new hardware developments is shown.
The chapter concludes with the introduction of the distributed computing concept for RS
image processing.

2.1 Remote Sensing Images and Processing Images

In the last years various new approaches to handle RS data on distributed systems where
initiated resulting in growing research in the field of RS Big Data. Many scientists are
working on solutions for the RS Big Data issues that allow future researchers to successfully
analyze the huge amount of available RS data. In addition to that, large companies generate
new businesses out of the emerging data and invest in research for mastering the mountain of
data. With the open access policy of ESA’s Copernicus mission data, Google join the stage
with its cloud platform Google Earth Engine which provides a platform with simple abstract
access to the data and globally distributed computer centers in the background [GHD+17].
One of the first results on a global scale is an urban footprint layer generated from hundred
of thousands of Landsat and Sentinel-1 scenes on the Google Earth Engine cloud platform
[GMÜ+17]. In the future these data and the developed processing techniques will be useful
in various kinds of applications with great value for humankind. For example it will be
possible to monitor the growth of a field with satellite images [LSBBH11], measure the soil
moisture to enhance the yield of harvest [BAZ12], or monitor the environmental pollution
of the ocean by ships in real time [Vel16].

The overview paper “Remote sensing big data computing: Challenges and opportuni-
ties“[MWW+15] points out that the field RS Big Data leads to five main research issues:

• Efficient management of the large data volumes.

• Loading and distribution of RS data.

• Irregular data access on parallel file systems.

• Complex dependencies between task and data.

• Efficient and productive programming of RS applications on distributed systems.

5



2 Processing of Large Scale Multi-Channel Remote Sensing Data

In the remainder of this section the five research issues are described in more detail and
some examples for solutions are given.

2.1.1 Efficient Management of the Large Data Volumes

Managing the rapidly growing amount of RS data is a difficult challenge especially as new
globally distributed data centers arise resulting in the first and second issue. First, the data
centers should have easily accessible systems, so that scientists can query the metadata and
order/process data in a fast way. This in combination with the multi dimensionality of RS
data, see Figure 1.1, makes storing and accessing distributed RS data complex. Second, the
synchronization between data centers or the transfer of the data to the scientist’s processing
resources takes a lot of time. In the best case the data would be processed directly on the
storing location which results in a data center which have to provide storage and computing
power together. Provide storage, computing power and the common infrastructure together
with the concepts to store the data efficient and manage them is expensively and can only
be achieved by large players.

2.1.2 Loading and Distribution of RS Data

The computation of each pixel usually depends on a large amount of pixels in the neigh-
borhood or data from another spectral band, see Section 3.6. Through this dependencies
it is not easily possible to decompose the data in several data chunks and computed inde-
pendently. If the data is distributed to many nodes and the low-level MPI is used, this
could result in repeated calling of MPI send/receive communication which results in a sig-
nificant performance decline. This is a main concern in this thesis and is deeper described
in Section 3.7.

2.1.3 Irregular Data Access on Parallel File Systems

The complex dependencies between tasks and data. An example therefore is scientist uses
data from a radar satellite and an optical satellite from different data centers, or just pro-
cesses a time series, so the data still have to transfer and be accessible in a fast way on
the local file systems (FS ) [MWW+15]. This is addressed in [WMZ+15], accessing multiple
files could be a performance issue for a parallel file systems, like General purpose file system
(GPFS ) from IBM [IBM19], which are used in modern environments and are often opti-
mized for contiguous file access. [WMZ+15] shows one promising approach towards solving
the I/O issue is the use of a modified OrangeFS file system with application-aware data
layout policies for RS image processing. A 20 to 30 percent I/O performance improvement
was obtained, mainly by segmenting the RS image into multiple bricks and use a Hilbert
Curve to distribute them on the I/O servers. The data inside the brick was ordered with
Z-order curves.

2.1.4 Complex Dependencies between Tasks and Data

To solve specific research tasks the fusion of many different data set is necessary, e.g. in RS
to generate a image it have to be geo-referenced to the correct position of the earths surface
which requires several other data sets, like the airplane flight trajectory/satellite orbit data.
Also the results from a specific task could be depend on other task, which could be make

6



2.2 Hardware Limitations

the whole processing chain quite complicated. [SBL+17] shows examples for solving the
dependencies between different data and reduce the complexity with a data-cube.

2.1.5 Efficient and Productive Programming of RS Applications on Distributed
Systems

The efficient and productive programming of RS applications on distributed systems de-
pends on all four previous mentioned research issues. (1) Without an easy way to integrate
data access in the to developed applications it is not possible to process data in a fast way.
(2) Decompose the data in several chunks, process these data on a distributed system with
thousand of nodes and summarize the results is much more complicated than just process
everything on one single node. (3) the common file systems are not aligned to the irregular
data access. (4) data fusion of distributed data on top results in a complicated data handling
and fusion. Another problem is the different system architectures that exist today: from
personal computers and servers to huge clustered servers and supercomputers, each with
its own challenges. [PDCK11] investigates the trend in RS distributed computing to use
retired personal computers with an MPI -based application to distribute the work showing
that in such heterogeneous platforms additional considerations twoards load balancing are
necessary. The article also compares applications for such a personal computer cluster with
applications written for Graphical Processing Unit (GPU) or Field Programmable Gate
Array (FPGA) systems [PDCK11]. This different architectures of processors must also be
considered in terms of their ability to efficiently process distributed remote sensing data. In
the paper “High performance GPU computing based approaches for oil spill detection from
multi-temporal remote sensing data“[BDK+17] a significant speedup was demonstrated by
using MPI with 64 cores for attribute computations. But still this was far away from prov-
ing real scalability of these effects on huge High Performance Computing (HPC ) systems.
Generally speaking, a good scalability means e.g. that more speed is achieved when using
more resources, for a more detailed definition see [Bon00]. At best, the amount of resources
added correlates to the increase in speedup, but this is not achievable in the real world due
to Amdahl’s Law, see Section 5.2.2.

All this together makes it difficult to implement efficient programming for distributed
processing of distributed RS data. But this does not only apply to RS images distributed
processing, most of the points are also applicable to Big data in general.

2.2 Hardware Limitations

Powerful computer systems are needed to process the large amount of RS data. Today there
are different kinds of computers, e.g. with up to 24 cores per CPU and up to 1 TB RAM
[Int19], file systems up to exabyte and fast network interconnections. They are usually all
structured according to the same scheme: “The von Neumann Computer Model“shown in
Figure 2.1. This scheme consists of the Central Processing Units (CPU), the memory, and
the devices for I/O. These components are connected using the System bus consisting of a
Address bus, Data bus and Control bus [von93].

CPU ’s became more powerful in each technology iteration of the last decades. In the
last 40 years the performance of microchips increased by the factor of 10,000 since 1978,
see Figure 2.2. This development led to the postulation of the two laws: (1) The Dennard
Scaling postulates the possibility to keep the current/voltage dropping and maintain the

7



2 Processing of Large Scale Multi-Channel Remote Sensing Data

Figure 2.1: Schema of von Neumann Computer Model

dependability between integrated circuits. (2) Moore’s Law predicts the doubling of the
number of transistors per chip every year. But the performance increase per generation is
falling with each new development. The flattening of the performance increase curve in the
last 15 years visualizes the end of the two laws. Around 2004 the Dennard Scaling ended
and more recently in 2011 the Moore’s Law has been shown to be no longer valid [HP11]. At
this point more and more CPUs with parallel cores come to the market and start to bring a
further performance boost, but only if the application is developed for parallel execution.

Figure 2.2: Growth in processor performance over 40 years [HP11]

The main concern is the I/O subsystem for processing RS data, see Seciton 2.1.2 about the
research issues. Modern cluster file systems like GPFS [IBM19] allow to manage theoretically
more than 633, 825 yottabytes of data. So the main aspect limiting the size of the FS are the

8



2.3 Distributed Computing

financial resources available to invest in the infrastructure. This could be quite expensive
even though the cost-to-disk-space ratio has been continuously improved in the last years.
But not only the size matters, but also the way to manage and access the data. As already
mentioned in the previous section this could become a problem with processing RS data
sets which use irregular data access patterns and are large in size itself. Even if continuous
reading/writing provides good results, irregular data access can be slow and thus a potential
showstopper for scaling up. Also the network interconnection is a limiting factor. First of all
the delay/latency while accessing data over a network is much slower than accessing a local
solid-state disk directly, because of the communication through the hardware stack from the
Processor to the I/O Subsystem over the I/O Device to another system and back again takes
long then access the local I/O Device. The communication over the network with the other
system could exceed the available resources, which quickly ends in a bottleneck. Adapting
the network structure to cope with these problems has proven to be very costly.

As previously described it is no longer possible to rely only on hardware enhancements in
the microchip architecture of general purpose systems to speed up throughput in general.
One solution to gain more speedup is the development of a domain-specific architecture
that is optimized for a specific RS task. This approach promises a system that is highly
efficient in processing specific RS task but does not scale to arbitrary tasks. This makes
such an specific architecture expensive and maintenance intensive [HP11]. Another approach
twoards an optimized processing speed is the focus on code optimization in general. This is
particularly cost-intensive in terms of time, personal resources and still does not solve the
problem of hardware limitations.

The DLR’s Microwaves and Radar Institute is currently using powerful servers for data
intensive processing. These servers are equipped with a large amount of memory allowing
to process extensive RS data sets. But to deal with the amount of data generated from
the new technology digital beam forming SAR (DBFSAR) [ABA+17] system, even bigger
data sets need to be handled which will start to exceed the local memory of a single node.
Distributing the processing algorithms to a variety of nodes is not trivial because most of
the algorithms in the institute were developed for single node processing. The scientists
currently start working on parallel solutions but there is sill limited experience on this topic
yet. One exception is a newly developed software that processes data via the SPARK [Apa20]
framework, but an infrastructure to unleash the true potential of the SPARK framework
was still not put into production.

Another solution is to use other new processing paradigms like distributed/high perfor-
mance computing. In the following thesis the focus is to overcome hardware limitations with
distributing the problem solution. The focus is on the improvement of data locality per
processing node in the data initialization phase and improving the memory locality of the
PGAS memory space.

2.3 Distributed Computing

Distributed computing combines the resources of multiple nodes to solve a computational
task. Therefore the task is divided in smaller chunks which are processed on multiple partic-
ipating nodes at the same time. The workflow is managed by a server node which distributes
the work chunks to client nodes which process the work packages and return the result back
to the server [BCPS13]. In Figure 2.3 a simplified schema of the described work process is

9



2 Processing of Large Scale Multi-Channel Remote Sensing Data

shown. A master node receives a list of tasks and distributes the tasks to the available nodes
for computing. After all tasks were finished the intermediate results are all communicated
back to the master and then merged to a final result. The master may use a database to
store the progress or intermediate results.

Figure 2.3: Simple abstract schema of a task distribution on distributed system with four
nodes.

In the last decades a variety of cluster-based HPC systems appeared. One of the first
projects heading towards the exploitation of clusters in RS was the NEX system of NASA,
with 16 identical personal computers, with 100 MHz CPU clock speed, which are connected
over Ethernet hubs to form a network [LGP+11]. This so called Beowoulf cluster was able
process its task in half of the time compared to single node processing. Today exist systems
with hundred thousands of cores, like the SuperMUC-NG at the Leibniz-Rechenzentrum
in Munich which consists of 311, 040 compute cores with 719 TB memory, and a peak
performance of 26.9 PetaFlops/s in the High Performance LINPACK benchmark [Rec19].
With this amount of computational power it reached the 9th place in the world ranking of
HPC systems, at the time of June 2019 [Pro19].

These cluster-based HPC systems are often used for the processing of complex scientific
data: Scientists use them to simulate the behavior of their models. Astrophysics use it
to simulate the fusion of neutron stars or super novas. Chemistry and material scientists
use HPC for research in quantum matter or the simulation of oxidation processes on sur-
faces. Earth, climate and environmental scientists simulate the world climate or develop
new weather forecast algorithms. Most of these simulations are computationally expen-
sive, but some of them are also starting to become I/O intensive as well. One example is
from the paper [BKBB18] the 4-D urban mapping project computed on the HPC system
of the Leibniz-Rechenzentrum in Munich which already uses RS SAR products from the
TerraSAR-X satellite mission of DLR.

The general benefits of a distributed computing approach compared to a parallel appli-
cation on a single node are: more resources and more possibilities to achieve scalability,
better reliability, data sharing and combining heterogeneous systems. Thus benefits are at
the expense of challenging system development, as mentioned in the previous section. It is
technically easy to add more nodes to the system in order to increase the processing speed.
But in practice, the parallel efficiency drops with the increase of CPUs, obeying the Amdahl’s
law, see Section 5.2.2. One reason for this is the communication demand between the nodes
while solving the computation, called the communication overhead of the algorithm. The
amount of communication overhead is strongly related to the algorithm itself, problem size,
number of participating cores/nodes, and data distribution. With every core that is added

10



2.3 Distributed Computing

to the system, the amount of work per node and the part of problem it holds locally on
memory is decreasing and can be solved faster. But at the same time, especially in the case
of multi-channel RS image processing with a potentially large stencil, the communication
overhead drastically increases, because of more dependencies to neighbor cells on a remote
node. This problem is detailed in section 3.

As the RS data sets get bigger and bigger, the I/O operations will start to become a big
part in the total execution time in distributed systems. To this day, most of the petascale
supercomputers worldwide are not good at loading or transferring this huge amount of data.
A reason for this is that locality optimization in the data storage architecture has been no
main concern for such supercomputers in the past [MWW+15]. As a novel approach the
Leibniz-Rechenzentrum in Munich start in 2020 a Data Science S torage (DSS ) which should
solve the demands and requirements of data intensive science [Rec19].

Distributed computing is important for the processing of the growing RS data sets. A
major limitation today is that current HPC systems are not designed for the high I/O
load that this type of data causes. This thesis studies an approach to account for these
limitations by using the I/O of a local node and optimize the data distribution to fit to
the PGAS memory layout. This should reduces the communication overhead so that the
system scales better when used with multiple nodes. As a result, the use of a Beowulf cluster
consisting of old personal computers or of different servers with different CPUs could become
feasible for RS data processing in the HR Institute.

11





3 Distributed RS Image Processing

Achieving linear scale up in speed and processing is a difficult challenge. It depends on
various factors, e.g. on the used algorithms, problem size, amount of processors, data layout,
cache sizes and so on. The following section gives a more detailed description of our problem.
It is followed by the technical background and description of the used framework.

3.1 Problem Statement

The goal is to investigate what are the effects of decompose a RS image and process them
afterwards with potentially large stencils. Effects in terms of network, image reading speed
from local hard drives and overall processing speed. The reason for using distributed com-
puting is for a large data set with more than 1 TB, systems using a Non-Uniform Memory
Access (NUMA) architecture [BFS89] are at their limits in terms of computational per-
formance and Random Address Memory (RAM) utilization. Most of the common nodes
today, such as the Xeon Gold 6142 [Int19], are limited by a RAM capacity of 1 TB. Planned
future releases will allow up to 4 TB. But even if the problem fits into the RAM of a
single node, only a rather small number of cores can work on the data thus limiting the
processing efficiency. Distributed or parallel computing could solve this issue by allowing
many individual nodes to participate in the processing by sharing their resources. But with
this kind of processing other problems arise. We have three key issues while transferring
or writing a program for distributed or parallel computing: (1) Existing programs using a
variety of computation types,structures to solve problems and this is not easy to transfer to
an uniform approach. (2) The variability of the computational resources has to be addressed
because the nodes could have a dissimilar amount of load or different computational capa-
bilities. (3) The communication overhead has to be taken into account because inter-node
communication over network is slower than inter-machine communication via the internal
bus [Bok87].

For this thesis the focus is set on the third issue while using distributed computing. The
first issue is mainly a problem for migrating existing applications to distributed computing.
The dissimilarity in load and computational capabilities will only be a problem if there
are competitive calculations in parallel or if one node is much slower. The communication
overhead occurs when the processing on the nodes is not independent and intermediate
results have to be exchanged to other participating nodes. This could be of particular
interest for RS data operations with a huge dependency to neighborhoods using potentially
large stencils on large arrays, as described in detail in the next section.

One way to minimize the communication over the network in the initializing step could
be to increase the locality of data in the local storage such its aligned to the PGAS memory
layout such that the demand of following processing steps with different stencils is satisfied
at its best. This means in the best case, each node holds the data which are supposed to
be in its part of the PGAS memory layout while the processing directly on it’s local disk,
rather than loading it over network.

13



3 Distributed RS Image Processing

3.2 Data Description

The SAR data sets are structured similar to an ordinary optical image. The whole image
consists of a two dimensional pixel array. Each pixel is defined by its position x, y and a value
n for a specific physical property, e.g. the color in the case of an optical image. However,
in a SAR image n specifies a complex number that represents the amplitude and phase of
the electromagnetic wave. In an optical image n often consists out of multiple values that
specify the position of the appropriate color in a color space, e.g. the RGB color space is
defined by three channels for the light intensity of red, green and blue. A DBFSAR image
also can have up to 60 channels per image and more [ABA+17]. If we assume a image with
100, 000 · 25, 000 pixels and one pixel being represented by a 8 Byte complex number, which
is common for a SAR image, with 60 different channels, the resulting size is 18.62 GB. Each
of these channels could be processed separately and combined for different kinds of high level
products. RS images normally contains a stack of metadata, e.g for a airboren system the
flight trajectory. For this thesis the metadata are not considered.

For loading the data on different nodes in parallel they have to be segmented into bricks,
like in the Figures 3.1 and 3.5 shown. There the whole image is segmented in regular
quadratic blocks, called a data brick. Its also possible to segment the bricks line or column
wise, to match with the later described DASH patterns. The position of the brick could
be encoded with the x, y coordinate of the upper left and lower right coordinate. Each
data brick will be distributed to a local FS of a participating node. A boost in I/O while
reading/writing on the local disk of a single node in comparison to a parallel file system is
expected. The reason is, at a certain point either the parallel file system, in particular the
server, will not be able to handle more I/O request or the speed of the network interconnect
becomes a bottleneck.

In chapter 5 evaluation experiments will be performed. Instead of generating the workload
with real SAR data and algorithms, artificially generated grayscale images for the input and
for the processing step a smoothing algorithm for simulating the workload of potential large
stencil algorithms is used, see section 4.5.2. Real DBFSAR algorithms are not used in
this thesis, because of they are not available in a compatible programming language for
distributed computing, like C++, right now. Another requirement is the image width and
height have to be divisible by powers of two.

Despite the approach with distributed solutions it would also possible for a large image
to segment it in a lot of independent smaller images and stitch them back together after the
processing. However, this generates a lot of more computational overhead and complexity
for the whole processing.

3.3 Stencil Computation

Following [SSPP11], stencil operations are defined as: The neighborhood is commonly de-
fined by a rectangle. A simple example for such a stencil operation is to add up all cells in
the neighborhood and divide them by the total count to get the mean value of the neighbor-
hood. A similar calculation is used by smoothing filters in image processing. In RS image
processing, and the radar signal processing in particular, the neighborhood of an update cell
often becomes extremely large which leads to a problem with communication overhead over
multiple nodes, as stated earlier. Also, keeping all necessary cells in the cache of the CPU

14



3.3 Stencil Computation

Figure 3.1: A SAR image segmented in 20 data bricks with a size of 2048 · 2048 pixels each.

for a single cell update will become difficult. Furthermore, as these kind of operations are of
low arithmetic intensity, they hardly benefit from repeated access pattern on already loaded
cache lines. This could, depending on the domain and stencil extents, generate a lot of cache
misses which limits the total throughput to the node [SSPP11]. The performance of the real
execution time of a stencils can become relevant for compare the different possible PGAS
layouts and estimate costs for them.

Figure 3.2 shows an exemplary stencil operation for a 5 · 5 array. On the center pixel a
stencil is applied, which smooths the array by calculating the mean of the 3 ·3 neighborhood
as described earlier. The resulting mean value for the center pixel in the example is 15. The
requirement in this thesis for the stencil extents is to be odd, otherwise it’s not possible to
have a center pixel. This is not true for radar signal processing, there are also even-sized
stencils common.

Figure 3.2: 3 · 3 stencil operation on a small array.

15



3 Distributed RS Image Processing

3.4 DASH - a PGAS Framework

The following introduction to the DASH framework is mainly based on “DASH: A C++
PGAS Library for Distributed Data Structures and Parallel Algorithms“ [FFK16].

A partitioned global address space approach allows each participating nodes to have a
global view on the data structure, e.g. an 2D array, inside and globally shared memory.
Each node participate with a part of it’s local memory to the globally shared memory. This
(PGAS ) memory space is distributed to all nodes and can be adapted by certain patterns in
the layout. Thus, the application can benefit from a large shared memory, but additionally
with the possibility to control the memory layout (global or on local level) to the demands of
high performance and scalability [YBC+07]. The possibility to control the memory layout is
a key factor for this thesis. In the following, a rough overview over PGAS approaches on the
market and more details about the DASH concept are given. Next to DASH there are several
other PGAS approaches on the market, like UPC [UPC05], Titanium [YSP+98], and Chapel
[CCZ07]. But they all come as a new language, and thus with a compiler, which means a
complete new ecosystem. Usually, this requires to train developers for the new language,
which leads to high costs and only a few organizations can afford this. Also, it is unsure if the
compiler developers continue their work and can give support in the future [FFK16]. With
release of C++11 [ISO12] and its introduced powerful abstraction mechanism for a generic,
expressive and highly optimized library, many projects started to use C++11, like UPC++
[ZKD+14], Kokkos [ETS14], RAJA [HK14], and also DASH [FFK16]. Like mentioned in
Section 2.2 and Section 2.3, remote accessing and sharing memory becomes more important
in distributed systems. For current and future large-scale systems PGAS is widely considered
as a promising approach. The DASH framework uses a one-sided communication model,
which is based on MPI-3 Remote Memory Access (RMA) features and is the basis for the
runtime system of DASH, called the DASH RunTime (DART ). DASH itself is implemented
as a C++ template library. In this way there is no requirement for a custom (pre-)compiler
infrastructure, this is called a compiler-free PGAS [SKF18].

This thesis follows [FF16] in the use of terminology when referring to DASH features:

• unit : single CPU core which contributes storage and processing resources.

• teams: several units can be organized in hierarchical teams.

• patterns: partition the global memory of an array into blocks and map them to a
specific unit.

We have decided to use the DASH framework for testing the HPC ability of our experiment
and to prove our hypothesis about improving locality on the disk while initializing a PGAS
data array and optimized the memory layout for processing of multi-channel remote sensing
data with potentially large stencils.

3.5 Patterns in DASH

The features of the DASH library can be used in order to improve the data locality and
avoid communication overhead. The DASH library allows to use different variants of data
distribution patterns for the shared PGAS memory which can be configured by specific
parameters, e.g. parameters are the array size in the dimensions, the amount of used units,

16



3.5 Patterns in DASH

see Listing 3.1. This patterns define how the global PGAS view is build up of the memory
of all units. For each dimension it is possible to choose from CYCLIC, BLOCK-CYCLIC,
TILED and BLOCKED pattern. If there is more than one dimension and a pattern is already
chosen, it is also possible to specify NONE for the remaining dimensions. Listing 3.1 shows
the instantiation of a NONE BLOCKED pattern. The amount of units is chosen by the
mpirun call and inside the implementations the maximum amount of units is used. It is
possible to group up the units in different teams and create a distributed array only for
this team, but this feature is not used in this thesis. Per default the units are assigned to
the given nodes using a round robin manner, though direct unit mapping is also possible.
The version of DASH used in this thesis does not support overlapping memory areas at the
edges, so that edge areas are automatically synchronized. In the next release of DASH this
feature will be usable.

Listing 3.1: Instantiation of NONE BLOCKED DASH pattern

dash::TeamSpec <2> ts(1,dash::size ());

dash:: DistributionSpec <2> ds(dash::NONE , dash:: BLOCKED );

dash::SizeSpec <2> ss(extent_x , extent_y );

dash::Pattern <2> pattern(ss , ds , ts);

So it is possible for the application developer to specify a data distribution which achieves a
high data locality in the initialization phase and communication avoidance in the processing
phase, depending on the chosen pattern and stencils. Examples for the different layouts is
shown in the Figure 3.3. Each color shade represents an unit, the units can be placed on
independent nodes. In the following thesis we use the abbreviation B for BLOCKED and
N for NONE. As a synonme for pattern also layout can be used. Distribution could be used
in both context, the brick on the disk or die blocks in the memory.

Figure 3.3: Different DASH patterns with 8 units on a segmented image in 8 ·8 bricks. Each
color shade represents a block on an different unit.

17



3 Distributed RS Image Processing

3.6 Multi-channel RS Processing Workflow

The processing of SAR or multi-channel RS images is comparable to classical image pro-
cessing, just with more channels and bigger stencils. In Figure 3.4 an exemplary workflow
for multi-channel RS processing with eight different channels is illustrated. Transformations
that only apply to a single channel are depicted on the left side of the figure. A high level
product processing step combining different channels is shown on the right side of the figure.
At the end of this exemplary workflow, six high level products are generated. An example
for such a product is depicted in the background of Figure 3.1.

ST2

ST1

ST2

ST2 ST3

ST3

ST3

ST3

Fusion 
5-8

ST2

ST2

ST2

ST2 ST3

ST3

ST3

ST3

Fusion 
1,5

ST3

Fusion 
2,6

ST3

Fusion 
3,7

ST3

Fusion 
4,8

ST3

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 8

ST1

ST1

ST2

ST1

ST1

ST1

ST1

ST1

High Level Products
Focused SAR

Images
Raw Data

Range
Compression

Azimuth
Compression

Polarimetry and Single-pas Interferometry

Fusion 
1-4

Figure 3.4: Multi-channel RS processing workflow

The arrows in the Figure 3.4 represent computations on the image. These computations
are distinguished in computations on a single channel, called Transformation (T ), and com-
binations of various channels, called Fusion (F ). The transformation step preprocesses the
channel in order to e.g. obtain equally illuminated scenes or focus the image in each dimen-
sion. Latter is needed to account for antenna movements along the flight track of airborne
SAR systems. Fusion tasks combine different channels to generate high level products, like
interferometric or polarimetric products. After each computation step the nodes have to
write the intermediate results back to disk to keep them for follow-up processing. Trans-
formations often use stencils with a big size in one of the dimensions (see ST1 /ST2 in
Figure 3.5), e.g. to compensate the proper motion the airplane in the process of focusing the
RS image in each dimension, in the case of a ariborne SAR system. Compared to this, the

18



3.6 Multi-channel RS Processing Workflow

stencils of Fusion operations are more square like, as depicted by ST3 in Figure 3.5. General
the size of the fusion stencils is by a factor of 10 smaller compared to the other stencils which
could have extents up to more than 1000 pixels in width or height. In contrast to the small
stencils in classical image processing with e.g. sharpener filters with stencil sizes of 3 · 3 or
5 · 5, the stencils in RS image processing could become significantly larger.

Figure 3.5: Different stencil operations: (ST1) with high extent in dimension 1, (ST2) stencil
with high extent in dimension 0 and (ST3) stencil with small and similar extent
in both dimensions. Color shade represent a unit.

19



3 Distributed RS Image Processing

3.7 Brick and Data Locality

The localities are distinguished between initializing the data from the hard disk into PGAS
memory, called brick in this context, and during processing in RAM, called block in this con-
text. A brick represents the data on the local disk as an n ·m pixel array. A block represents
an area in RAM of a unit. From this we distinguished between to locality concepts,brick
locality and block locality.

Brick locality is defined as the amount of bricks which are stored on the node which will
holds the block in its local memory after the initialization.

Block locality is defined as the amount of pixel which have not to be moved to another
node while switching between to layouts.

In both locality definitions there is no network transfer necessary for initializing the data
or switching the memory layout. In the Figure 3.6 an simplified example for brick locality
is shown. A image is decomposed in 8 · 8 bricks and distributed to eight nodes and each
node stores tow rows of bricks. Also it is assumed each node handle the execution of one
units, so each node is responsible for loading eight bricks. If the bricks are now initialized
into an DASH array with the BB pattern, a 50% brick locality is achieved. Using a BN
pattern matches the storage pattern, which is row wise on the nodes, thus increasing the
brick locality to 100%. The other way around with a NB layout, results in only 12.5%
brick locality. The bricks which are local stored on the node disk are highlighted red in
the Figure 3.6. With a higher brick locality factor less bricks have to be copied to another
unit, which result in less network load. If the memory DASH pattern exactly matches the
storage brick pattern, then there will be no remote calls at all and the system can read all
memory from the fast local disks. With no remote calls the total I/O speed will be no longer
depending on the total throughput of the network and storage infrastructure. Instead the
accumulated disk speed of all nodes is the maximum I/O which can be achieved. If brick
locality is decreasing, the network will be again also an factor to consider.

Figure 3.6: Visualization of an image segmented in 8 ·8 bricks loaded into a BB, BN and NB
patterns in DASH using eight units. The different block colors shades correspond
to the different units and the brick number corresponds to the respective node.
Red highlighted brick numbers are locally available on the disk.

Multi-state processing pipelines may benefit from a switch in the DASH layout between
individual processing stages. The amount of traffic generated by switch the layout and
processing on a aligned stencils could be less then the traffic is processing with an unaligned

20



3.7 Brick and Data Locality

stencil.In the Figure 3.7 an simplified example for block locality is shown. Given a DASH
array with a BB pattern consist out of 8 · 8 bricks. If a layout switch is assumed to a BN
pattern 50% block locality is achieved. The other way around, for the NB pattern 12.5% is
achieved. In contrast to in the brick locality example, some units have no data in it’s local
memory at all. While switch a layout the network decreases with a higher block locality,
because less data have to be communicated to other units.

Figure 3.7: Visualization of an image segmented in 8·8 and already loaded into a DASH array
with BB pattern. The different block colors shades and numbers correspondent
to the different units/nodes. Red highlighted brick numbers are available in the
local memory.

21





4 Optimization Model for Data Locality

The aim is to minimize the total volume of inter-node communication. For this purpose it is
necessary to consider the amount of communication that is required to initialize the bricks
into the memory as well as the amount of communication due to stencils processing. This
can be achieved by aligning the brick distribution on the nodes to the DASH memory layout
in the initialization step and additionally align the memory layout to the used stencils.

A processing chain is divided into multiple steps as described in Section 3.6 (Fig.3.4). At
the beginning the data is read into the local memory from single bricks which are distributed
over all nodes. As a starting point, a random block distribution of the raw data over all
nodes is assumed. After this, a processing step is done and followed by an intermediate
output phase, which writes data back into bricks on the local disk. This is repeated until
the high level product is completed. For delivering the product, each unit writes the data
from its local memory to its local disk. The intermediate products should be saved in the
used layout, like BB, NB or BN and is distribution over all participating nodes after each
processing step. For further improvement of the brick locality, A redundancy brick storing
strategy on the system is considered For this, the same bricks are placed on different nodes,
similar to the Hadoop File System [Apa19]. The file space usage increases depending on the
redundancy factor.

The symbols used in the remainder of this chapter are described in detail in appendix
Symbols.

4.1 Parameter Definition

Before starting with detailed description of the optimization model a brief overview over the
parameters is given. Figure 4.1 shows on the left side the segmentation of an image in 4 · 4
data bricks. On the right side of the Figure the corresponding pixel space is shown. The
color of the bricks illustrate the owning node. In this example, the blue brick b11 lies in the
memory of the local node while the orange, green, and violet bricks are stored on remote
nodes. Also the data is already initialized to a BB pattern with 4 units which result in
2 · 2 blocks in the global memory, each block is mapped to one unit. The memory layout
borders of each node are shown in blue, orange, green, and violet color. On the right side a
zoomed view of the 8 · 8 center pixels is given. From the perspective of the blue local node,
all pixels which are not in its local memory are annotated as remote pixels rp and all local
pixels with lp. The pixels on the borders which are necessary to update the local cells near
the border are annotated as cp for communication pixel, the whole area is called the halo
area. In this example a 3 · 3 stencil is used, which results in a area of 1 pixel around each
block, visualized with the yellow margin around the blue block. This halo represents the
communication overhead for this unit for the exemplary stencil operation.

23



4 Optimization Model for Data Locality

lp lp lp lp lp lp cp rp

lp lp lp lp lp lp cp rp

lp lp lp lp lp lp cp rp

lp lp lp lp lp lp cp rp

lp lp lp lp lp cp rp

cp cp cp cp cp cp cp rp

rp rp rp rp rp rp rp rp

rp rp rp rp rp rp rp rp

b00 b01 b02 b03

b10 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

b11

u

Stencil (x,y)

Figure 4.1: Schema of image segmentation into bricks on the left side and example for a
single stencil operation on the right side.

4.2 Surface-to-volume and height-to-width Ratio

The communication overhead for the BB layout is strongly coupled on the decomposition of
the units with respect to the extents on the memory, see Figure 4.4. With the surface-to-
volume ratio the coupling of the dimension in relation to the stencil extents can be expressed.

The surface-to-volume ratio is defined as: surface of the block S (surface) divided by the
amount of pixel of a block V (volume). S is calculated from the geometric surface of the
rectangle of the block while V is calculated from the geometric volume. With an increase of
units the amount of pixel per block (volume) decreases while the necessary communication
(surface) increases.

A similar metric is the height-to-width ratio RH/W for stencils with a large extent in only
one of the dimensions, e.g. ST2 or ST3 is interesting.

The height-to-width Ratio RH/W is defined as: height H of the rectangle of the block
divided by the width W . Depending one the stencils we would expect lower communication
overhead for a small RH/W << 1 with a large stencil extent in the first dimension and a
large RH/W >> 1 with a large stencil extent in the second dimension.

For the given processing problem with a 2D array described in section 3.6 (Figure Fig. 3.3)
the BB, BN and NB patterns have the best ratios and should therefore result in a reduced
stencil communication overhead, see table 4.1. The stencil communication overhead for BB
DASH pattern is strongly depending on how well the units can be factorized in two numbers.
In the best case the number of units u is square allowing to choose a pattern with

√
u in

each dimension. The worst case is a prime count of units which results in a pattern with 1 ·u
blocks, the same as the NB pattern. For completeness, Table 4.1 shows also the ratios for

24



4.3 Costfunction

a TILED(5) TILED(5) pattern. Contrary to the prior assumption, this pattern generates a
1 : 1 RS/V and RH/W . It will still not be chosen as a fitting pattern because if larger tiles are
assumed, the same volume as the BB layout is possible, but a more complicate data order in
the local DASH array will result. Because a unit may have multiple tiles in its local array,
so the local array cannot be assumed as a x · y large slice of the complete image anymore.

Units Layout Surface Volume RS/V RH/W

8 BB 48 128 5
16

1
2

8 BN 72 128 9
16

1
8

8 NB 72 128 9
16

8
1

8 TILED(5) TILED(5) 16 16 1 1

Table 4.1: RS/V and RH/W for the given examples. [B = BLOCKED, N = NONE]

4.3 Costfunction

For an optimization a cost is necessary, this chapter describes how the cost for the network
communication is calculated. At the end, there is a cost value which estimates how many
pixels have to be communicated over the network, for switching between two distributions
or for loading data from local disk into the DASH array.

The cost is calculated on the basis of pixel. As the basis the brick distribution on disk
and on the other hand the block distribution in the memory defined by the DASH pattern
is used. The brick distribution is a mapping of all bricks with their coordinates to the node
where it’s stored. In the algorithm this is represented as a simple bitmap, see Figure 4.2. The
memory blocks are also represented as a simple bitmap. The memory blocks are depending
on the amount of units and chosen pattern, as shown in Figures 3.3.

Figure 4.2: Random data distribution on 8 nodes. Each shade of gray represents an assigned
node.

For the calculation of the cost the given brick distribution dstart (e.g. Fig. 4.2) is used as
a start point and the difference in the pixel location to the next block distribution dnext in
memory is calculated. Additionally the communication overhead of the stencil SO is added.

The cost calculation is based on the brick distribution on the disk, and on the block
distribution in the memory defined by the DASH pattern. The brick distribution is a

25



4 Optimization Model for Data Locality

mapping of all bricks with their coordinates to the node where they are stored. In the
algorithm this is represented as a bitmap as shown in Figure 4.2. The data distribution
represents the memory layout in the PGAS depending on the amount of units and chosen
pattern as depicted in Figure 3.3. This is represented as a bitmap as well. For the calculation
of the cost the given data distribution d is used as a starting point and the difference
in the pixel location to the next data distribution dnext is calculated. Additionally the
communication overhead SO is added. The result is a value which represents all pixels which
have to be communicated over the network while switching between two distributions.

The remainder of his section describes the cost calculation step by step: At the start, the
total amount of the existing pixels in the distribution, called pixel count PC of the given
image, is calculated. The image extents in each dimension extx and exty are derived from
the distribution:

PC(d)=extx · exty (4.1)

Furthermore the local pixel count LPC(d, dnext) for the next data distribution dnext is
defined by the amount of pixels which can be read locally from disk or are in the local
memory space of the DASH unit. All other pixels have to be transferred over the network or
initialized by another unit. Thus the LPC is the sum of all pixels where the node location
is equal in both distributions:

LPC(d, dnext) =

extx−1∑
i=0

exty−1∑
j=0

{
1 if d[i][j] = dnext[i][j]

0 else
(4.2)

The communication overhead of a layout SOdistribution(d, s) calculates the pixels which
have to be touched by the algorithm over the network while executing. This part is also
affected by the extents in each dimension sextx/sexty of the stencils s which are used. The
communication overhead depends on the DASH pattern as well. It is assumed, that at every
unit border a network communication will happen. Even though this is not true for units
on the same node, it simplifies the calculation and should not have a significant impact on
the result.

The communication overhead for BN and NB DASH pattern, COBN (d, s) and COBN (d, s),
are calculated similarly: The amount of units u minus 1 gives the border count, this mul-
tiplied by the total image extents (extx and exty) of the split and the halo area results in
the total amount of pixel which have to be communicated. The halo area is derived from
the stencil extents in the corresponding direction. The halo extent around each block is
sextx−1

2 /
sexty−1

2 . At each border the communication occurs in both directions, so we have to
multiply the result by two resulting in the Equations 4.3 and 4.4:

SOBN (d, s)=(u− 1) · extx · (
sextx − 1

2
· 2) (4.3)

SONB(d, s)=(u− 1) · exty · (
sexty − 1

2
· 2) (4.4)

This was the calculation for the BN and NB. For the BB layout the calculation is different.
Like before it is necessary to calculate the amount of borders in the dimension x and y. This
is done by first finding the amount of units distributed in each dimension. DASH is using a
prime factorization to split the units in each dimension. After having the amount of blocks

26



4.3 Costfunction

in each dimension, the borders can be calculated like above on the other layouts. Now the
border count in each dimension rows/columns can be multiplied by the total image extent
extx/exty times the halo area. The halo has to be calculated like before, resulting in the
following Equation 4.5:

SOBB(d, s)=(coulmns− 1) · exty · (
sexty − 1

2
· 2) + (rows− 1) · extx · (

sextx − 1

2
· 2) (4.5)

For the final cost functions the pixel count PC(d) is subtracted from the local pixel count
LPC(dnext) of the given data distribution dnext. As a result we have all pixels which have
to be transferred over the network during the input phase or all pixels which have to be
transferred for switching the data distribution in memory between two processing stages
with different stencils.

The communication overhead SO(d, dnext, s) depends on the given data distribution d, the
next data distribution dnext and the stencil s which will be used. At the end, the total cost
of the given brick from a given data distribution to a next data distribution with the given
stencil can be calculated with the Equation 4.6:

Ctrans(d, dnext, s)=PC(d)−LPC(d)+SO(d, dnext, s) (4.6)

This only holds for transformations from one distribution to another. As described in
Section 3.6 fusion of multiple distributions are also possible. For this the different start-
ing distributions d1, ..., di have to be considered which should be fused in the same next
distribution dnext. The total cost is calculated with Equation 4.7:

Cfusion(d1..n, dnext, s)=Ctrans(d1, dnext, s) + ... + Ctrans(di, dnext, s) (4.7)

In Figure 4.3 the communication overhead of each DASH pattern with increasing amount
of units is shown with the three different stencils described in Table 5.3. Like mentioned
earlier, every time the units are a prime number the BB layout behaves like the NB layout,
i.e. SOBB(d, s) = SONB(d, s).

Trough factorization of the numbers of units the derived equation becomes volatile. This
violate behavior correlate to the RS/V , RH/W , see Figure 4.4. Therefore, the quantity of
possible input units is limited in order to reduce the volatile behavior of the equation. If
units with RH/W > 1

4 are filtered out, only blocks with a more homogeneous ratio between
height and width remain which leads to a better RS/V . In other words, the coefficient of
variation v is minimized. A low coefficient of variation indicates a less volatile function. The
variation without a filter is v2nofilter = 0.96 whereas the variation using the described filter is

reduced to v2nofilter = 0.42. From this it can be assumed that the best case for the count of
units is a square number. A square number on a square image will have RH/W = 1.0. This
should result in the best performance for the BB pattern with an identical stencil in x and
y. A prime number of units should never be chosen, because in this case the BB layout will
generate a unit decomposition with 1 · u and this is similar to the NB layout. In Figure 4.5
the filtered function for ST3 is shown.

Figure 4.3 shows that the communication overhead over the network for ST1 with BN
pattern and ST2 with NB pattern is 0. The reason for this is that there is no communication
in the dimension which contains borders, so the calculation per unit is independent from
other units.

27



4 Optimization Model for Data Locality

Figure 4.3: SO(d, s) for the different patterns with ST1, ST2 and ST3. Assumed 100% brick
locality while initialization. Right side the layout examples with the stencils to
show alignment. Bottom plot: BN = NB.

0 20 40 60 80 100 120
Units/Cores

0.0

0.5

1.0

1.5

2.0

2.5

Co
st

s

1e8 Estimation of cost devlopment for BB
ST(101,1)
ST(1,101)
ST(101,101)

Figure 4.4: SO(d, s) for the BB with different stencil extents.

28



4.3 Costfunction

0 20 40 60 80 100 120
Units

0.0

0.5

1.0

1.5

2.0

Co
st

s

1e7 Filtered - Cost estimation for ST3 {9,9}
BB
BN
NB

Figure 4.5: Filtered SO(d, s) for the different units with ST3. Assumed 100% brick locality
while initialization. BN = NB.

29



4 Optimization Model for Data Locality

4.4 Optimization Model

A given data distribution dopt is optimal if minimum of pixels is transferred over the network
for processing next distribution dnext with a given stencil s:

dopt = argmind∈{dA,dB ,dC ,dD,...}(C(d, dnext, s)) (4.8)

The next distribution dnext could be either of a BB, BN, or NB pattern. The initialization
phase should faster if more local bricks are available, so it should be useful to change the
node order or manipulate the unit mapping to achieve a higher locality, or use unit pinning
of the MPI framework. But this will result in a large amount of permutations, N it is N !
and this already becomes large with a few nodes. For searching the global minimum it is
no longer possible to calculate every solution in a reasonable time frame. In this problem
space, other strategies have to be used. To reduce the permutations we can try to head
for a local minimum. One strategy could be to just switch the first node with another and
calculate if the locality is increasing for the patterns. If such a combination is found, we
look at the second node and try to find again a combination with locality increase. This is
repeated until each node is used for a search or as a change partner. At the end we only
have to check n(n−1)

2 permutations. But before putting effort into strategy, it is important
to know if the effort to find this strategy will pay off. It is important to know how big
the impact of inputting none local bricks vs. local bricks on the total performance of all
processing steps is. Another possibility for optimization is to vary the amount of units, e.g.
to gain a better RS/V and RH/W but this will result in a new initialization phase. One
advantage of not manipulating the units is the ability to keep the data in memory and just
change the patterns while processing. Anyway, writing back the intermediate results is a
requirement for the RS processing to keep intermediate results for reuse in the future. So a
new initialization phase could be possible, but only if the effect of a better ratio with less
units results in a performance gain and this have to be proofed in the experiments.

4.5 Optimization and Worker Software

The following section is a short overview of the implementation of the software framework
for testing the optimization concept from the previous Chapter 3. The complete software
stack is split in two layers. On the first layer is the Locality Optimizer for Remote Sensing
Data, a Python program which analyzes the multi-channel SAR processing workflow and
generates tasks as an output. The second software component is the Remote Sensing Image
Distribute and Processor and is responsible for executing these tasks and is described in
Section 4.5.2.

4.5.1 Locality Optimizer for Remote Sensing Data

For the implementation the Python version 3.7 created with Anaconda on an Ubuntu 18.04.03
LTS operating system is used. The developed program’s task is to find the optimal distri-
bution to speed up the given workflow for multi-channel remote sensing, see Figure 3.4. The
input for the Locality Optimizer for Remote Sensing Data is a processing graph with multi-
ple channel transformations and channel fusions at the end. Each fusion and transformation
defines a stencil for the operation and uses a smoothing filter for workload simulation. After

30



4.5 Optimization and Worker Software

the optimization of the graph for a data flow with less network communication, it outputs
a processing task for each channel transformation and fusion. The resulting processing task
consists of operation, input file, and its initial brick distribution, defined as an array as
depicted in Figure 4.2. Also the calculated optimal PGAS DASH pattern is given as well
as the amount of units and the participating nodes.

From the initial distribution of each channel and with the cost function, see previous
Section 4.3, the lowest cost for the next best distribution for the next step can be calculated
for the given task (ST1,ST2,ST3). This will be the start distribution for the next iteration.
After all transformations are done for each channel, the fusion steps will be calculated. In the
first fusion step the two channels are summed up and in the second fusion step four channels
are summed up. Depending on the initial distribution and the applied stencil operations,
different channels will have different distributions. Because the fusion process will also apply
an operation with a stencil, all two or four different channel distributions have to be aligned
in a next distribution.

As a starting point for the distributions of the channels, a random distribution of the
raw data bricks on all participating nodes is used. Every brick is stored on a participating
node, so it is easier to handle the input data for the experiment. If the knowledge about
what the first stencil will be is used, it is also interesting to assume a specific pattern as
a starting data distribution. The data distribution is encoded in an array. The value of
each element corresponds to the node which stores the data, see Figure 4.2. The master
node which optimizes the workflow is responsible for managing the storage information. It
is assumed to have every intermediate product stored on the system as a data brick. Each
unit will write its local data back to disk. Therefore it is possible for the master node to
infer on which node the data will be stored after a single processing step.

4.5.2 Remote Sensing Image Distributor and Processor

The second layer is implemented in C++ and is based on the DASH-Project [LM19]. For
executing an application which uses the DASH framework, the user has to fulfill the require-
ments for MPI on every participating node and the compiled application has to be installed
on every node accessible for the user. The user also has to configure a password-less SSH
login from the master node to every other node. For the MPI implementation, the latest
MPICH release, version 3.3.2 [oBC19], is used. The software is compiled with GCC 7.4.0
on an Ubuntu 18.04.03 LTS operating system.

For the simulation of a real workload, a modified smoothing-algorithm is used. Instead of
just using a 3 · 3 matrix with different weights, it is using a n ·m matrix. Depending on the
stencil extents, the resulting workload is similar to a focusing algorithm in each dimension
of a remote sensing image processing.

ai,j =

∑m
i=− sextx

2

∑n

j=− sexty
2

ai,j

m · n
(4.9)

The element ai,j at position i, j is the sum of surrounding elements divided by the count
of elements n ·m. Of course, this will not reflect the correct workload of the processing and
does not have the same complexity, but it is enough to simulate a load on the CPU. If the
original processing algorithms are used, it is possible to optimize the execution time for the
cell updates with the knowledge about the algorithm, but this is out of scope of this thesis.

31



4 Optimization Model for Data Locality

The current processing of the data is done as follows: The Locality Optimizer for Remote
Sensig Data program determined a list of tasks for each channel. These tasks can be executed
in parallel with a resource manager. For the experiment in this thesis, the tasks are executed
successively on as many nodes as possible while the execution time is being measured. The
execution time is divided in input time, processing time, layout switch time and output
time. This allows to decide which processing part benefits the most from optimizations,
or to assess the impact of I/O or network communication over all processing tasks. Each
node is responsible for initializing the data on its own, according to the input distribution.
Depending on the DASH pattern it could be a local brick or it loads a brick and copies it
to the memory of a remote node.

Listing 4.1: Example mpirun call of a single processing step wit ST3

mpirun -n 64 --hostfile mpi -hr -cluster.txt ~/bin/rsid -l bb \

-p /data/io/input_file calculate -j 9 9 -f smoother

There are two different implementations of the smoothing algorithm used in the exper-
iment. The first one (v1) directly operates in the PGAS memory space generated with
DASH, see listing 4.2. In this solution each call to a remote pixel will result in network
communication.

Listing 4.2: Implementation v1: Inner loop of smoothing algorithm operating on the DASH
array

for (auto it_x = 0; it_x < stencil_extent_x; it_x ++) {

for (auto it_y = 0; it_y < stencil_extent_y; it_y ++)

{

Pixel value = dash_data_old[x_start + it_x]

[y_start + it_y];

sum_p += value.p;

}

}

dash_data_new[x][y].p = sum_p /

(stencil_extent_x * stencil_extent_y );

In contrast to (v1), the next solution (v2) puts more effort into the implementation.
It synchronizes the halo regions to a local array before starting with the calculation. In
this implementation the calculation for each unit is split into three steps: (1) Copying the
necessary slice (yellow rectangle in Figure 4.1) to a local array. (2) Calculate every pixel
with the stencil operation on the local memory. (3) Copying it back to the local part of
the shared memory space of the DASH array. The implementation bypasses the repeated
calling of remote pixels and uses the DASH array only for data exchange and does not work
directly in the global shared memory space. The halo sizes are calculated by the stencil
size in each dimension. The resulting local copy is the local array of the unit plus a halo in
each dimension. The developers of the DASH framework are planning to release a similar
feature in the next release. They will go even further with the implementation and allow the
developer to first calculate on the local part and after updating the halo in the background
operate in the halo area. In this implementation the complete array plus halo is sliced line
wise from the global array. For each unit which holds a part of the image border, a case
distinction has to be made. Depending on the border side (top, down, left, right) it should
not copy a halo which lies outside of the DASH array. The Listing 4.3 shows the function

32



4.5 Optimization and Worker Software

calls on all three steps. Insid the copy dash to local functions the dash::copy function is used
to move data, line wise, from the global shared memory to a local buffer. The call have to be
line wise, because the function is implemented in way to slice out one consecutive memory
line of the array from the PGAS memory space to the local memroy buffer. A function to
copy a 2D slice will follow in the future releases of DASH. Instead the copy local to dash just
copies the whole result copy array to the local DASH array part of the unit in one large
dash::copy call.

Listing 4.3: Implementation v2: Copy, calculate and copy back function calls with previouse
generated halo extents in each direction.

auto tmp_ext_x = local_extent_x + halo_n + halo_s;

auto tmp_ext_y = local_extent_y + halo_e + halo_w;

Pixel *local_copy = new Pixel[tmp_ext_x * tmp_ext_y ];

Pixel *result_copy = new Pixel[local_extent_x * local_extent_y ];

copy_dash_to_local(dash_array , local_copy ,

ul_x , ul_y , lr_x , lr_y ,

halo_n , halo_e , halo_s , halo_w );

calculate_with_stencil(local_copy , result_copy ,

ul_x , ul_y , lr_x ,lr_y ,

halo_n , halo_e , halo_s , halo_w );

dash:: barrier ();

copy_local_to_dash(dash_array , result_copy , ul_x , ul_y);

33





5 Results & Discussion

5.1 System Description

The evaluation experiments are executed using both a heterogeneous hardware environment
at DLR and a homogeneous HPC system at the Leibniz-Rechenzentrum in Munich [Rec19].

The DLR system consists of four processing servers with the name HR-SLX005/HR-
SLX007/HR-TEST001/HR-SLX012. The respective hardware specification is shown in the
Table 5.1. HR-TEST001 is a virtual server. The virtualization of this host will impact
the read/write performance to the disk, because some VM’s can use the same disk space
on a raid system. To limit this undesired behavior, HR-TEST001 is the only virtual server
running on the VM-Host with exclusive access to all resources of the host. Nevertheless,
to avoid unintentional impact on the evaluation results, this server will not be used for
read/write performance testing. Figure 5.1 shows an overview of the infrastructure. A
GPFS system is shown on the left with three I/O servers which are connected by a 10 Gb
Ethernet connection to the four processing servers. The 10 Gb Ethernet is only used for
file transfer and communication between the processing servers. The Network File System
(NFS) service also running one the file servers (HR-FS02/HR-FS04/HR-FS05 ). On the
right side the hardware stack for HR-TEST001 and its VM-Host is depicted. Each of the
processing servers is accessible directly via SSH and accessible without any login nodes.

vSphere EnvironmentGPFS with NFS

RAID01 RAID02

Fiber Channel

1 GB Network

10 GB Ethernet

HR-SLX005 HR-SLX007

HR-FS04HR-FS02 HR-FS05

HR-SLX0012 VM(HR-TEST001)

Client

RAID03

VM-Host

Figure 5.1: HR-Cluster Hardware overview

35



5 Results & Discussion

Name HR-SLX005 HR-SLX007 HR-TEST001 HR-SLX0012

Processor Xeon E5-2690 Xeon Gold 6130 Xeon Gold 5120 Xeon E5-2698v4

Frequency 2.6 GHz 2.1 GHz 2.2 GHz 2.2GHz

Cores per Node 24 32 28 40

Hyperthreading Yes Yes Yes Yes

Cache L3 30 MB 22 MB 19.25 MB 50 MB

Memory 512 GB 768 GB 256 GB 512 GB

Filesystems SSD SSD SSD SSD

Interconnection 10 Gb 10 Gb 10 Gb 10 Gb

Table 5.1: Server in the DLR hardware configuration overview

The operating system (OS) Ubuntu 18.04.2 LTS is used for processing servers. The boost
library is installed in version 1.66 as well as the latest MPICH version 3.3.1 and [oBC19]
as the MPI basis framework. The DASH-Project framework is installed with the latest
development version 0.4.0 from Jan. 9, 2019[LM19].

The SuperMUC-NG is a homogeneous HPC system of the Leibniz-Rechenzentrum in Mu-
nich. An overview of the hardware configuration based on [Rec19] is given in Table 5.2.

Name Thin Nodes Fat Nodes

Processor Xeon Platinum 8174 Xeon Platinum 8174

Node Count 6,366 144

Frequency 3.10 GHz 3.10 GHz

Cores per Node 48 48

Hyperthreading Yes Yes

Cache L3 3 3 MB 33 MB

Memory per Node 96 GB 768GB

Filesystems GPFS GPFS

Interconnection Fat Tree Fat Tree

Table 5.2: SuperMUC-NG hardware configuration overview

All nodes on the Leibniz-Rechenzentrum are running the OS SUSE Linux Enterprise
Server 12 SP3. For the test execution on the SuperMUC-NG, the boost library is installed
in version 1.66 and as the MPI basis framework the Intel MPI library version 2019 up-
date 6 build 20191024 is used. The DASH-Project framework is installed with the latest
development version 0.4.0 from Jan. 9, 2019 [LM19].

36



5.2 Performance Evaluation

5.2 Performance Evaluation

5.2.1 Read/Write Speed

The read/write speed is defined by the time T (B) a processor takes to load a single data
brick B of the size brextx ∗ brexty pixels. This is an important metric to evaluate if we can
achieve a better performance on multiple nodes with a local file system or a shared network
file system. The network file system is expected to become the input speed bottleneck for
high data throughput processing allowing the multi node solution to perform better.

5.2.2 Speedup

The speedup Sp(n) is defined following Amdahl’s Law:

The performance improvements to be gained from using some faster mode of
execution is limited by the fraction of the time the faster mode can be used.
[Amd67]

This law provides a generic limit of maximal speedup of any parallel computation and is
paraphrased as follows:

Speedup =
1

rs +
rp
n

(5.1)

where rs + rp = 1 and rs represents the ratio of the sequential portion and rp the parallel
portion of one program [Amd67]. From this, the definition for speedup S(p1, pm, n) is derived
as the ratio of the time required by a sequential application T (p1, n) to a parallel version
T (pm, n):

S(p1, pm, n) =
T (p1, n)

T (pm, n)
(5.2)

where pm is the number of processors used to process input of size n. In the best case,
S(p1, pm, n) is near equal to one, but does not reach one. The reason is the communication
overhead between parallel and sequential portion rs of the application. This could be also
used to compare execution times from different amounts of processors p.

5.2.3 Efficiency

The efficiency Ep(n) for a problem of size n is defined as the ratio of the time required
by a application using one processor to the time required by a parallel application using
p processors multiplied by the value p. In the theory Ep(n) could be equal to 1, but as
described before we cannot attain this optimum because of communication overhead and
the sequential portion rs of the application.

Ep(n) =
T1(n)

p · Tp(n)
(5.3)

37



5 Results & Discussion

5.2.4 Strong and Weak Scaling

With a scalability test it is possible to measure the ability of an application with varying
problem sizes or numbers of processors. In general its possible to distinguish between strong
scaling and weak scaling.

For strong scaling the problem size is fixed and the number of processors, which take part
in the computation, is increased. This results in a reduced workload per processor, mostly
used for long-running CPU-bound applications to find a setup with a reasonable execution
time and which uses a moderate amount of resources. Strong scaling is normally affected by
Amdahl’s Law, in order to be precise, affected by the increasing communication overhead in
comparison to the calculation time. In the RS image processing a long-running CPU-bound
application is the case for a really large stencil computation or if we apply many stencils in
a row in one processing step.

For weak scaling the problem size is fixed per processor, so increasing the number of
processors increases the computed problem size equally. The result is a constant workload
per processor. Weak scaling is mostly interesting for large memory-bound applications
where a distribution to multi nodes is necessary trough memory limitations on a single node
which is expected to be critical for the upcoming RS image trends with growing image sizes
this is true for our application. Following [MML17] it is mostly interesting for algorithms
with time complexity O(n). It is derived from a tending upwards time that the overhead
due to parallelisms is also increasing or that the algorithm is not truly O(N).

For the applications investigated in this thesis, both aspects are interesting because a
CPU-bound application with a long runtime is investigated which uses large stencils on
problem sizes that do not fit onto a single node.

5.3 Experiments

The experimenting started with the evaluation of the overall read/write performance of the
system described in Section 5.1. For this purpose, a disk load test was performed. After that
the impact of the brick locality is evaluated. Following this experiment a test for strong and
weak scaling is conducted. In the next steps the computing speed and impact of each stencil
to the different DASH patterns on two different implementations is evaluated in the try to
find weighting parameters for the cost function. The experimenting phase is concluded by
a test of the optimization model on a complete processing chain and the discussion of the
results.

5.3.1 Brick Locality

Splitting data up in bricks and storing them locally while adding a redundancy is increasing
the overall read/write performance of the system with minor investment in the data storage
back-end because only already existing resources are utilized. Therefore a load testing based
evaluation of different file system structures is done in order to determine the maximum
read/write speed achievable in the given environment of this work. The differences in speed
between local SSD and the Network File System (NFS) are compared. A test with the GPFS
system on the HR-Cluster would give the chance to compare it with the large scale GPFS
system on the SuperMUC-NG. But the test was not executed on GPFS on the HR-Cluster
because the performance was already low with a single node, for further analysis the problem

38



5.3 Experiments

with the GPFS has to be fixed first. For the evaluation experiment, the Linux application dd
was used. In order to achieve comparable results, all caches were deleted locally while data
was read or written on the server. Because the RAID System lacked the possibility to delete
the caches, the retrieved results for repeated reading outperformed the comparison group.
In the test 4 GB data bricks B, which represents a 65, 636 ∗ 65, 636 pixel image on each
node, were used to generate a representative I/O load. The test shows Tread(B) = 28.51s
and Twrite(B) = 96.44s with 4 nodes in parallel on the NFS. In comparison to that, local
data handling took in average Tread(B) = 11.22s and Twrite(B) = 24.03s in average on each
node.

1 2 3 4 5
NodeCount

0

100

200

300

400

500

600

700

Sp
ee

d 
in

 M
B/

s

NFS vs. Local Read/Write
Avg. Local Read
Avg. Local write
Avg. NFS Read
Avg. NFS Write
Node * NFS Read
Node * NFS Write

Figure 5.2: Comparison of read/write speed of local bricks with NFS on multi nodes. Green
lines are summed average read/write performance of the single nodes.

From the experiment with NFS it is estimated that the network storage infrastructure
will reach its interconnection limit between nodes and network storage already with a few
nodes reading or writing in parallel as depicted in Figure 5.2. The maximum read speed of
the used storage infrastructure is around 550 MB/s and the maximum write speed is around
220 MB/s depending on the access pattern and how good the cache on the RAID system
can be utilized. In comparison to the SuperMUC-NG, which is able to deliver 500 GB/s
with a GPFS file system, this is a quite low performance. But if all 6,336 nodes on the
SuperMUC-NG would read/write in parallel this will also lead to a small speed per node
with around 80 MB/s.

Not only the general loading from a local disk compared to a NFS is important, it is
also necessary to know how large the difference in the initialization speed between a 100%
brick locality and 0% brick locality is and on which part it takes the most time. Therefore
both the read time of the image from disk/NFS as well as the copy to the DASH array
time are examined. For the initialization phase the best performance should be achieved
if 100% brick locality is reached, which means each unit is able to load the brick from the

39



5 Results & Discussion

local disk so that no network traffic will be generated. For this assumption an evaluation
experiment on 3 nodes with 64 units was conducted with an image of 131, 072 ∗ 131, 072
pixels which were segmented in 64 quadratic bricks. This experiment was executed directly
with the developed RSIDP software. Before each run the local disk caches were cleared on
each server. In this locality test it is assumed that each unit can read one block and no unit
has to read two blocks. If this would not be the case, the initialization time would be at
least doubled, because some units have to read two blocks and other units need to wait for
them at the synchronization point. The measured reference time for the input of all bricks
to the memory for 100% locality is Tinput(I) = 19.47s and writing took Toutput(I) = 36.43s.
For comparison, the NFS with the same test was slower and took Tinput(I) = 30.56s for
the input and Toutput(I) = 57.9s for the output. With 50% locality, which means only the
half of the units could be locally read, half of the data is initialized by a remote unit. The
evaluation experiment determined Tinput(I) = 25.91s and Toutput(I) = 36.83s. In the worst
case, no block is stored locally and all blocks have to be loaded from a remote unit, so we have
an even higher network traffic for the initialization. In this case it took Tinput(I) = 26.58
and Toutput(I) = 37.42s. Toutput is similar in all but the NFS experiments, because it is
independent from the initial brick locality, it is always writing back on the local node so that
a 100% locality is achieved.

0% locality
(Disk)

50% locality
(Disk)

100% locality
(Disk)

100% locality
(NFS)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5

Av
g.

 T
im

e 
in

 s

Input time by read from disk and copy to DASH
Read data from disk
Copy to DASH array

Figure 5.3: Average Initialization time on 3 nodes on the HR-Cluster in seconds by read
image and copy to DASH with different brick localities, standard deviation dis-
played on top.

The Figure 5.3 shows the average time per unit to read the data from the disk and copy
them to the DASH array. It can be seen that with decreasing brick locality the average
copy time to the DASH array is increasing. On 100% brick locality it took in average 5s to
read and copy the data to the remote units while it took 2.5s to read the data from disk.
On 0% brick locality it took in average 7s to read and copy the data to the remote units

40



5.3 Experiments

while it took 3s to read the data from disk. On the central NFS system with 100% locality
it took an average of 45s to copy and read. The experiment shows a best case scenario with
100% locality which lead to an average speedup of factor 6 compared to reading the data
from the central NFS file share. Also the 0% brick locality shows nearly a average speedup
of 4 in comparison to NFS. The reason is the local loading speed dominating the speed of
the RAID system behind the NFS server and the network utilization, which is used in both
cases, is less important at this point. Between 0%loclaity and 100% locality a improvement
about 25% was achieved. Extrapolated to larger image size up to 1 TB this could bring a
strong improvement in the initialization phase.

41



5 Results & Discussion

5.3.2 Locality in Multi-Channel RS Image Processing with Potentially Large
Stencils

In this experiment the whole processing chain from Section 3.6 is executed. The motivation
behind this experiment is to check if the optimization function gives valid decisions about
the memory layout changes. As a starting point, an image will be segmented in bricks and
be distributed in different distributions to all participating nodes. As task the workflow
described in Figure 3.4 is used. The workflow starts with 8 channels of raw data and
generates 6 high level products from it. An artificial gray image with is used as raw data
set for each channel. For the test 64 units are used on 3 nodes.

A small image size of 8000 ∗ 8000 pixels was used, compared to the future products of
about 1TB large images. This experiment will not proof that brick locality improvements
result in better execution times because of the small problem size. This limiting factor was
necessary in order to achieve execution times which allowed to make incremental experiments
without too long experiment duration. But from this small experiment we can proof if the
optimization function result in reasonable decisions.

Figure 5.4 shows the optimization result from the Locality Optimizer for Remote Sensing
Data application for 3 nodes and 64 units with a random distribution for each channel
and the stencil operations from Table 5.3. The stencils are chosen to be similar in shape
to current RS image processing stencils used on real SAR data. The first stencil ST1 is
aligned to a BN while ST2 is aligned to a NB layout and ST3 is aligned to a BB layout.
Additional ST1 should benefit at most from the cache on the nodes, because of the default
Row Major order in a DASH array [FF16] and should show the best performance in total
throughput. It is assumed that the performance of each stencil can be improved by choosing
a layout which reduces the network communication which equals to increasing the data
locality. Underneath the arrows in Figure 5.4 the estimated execution times from Table 5.4
and the cost for the layout switch with communication is depicted. The execution time
was determined by the average of 10 executions for the specific stencil layout combination
without considering I/O. It can be seen that the first layout, which generates the least cost,
is propagated through the whole processing chain. With relative small stencils the layout
switching cost plus communication costs are always higher than working with the current
layout and the high communication cost of the stencil. But looking at the execution times of
the proposed processing chain, it can be seen that in the second step ST2 with the layout BN
it rises by the factor 72 compared to the previous step ST1 on the first 7 channels. Even the
last channel, which performs best for ST2 with 103.45s, cannot reach the best performance
with layout NB of 9.99s. So for ST2, the worst performing layouts were chosen. At this point
a weight should be introduce to treat brick locality different from the stencil communication
costs SO, but to find such a weight more performance test are necessary for different layout
units combinations, see next Section 5.3.3.

But to check if the optimization function gives reasonable decisions in general the brick
locality, LPC in Equation 4.7, is removed and calculation are only with block locality cost.

In this experiment only the communication cost are considered for the memory layout
decision, the result differs form the previously presented experiment outcome. Figure 5.5
shows the optimization result for these assumptions from the Locality Optimizer for Remote
Sensing Data application for 3 nodes and 64 units with a random distribution for each
channel and the stencil operations from Table 1.1. Underneath the arrows in Figure 5.4
the estimated executions times from the Table 5.4 and the result of cost function are shown

42



5.3 Experiments

Name Dimension 0 Dimension 1 Aligned Pattern

ST1 1 81 BN

ST2 81 1 NB

ST3 9 9 BB

Table 5.3: Stencil Set 1: used in divers experiments as basis stencils. [N = None, B =
Blocked]

Layout Stencil x Stencil y Time/s Input/s Output/s

BB 1 81 104.3 0.12 0.04

BN 1 81 9.95 0.05 0.04

NB 1 81 731.5 0.13 0.09

BB 81 1 103.45 0.02 0.09

BN 81 1 762.17 0.12 0.06

NB 81 1 9.99 0.03 0.05

BB 9 9 11.69 0.02 0.06

BN 9 9 97.93 0.12 0.06

NB 9 9 94.01 0.27 0.08s

Table 5.4: Average execution times of 10 tests for the different stencils/layout combinations
with implementation v1 on a 8000 ∗ 8000 pixel image in the HR-Cluster.

Figure 5.4: Example optimization result for 64 bricks distributed to 3 nodes and processed
with 64 units. Each gray tone represents data located on the specific node.

43



5 Results & Discussion

according to the previous results.

Figure 5.5: Example optimization result for 64 bricks distributed to 3 nodes and processed
with 64 units without considering brick locality. Each gray tone represents data
located on the specific node.

The optimizer now chooses the layout which generates less communication cost and does
not consider the initialization phase or layout switches. The random distribution at the
beginning does not matter now. The first two steps ST1 and ST2 will generate 0 costs
because the stencil only has one dimension and with the given layout there are no borders in
this dimension and so no costs at all. So only the array with the BB DASH layout generates
communication costs. With this approach, more practical results are achieved as shown in
Table 5.4. But it can be seen that the results show the same behavior as in the previous
experiment if the stencils are increased in each dimension so that the stencil communication
costs starts to dominate the brick locality costs, see new stencils in Table 5.5 and results in
Figure 5.6. These results show that the proposed optimization model works as intended: the
layout switching cost plus low communication cost of a better fitting layout are lower than
staying in the same layout, which gives 0 costs, plus the higher communication cost of a bad
fitting layout.

For all tests, the same initial distribution was used but in reality the system is supposed
to have different distributions as data sets. Also, there was the idea to have the block
redundant on the nodes to have an increased locality. This will also only move the point
where it’s worth to switch the layout and the optimization function will tend to stay at the
current layout instead of switching to the better performing layout. In both cases, with
redundancy or considering the normal brick locality loading Before further experiments with
the optimization function can be carried out, the communication effort of the stencils must

44



5.3 Experiments

Name Dimension 0 Dimension 1 Aligned Pattern

ST1 1 101 BN

ST2 101 1 NB

ST3 128 128 BB

Table 5.5: Stencil Set 2: larger stencils in comparison to set 1 to increase the stencils com-
munication overhead SO. [N = None, B = Blocked]

Figure 5.6: Example optimization result for 64 bricks distributed to 3 nodes and processed
with 64 units without considering brick locality using large stencils. Each gray
tone represents data located on the specific node.

be weighted against the actual block loading times. We can conclude the layouts are choose
correctly based on the cost function but a weight is necessary to treat brick locality different
from block locality.

45



5 Results & Discussion

5.3.3 Layout Performance with Different Stencils

The previous experiment shows the optimization function worked as intended, but weights
are necessary to treat brick locality and block locality in the context of the total execution
time estimation correctly. The hypothesis is, if a large stencil is used which is not aligned
to the DASH memory pattern, the overall performance decreases because of the increased
communication overhead. It could be possible that a communication in dimension 0 is
more important than in dimension 1. To test the impact of the dimension extents in this
experiments three stencils with the same workload but different extents, in each dimension
are used as listed in previous Section 5.3.1 Table 5.3. The prediction for the layouts with
the stencils is: BB should result in the best performance for a stencil with equal extents in
each dimension, NB should result in the best performance for the largest extent on the first
dimension, and BN should outperform the other layouts for stencils with the largest extent
on the second dimension

For this test we create a DASH array of the size 20.000 ∗ 20.000 ∗ 3 Byte = 382 MB
and apply a smoothing filter for simulating a workload. During the simulation, the data
is generated on thy fly so no I/O happened on the disk in these experiments. As a test
environment the two nodes HR-SLX005, and HR-SLX007 of the HR-Cluster are used which
are connected with a 10 Gb Ethernet connection. No changes in the unit pinning were made,
so the units are distributed to the nodes in a round robin manner.

The first test was executed with implementation (v1) which operates directly on the DASH
distributed array. The tests were executed 5 times and the average execution time was used
for the overall performance evaluation. The results of how well the different stencils operate
on the layouts BB, NB and BN is shown in the Figure 5.7. Also, the confidence interval is
displayed which shows the minimum and maximum execution time of an iteration.

Figure 5.7: Average execution time in seconds of ST1, ST2 and ST3 with 2 nodes with
implementation v1 on the HR-Cluster.

The ST1 with DASH layout BN produces a throughput higher by the factor of 5 in
comparison to NB. About 32 cores the plot start to increase with the layout BB and NB
instead of decreasing further. At this point a large network saturation was observed on the
HR-Cluster system, which could be the reason for a increasing execution time. But we can
conclude for this implementation each layout delivers the best performance on the predicted
layouts. ST1 is the fastest on BN, ST2 performed well on the predicted layout NB and also
ST3 is the fastest on the BB layout. Due to performance issue it is not possible to derive
any weights here.

Interesting is the result from ST2 with the BB layout. It produces the similar performance

46



5.3 Experiments

to the suggested optimal layout NB. At this point the regularity of the unit distribution
becomes a problem. In these experiments just two nodes and different counts of units (1,
2, 4, 8, 16, 32, 48, 64) were used. With this amount of units, a segmentation with an
even number of units in each dimension was created for each distribution higher then 2.
The MPI default unit distribution uses round robin for unit to node pinning. In a result
the BB layout appears identical to the NB layout when focusing on the node numbers
instead of the unit numbers. In Figure 5.8 both layouts with 8 units on 2 nodes are shown.
The network communication happens only on the block borders in dimension 1 while the
communication on dimension 0 happens on the node itself. It can be seen, that the the
network communication with a NB layout is increased due to the node-separating behavior
of the blocks. Additionally, the experiment was affected by the restriction of units with a
overall good RH/W ratio. For a improved test, also numbers of units which are more uneven
to factorize into two numbers should be considered.

Also, ST3 with BB layout should benefit from a better surface-to-volume ratio (3 : 2) but
has to communicate with other units on the same node. In comparison NB layout has no
inter process communication at all, but the surface-to-volume ratio is worse (18 : 8). This is
also the reason for ST1 with BB to have a better performance then BN but instead of fast
inter node communication the algorithm has to communicate over the network at the read
line, see Figure 5.8.

Figure 5.8: Comparison of BB and NB pattern distribution on two nodes with eight units.
Numbers display the node assignment of each brick. The block colors show the
unit. The red lines mark borders where network communication is necessary.

To test the more uneven distribution, the experiment is expanded for ST2 to three nodes
and to also using block segmentation with odd numbers, not dividable by three, to have
also a network communication in the first dimension while using BB layout. In addition,
prime numbers of units are discarded. The result is shown in Figure 5.9. The BB layout is
now much slower compared to the NB layout. But now a new effect is visible: If a square
number for units is used, the overall performance is slightly better. This could be an effect
of the overall better RH/V ratio with square numbers of units [4, 16, 21, 25, 64, 100, 121],
shown in the first plot of Figure 5.9. E.g. for 124 units the RH/W ratio is 7.74 resulting
in an execution time of 608.05s. The nearest square number of units is 121 which has a
RH/W ratio of 1 and results in an execution time of 254.61s. This is a performance increase
by the factor of 2.39 even though there is less computing power available. This behavior is

47



5 Results & Discussion

correlating with the prediction of the cost function, shown in Figure 4.3.

0

2

4

6

8

R H
/W

RH/W Height-to-width ratio

0 20 40 60 80 100 120
Units/Cores

102

103

Av
g.

 e
xe

cu
tio

n 
tim

e 
in

 s

20, 000 20, 000, v1, ST2 {81,1}
BB
NB

Figure 5.9: RS/V ratio compare to the execution time in seconds of ST2 with 3 nodes for the

patterns BB and NB.

The fastest execution time achieved for 128 units is 43.1s by ST1, 45.46s by ST2, and
104.34s by ST3. The cache could be a reason for the overall good performance of ST1
because DASH arrays are stored by default in Row Major order [FF16]. ST1 can benefit
from data already loaded into the cache lines, while ST2 produces more cache misses, because
every next value will be in another cache line and this line could be missing in the cache.
ST3 could benefit slightly from cache but will also generate more communication overhead
in each dimension. If the cache miss rates are really high it could be useful to invest in
code optimization for better cache usage, to be able to compare the layout performance
better. To check the assumption of performance issues is correlated with cache miss rates,
the program was executed again with the perf kernel tool of Linux to monitor cache misses
per unit while executing on the nodes HR-SLX005 and HR-SLX012. The results are listed
in Table 5.6. The test was executed with 42 units and 120 units with the best and worst
fitting layout for the given stencils, derived from the performance test before. Furthermore,
if a correlation between the cache miss rate and the performance gap per stencil between
the different layouts would be observed, then the communication overhead should not be
the focus for performance optimization. Table 5.6 shows the average cache misses in percent
over all units including the respective standard deviations. The difference in the cache miss
rates between the different stencils is small and does not correlate with the huge performance
gap between the different stencils on different layouts. The huge standard deviation over
all test is explained by the different cache size of both nodes. Looking at the difference
between the node HR-SLX005 and the HR-SLX012, there are less cache misses produced
on HR-SLX012 because of the larger cache with 50 MB in comparison to the 30 MB of
HR-SLX005, see Table 5.1. The standard deviation of ST1 with BN and ST2 with NB is

48



5.3 Experiments

much lower compared to the the other tests, because of the cache miss rate was increasing
on HR-SLX0012 and decreasing on HR-SLX005. The average cache miss rates were still
similar to the other tests.

Speed Stencil Layout cache-misses standard cache-misses standard

42 units deviation 120 units deviation

Fast ST1 BN 26.10% 7.79% 27.95% 8.35%

Slow ST1 NB 30.30% 28.06% 31.79% 22.69%

Fast ST2 NB 28.30% 24.32% 23.95% 7.27%

Slow ST2 BN 30.68% 28.68% 28.40% 20.16%

Fast ST3 BB 20.80% 18.91% 30.87% 20.03%

Slow ST3 BN 32.75% 21.08% 28.90% 18.95%

Table 5.6: Average cache-misses and standard deviation captured with perf with, 20.000 ∗
20.000 pixel image, with implementation v1. [N = None, B = Blocked]

Because of the overall poor performance of implementation v1, a second implementation v2
was implemented, see Section 4.5.2 for implementation details and difference to v1. Looking
at the performance of the second implementation (v2), the result looks quite different. The
following tests were executed 10 times allowing to use the average execution time as overall
performance metric. The data size is the same as before, a 20.000 ∗ 20.000 pixel array. The
result is displayed in the Figure 5.10. Also, the confidence intervals are displayed showing
the minimum and maximum execution times.

The experiment with ST1, seen in Figure 5.10 first plot, shows that the BN layout is the
fastest, similar to the experiment on implementation (v1) before. NB performs again the
worst because of the large communication overhead. From 2 to 32 units a strong decrease
in execution time is observable with every layout. For NB with 2 units the execution took
an average of 17.32s and with 32 units an average of 1.34s, this is a speedup of the factor
13. With more units the average execution time for the BB layout no longer decreases and
the execution times of the BN and NB layouts increase. The deviation between minimum
and maximum execution time for the copy task is also increasing with more units. Around
32 nodes something in the whole system happens to stop every layout to scale furthermore.
To evaluate this further the results are analyzed in more detail. The second implementation
(v2) allows to measure the time of copying the data to local, calculating, and copying the
data back to the DASH array separately. For the test with 128 units and the BN layout
it took an average of 0.007s to copy the data and halo to the local buffer in comparison to
the NB layout which took an average of 3.98s. So the NB layout spent the most time of
the execution on copying the data to a local buffer. This is suspected because of the large
stencil communication overhead. Furthermore for the layouts BB and NB, a decrease in
scaling with more units was observed. Also, with NB and 128 units the execution time is
nearly as bad as just with 2 units. The total execution time for BN with 128 units was
1.36s compared to NB with 128 units and 19.94s. The decrease of NB was expected due to
higher stencil communication overhead, but not the decrease in execution time of the other
both layouts.

The second test with ST2, seen in Figure 5.10 middle plot, shows similar performance on

49



5 Results & Discussion

Figure 5.10: Average execution time in seconds of ST1, ST2 and ST3 with 2 nodes with
implementation v2 on the HR-Cluster.

every layout even though NB was expected to be the fastest. Similar to the first test at
around 32 used units the system stopped to scale. The total execution time for BN with
128 units was 2.89s compared to NB with 128 units and 2.75s. On the third test with ST3,
seen in Figure 5.10 right plot, the BN layout performed best again, even though BB was
suspected to be the fastest. Instead BB is slower then BN but still faster than the NB
layout. Also the same effect as in both previous tests was observed: At 32 units the system
stopped to scale. Furthermore for the layouts BB and NB a decrease in scaling with more
units is observable, again.

Regardless on which stencil and layout the test is running, the layouts start around 32
units to not scale anymore. Instead there is a larger jump upwards in execution time and
a steady increase with increasing amount of units. A first guess for the rise on every tested
layout was the general workload on the system from other users, but in this case the plot
would be more volatile and repeated experiments on the system show the same behavior.
The parallel workload on the system is an issue while doing performance tests, for a more
detailed result a test on a exclusively used resources is necessary. The SuperMUG-NG could
provide this, as can be seen by the experiment at the end of this Section. One possible reason
for the stop of scaling could be a general resource bottleneck in the HR-Cluster environment
or additionally the communication starts to become the dominant part of the execution
time which could be result in a bottleneck in the network. For further investigation, the
execution time of the experiments is split up to the three parts: (1) Copying of the data
from the DASH array to a local buffer. (2) Calculating with the stencil on the local buffer.
(3) Copying the data from local buffer back to the DASH array.

In Figure 5.11 first plot, the average copy time per unit for ST1 on the different layouts
is depicted. With more units the copy time increases in the same way as the total execution
time. At the point of 36 units, the time for copying of 3.54s surpasses the calculation time
of 1.82s, shown in Figure 5.12 and starts to dominate the execution time for the NB layout.
Similar but less strong effect was observed with the BB layout, as shown in Figure 5.11. The
NB layout does not produce a large overhead while copying data with a stencil aligned to it,
because less network communication is necessary between the nodes. In Figure 5.11 second
plot, the average copy time per unit for ST2 on the different layouts is shown. The copy
time for this stencil on the BB layout shows the best results. Depending on the RS/V ratio
of the blocks the time is slightly changing. The copy time for NB is fast this time, because
the layout does not produce a large overhead while copying data with a stencil aligned to

50



5.3 Experiments

it. Figure 5.11 third plot, depicts the average copy time per unit for ST3 on the different
layouts. The result looks similar to the test with ST1. The copy time of the NB layout
starts to be the dominant factor in the total execution at 36 units.

Figure 5.11: (1) Average time for copying a DASH array to the local buffer in seconds for
the ST1, ST2 and ST3 stencil. The experiment facilitated implementation (v2)
running on 2 nodes of the HR-Cluster. The confidence intervals show minimum
and maximum copy times.

The Figure 5.12 show the average calculation time per unit for the three stencils on the
different layouts. Because the application operates on a local buffer, no large difference
in calculation time between the experiments was observed. The calculation time for ST1
with 2 units is 18.3s and with 128 units 2.05s. This equals a speedup of the factor 17.85.
The calculation time for ST2 with 2 units is 17.5s and with 128 units 0.98s, resulting in
a speedup of 8.93. Finally, ST3 has a calculation time with 2 units of 21.1s and with 128
units of 0.90s. The corresponding speedup factor is 23.44. The speedup is at this point far
away from the perfect speedup of 64, at this point a optimization of the calculation could
bring more speedup, but this is out of the scope for this thesis and is not directly related
to the locality behavior. Also the only effect could be the size of the local buffer which
have different sizes with different stencil extents, which will again have an impact on the
cache miss rates. We can conclude, there is no large deflection in the calculation plots which
correlates to the large execution times and so it can be excluded from the search of the issue
with decreasing performance.

Figure 5.12: (2) Average time for calculating in seconds for ST1, ST2 and ST3. The exper-
iment facilitated implementation (v2) running on 2 nodes of the HR-Cluster.
The confidence intervals show minimum and maximum calculation times.

51



5 Results & Discussion

In Figure 5.13 the average time for copying the local buffer back to the DASH array per
unit for the three stencils on the different layouts is shown. Writing back to the local part
of the DASH array does not involve network communication, so each stencil shows similar
results. While the copy time of both layouts BB and BN decrease with more units, the NB
layout stops to scale at 36 units. This could be coupled to the same issue with copying the
data from the DASH array to the local memory. This is discussed in detail in Section 5.4
at the end of the chapter.

Figure 5.13: (3) Average time for copying the local buffer to a DASH array in seconds for
ST1, ST2 and ST3. The experiment facilitated implementation (v2) running
on 2 nodes of the HR-Cluster. The confidence intervals show minimum and
maximum copy times.

After a more detailed analysis of the complete execution time it is clear that the calculation
time and the copy back to dash time is not the reason for stopping the scaling, it is the
copy at the beginning which saturates the network with every layout. If this is true, the
SuperMUC-NG should give more stable result, because of the other network technology and
better inter-connect.

52



5.3 Experiments

From the perspective of total performance the implementation v2 outperforms v1, the
result can be seen in Table 5.7 listing the average execution time (avg. exec. time) for 8,
16, 32 and 64 units for each stencil with the fastest layout. In the last column the speedup
from implementation v1 to v2 is shown. For this excerpt the best speedup was 158.07 and
the worst 40.36.

Stencil Units Avg. exec. Layout Avg. exec. Layout Speedup

Time v1 v1 Time v2 v2 v1:v2

ST1 8 305.37s BN 2.78s BN 109.85

ST1 16 161.07s BN 2.66s BB 60.55

ST1 32 85.73s BN 1.25s BN 68.58

ST1 64 56.13s BN 0.67s BN 83.78

ST2 8 335.51s NB 6.12s BB 54.82

ST2 16 177.81s NB 2.93s NB 60.69

ST2 32 89.42s NB 1.62s NB 55.20

ST2 64 57.72s NB 1.43s BB 40.36

ST3 8 663.86s BB 4.19s NB 158.44

ST3 16 344.92s BB 1.90s BB 181.54

ST3 32 176.11s BB 1.88s BB 93.68

ST3 64 115.39s BB 0.73s BN 158.07

Table 5.7: Example execution times for both implementations on several different tasks with
2 nodes and a 20.000 ∗ 20.000 pixel image. [N = None, B = Blocked]

The experiments were also conducted on the SuperMUC-NG to have a more homogeneous
system with a faster network interconnect. Another benefit of the SuperMUC-NG is that
the task schedule assigns node resources exclusively. So no disturbing workload on the same
CPU resources from other applications occur while running the experiment tasks. Each test
was executed 10 times.

Figure 5.14: Average execution time in seconds of ST1,ST2 and ST3 with 2 nodes with
implementation v2 on the SuperMUC-NG. Confidence interval show min and
max execution time.

The results of the SuperMUC-NG experiments are shown in the Figure 5.14. In comparison

53



5 Results & Discussion

to the experiments on the HR-Cluster the results are more stable now. The results of the
tests running on 2 units differ from the results of the tests running on 96 units with regard
to speedup for each stencil: ST1 achieved a speedup of 40.09, ST2 achieved a speedup of
43.03, and ST3 achieved a speedup of 40.27. The speedup of every stencil is near to the
perfect speedup of 48 and - as seen in Figure 5.14 - the layout does not have a strong impact.
Only the NB layouts tend to be slower for ST1 and ST3.

A possible explanation for this characteristic is that the workload caused by arrays of the
tested size is too small to see scaling problems. To test this assumption, the problem size
was increased in each dimension by the factor 10 resulting in a 200.000 ∗ 200.000 = 38 GB
pixel image while reusing the stencils of the previous experiments. In addition to that the
number of nodes was increased by the factor 8 to 16 nodes. To stay below the timeout limit
of the test partition on the SuperMUC-NG, the iterations were limited to 3 iterations for
tests with less than 10 units per node. Figure 5.15 shows the result for ST3. As for the
previous experiments, the results show a good scaling and no huge impact of the different
layouts. Only the NB layout is a little bit slower again.

0 100 200 300 400 500
Units/Cores

101

102

Av
g.

 e
xe

cu
tio

n 
tim

e 
in

 s

200, 000 200, 000, v2, SuperMUC-NG, ST3 {9,9}
BB
BN
NB

Figure 5.15: Average execution time in seconds of ST3 with 16 nodes with implementation
v2 on the SuperMUC-NG. Confidence interval show min and max copy time.

Another assumption would be the stencils are not large enough, so we increase the stencil
ST3 to 500 in x and 500 in y. But if the stencils is increased further the difference between
NB and both other starts to increase, see Figure 5.16. With 512 units the NB layout took
in average 0.76s with a median absolute deviation of 0.071s,BN took in average 0.12s with a
median absolute deviation of 0.0046s and BB took in average 0.073s with a median absolute
deviation of 0.0041s to copy the data from the DASH array to the local buffer. The BB
layout is 10 times faster than the NB layout. The median absolute deviation is about the
factor 18 higher with BN in comparison to BB and is nearly equal to the average copy time
of BB. For other experiments with larger ST1 and ST2 the results look similar. Below 288
units, the BB layout is slower than the BN layout.

54



5.3 Experiments

0 100 200 300 400 500
Units/Cores

10 1

100

Av
g.

 ti
m

e 
in

 s

Copy data from DASH to local buffer for ST{500, 500}
NB
BN
BB

Figure 5.16: (1) Average copy DASH to local buffer time in seconds of ST{500, 500}, 16
nodes and implementation v2 on the SuperMUC-NG. Confidence interval show
min and max copy time.

The determination of the weights from experiment with implementation v1 makes no sense,
because the overall execution speed was too slow to perform real experiments to validate
them in context. With the v2 implementation, the execution times of large arrays are faster,
but the NB layout is always faster than the other two. From this perspective it would be
better to store all data line wise and use every time the NB layout, more in the following
Discussion.

To demonstrate that the application is also working with a very large array and a larger
stencil, as proposed in the introduction, implementation v2 was used to process an image of
275.000 ∗ 275.000 pixel on 96 units with a BB layout. The 70 GB image was processed on
3 nodes of the HR-Cluster (HR-SLX005, HR-SLX007 and HR-SLX012 ) as well as on the
SuperMUC-NG. A stencil size of 21 ∗ 21 was used. For the test with the SuperMUC-NG
the layout BN was used. The test was limited to 70 GB because of the memory limitations
of 90 GB for executions on the test partition of the SuperMUC-NG. A margin of 20 GB
was left to account for the memory overhead of the MPI framework and the local buffers
on the single nodes. On the HR-Cluster the test took 344s and 96.933.790.259 cell updates
per second were achieved. The copy process took 0.55s for the fastest and 1.46s for the
slowest unit. The calculation took 190s for the fastest and 339s for the slowest unit. The
copy of the results back to the DASH array was achieved in 0.38s for the fastest and 1.55s
for the slowest unit. On the SuperMUC-NG the test took 305 seconds and 110.386.788.754
cell updates per second were achieved. The copy process took 0.46s for the fastest and 0.53s
for the slowest unit. The calculation took 249s for the fastest and 301s for the slowest unit.
The copy of the results back to the DASH array was achieved in 0.60s for the fastest and
in 0.65s for the slowest unit.

55



5 Results & Discussion

From the comparison of the tests on the HR-Cluster and the SuperMUC-NG it can be
seen that the SuperMUC-NG is approximately twice as fast while copying data, and the
calculation time is 33s faster. The HR-Cluster is slower and shows an efficiency of E(I) =
88% compared to the SuperMUC-NG. Also the deviation between the slowest and fastest
unit is smaller on the SuperMUC-NG. The reason for this is the homogeneous system in
comparison to the node variety in the HR-Cluster. But with this test it was proofed that a
execution on large images its possible on both systems. Due the issues with the performance
and missing real workload for the calculation part an extraction of weights was not possible,
more in the Discussion.

56



5.3 Experiments

5.3.4 Weak/Strong Scaling

For testing weak and strong scaling implementation v1 will be first discussed based on the
results on a single node followed by tests in a multi node environment. This test is for
observing if the application is scalable in general and how the algorithms react to strong
or weak scaling. For workload simulation the same stencils as before are used as listed in
Table 5.3. This test are not directly related to brick locality more to data locality, but from
strong deflections in the graph problem with the general implementation can be derived. The
three stencils are considered as a single job. For each stencil the DASH memory layout with
the best fitting configuration from the experiment in Section 5.3.3 is used. All data for the
simulation is generated on the fly. In weak scaling the problem size is fixed to 1, 000, 000 pixel
for each unit. For strong scaling the same data size as in the experiment of Section 5.3.3 is
used. For multi node tests, the default unit pinning of the DASH framework will be applied,
which means that the units are distributed to the nodes in a round robin manner. For the
test on the HR-Cluster all available nodes ares used while 16 nodes are used for the test on
the SuperMUC-NG. The tests for the single node computing are limited to 64 units, because
this is the maximum number of cores the infrastructure covers on the available single node
system (HR-SLX007 ).

0 25 50 75 100 125 150 175 200
Units/Cores

101

102

103

av
g.

 T
im

e 
in

 s

Weak/Strong Scaling
1 Node - Strong
2 Nodes - Strong
3 Nodes - Strong
4 Nodes - Strong
1 Node - Weak
2 Nodes - Weak
3 Nodes - Weak
4 Nodes - Weak

Figure 5.17: Weak/Strong scaling shown on a single node and in multi node environments
with implementation v1.

Figure 5.17 depicts the average execution time with regard to the increasing number of
cores. The red lines show that the strong scaling is decreasing the execution time with
more cores. In contrast, the blue lines show that the weak scaling is slightly increasing the
execution time, because of the additional communication borders which come with more
nodes. At the upper end of units the weak and strong scaling is starting to become more
and more equal. The reason is that at this point the problem size per unit for the strong
scaling is nearly equal to 1000 ∗ 1000 which is the problem size of the weak scaling test.

In Figure 5.18 the weak scaling results of four nodes divided for each stencil with im-
plementation v1 are shown. The overall average execution time of Figure 5.17 is strongly
affected by the bad execution time of the BB layout seen in Figure 5.18. It can be seen that

57



5 Results & Discussion

the execution times correlated to the effect of surface-to-volume ratio and the estimation of
the cost functions, see Figures 4.4.

0 25 50 75 100 125 150 175 200
Units/Cores

20

40

60

80

100

120

140

av
g.

 T
im

e 
in

 s

Weak Scaling
ST1
ST2
ST3

Figure 5.18: Weak scaling shown on four nodes divided for the different stencils with imple-
mentation v1.

For implementation v2 NB seems to be the fastest layout for every stencil, so every stencil
is executed with this layout. This test was only executed on one to three nodes, because of
troubles while executing implementation v2 on HR-Test001. The results look similar to the
v1 results, but because of the overall faster execution time the number of units to test was
increased for strong scaling. Again at the upper end of units the weak and strong scaling
test become more and more equal due to the same reason as for the v1 experiments described
earlier. Unfortunately, the test was run while other users are also beginning to perform tasks
on the system, so the results cannot be considered reliable, see Figure 5.19. But the trend
looks similar to the trend in implementaiton v1.

The test environment is switch to the SuperMUC-NG for a more detailed and more reliable
test. This systems provides a faster interconnect and a homogeneous system with more
resources. Again the test is only applied for the fast solution with implementation v2, because
the first test with implementation v1 shows a similar performance and a reevaluation was
deemed to bee too time consuming. For the strong scaling test, the result from the layout
performance test before with 16 nodes and a 200.000 ∗ 200.000 large array was used as
depicted in Figure 5.15. The weak scaling is limited to 1000 ∗ 1000 pixel per core. The
result for weak and strong scaling is shown in Figure 5.20. The weak/strong scaling is split
up for each stencil. Like for the previous experiments the weak and strong scaling results
cross at the upper end of units because of the equal problem size per unit.

From this result we can conclude their is no strange behavior in the implementation, which
would result in a deflection the in execution time for certain units and stencils combinations.
Also a quite good speedup of 29.86 was achieved by the BB with ST2 layout. This is an
increase in speed from a total execution time 107.01s with 16 units to 3.58s with 512 units,
this is near to a perfect speedup fo 32.

58



5.3 Experiments

0 25 50 75 100 125 150 175 200
Units/Cores

10 1

100

101
av

g.
 T

im
e 

in
 s

Weak/Strong Scaling pn the HR-Cluster
1 Node - Strong
2 Nodes - Strong
3 Nodes - Strong
1 Node - Weak
2 Nodes - Weak
3 Nodes - Weak

Figure 5.19: Weak/Strong scaling shown on a single node and multi node environments with
implementation v2 on the HR-Cluster.

0 100 200 300 400 500
Units/Cores

10 1

100

101

102

av
g.

 T
im

e 
in

 s

Weak/Strong Scaling on the SuperMUC-NG
Strong - ST1
Strong - ST2
Strong - ST3
Weak - ST1
Weak - ST2
Weak - ST3

Figure 5.20: Weak/Strong scaling shown on the SuperMUC-NG with implementation v2 on
16 nodes divided for the different stencils.

59



5 Results & Discussion

5.4 Discussion

Using the parallel disk speed of all participating nodes to initialize a large RS image and write
the results back is a promising approach, as introduced in Section 3.7. The approach allows
to increase the read/write performance with each new node that is added to the system
making it superior to a central NFS system. Additionally every new node also increases
the amount of cores and thus processing speed. An important thing to keep in mind when
considering such a system is that the network becomes the bottleneck for the speedup in the
initialization phase. The main disadvantage of the system is the costly task of distributing
the image in bricks to the nodes and collecting the results. Even though this task is very
time consuming and the data handling can be complex in a distributed system, it could
pay off fast because of the additional computing resources available for the processing task.
It is assumed that in the best case the brick locality matches up with the best layout for
the first stencil operations on the data. At this point of the investigation it was assumed
that the general processing steps for raw data (transformations) are similar and only for
high-level products (fusions) the used stencils become more volatile. So this could be true.
The brick locality test of this thesis shows promising results with a speedup by the factor of
6 in the best case when reading from a local disk with 100% brick locality, and by the factor
of 2 in the worst case with 0% locality. From the perspective of only brick loading times
without comparison to the NFS the 0% brick locality to 100% brick locality its about 25%
faster. The results of the experiments showed that it is possible to speedup the complete
initialization process by partitioning the data to all nodes and read from local disk during
processing.

If the storage layout don’t matches the PGAS layout of the initializing step and the
following stencil operation, there will be network communication due to the bricks which
have to be transferde over the network while initializing and the stencil communication
overhead. So a a strong network backbone is still necessary, as the experiments with v2
shows that the HR-Cluster stop to scale in comparison to the SuperMUC-NG with a much
faster inter-connect. For the HR-Cluster environment, the network saturation was quickly
reached because it facilitated only a flat network hierarchy with 10Gb Ethernet compared
to the 100 Gb Omnipath Fat Tree on the SuperMUC-NG.

If both the network backbone and the parallel file system in the background are powerful
enough, it would be the preferred solution to load the required data from the parallel file
system because it is less complex to handle the data and unoptimized applications will benefit
as well. On the other hand, the distributed loading of data on the given infrastructure works
only with up to 64 units without running in the network bottleneck. This thesis has shown
that this is especially true for the loading of a brick segmented image is loaded to a NB
layout which generates much more MPI calls compared to the other layouts.

For validated the implementation, finding weights for the cost function and proof the as-
sumption that the execution time can be accelerated if the stencil matches the memory DASH
pattern, memory layout performance tests with the three different stencils were executed.
The stencils were aligned in size to stencils which are used in applications for real-world RS
image processing. With the first implementation v1, every stencil behaves on the layouts as
predicted: BB worked the best for a stencil with equal extents in each dimension, NB was
the fastest with the largest extent on the first dimension, and BN outperformed the other
layouts for stencils with the largest extent on the second dimension. These results showed
that it is worth optimizing the DASH memory layout to the used stencil to improve the pro-

60



5.4 Discussion

cessing performance. In addition to the expected influence of the combination of the layout
and the stencil size on the performance, the evaluation experiments also exposed a non-
optimal behavior of implementation v1 resulting in large performance differences between
the total execution time of the different stencils.

A first explanation for the slow of the execution times between ST1, ST2, and ST3 was the
cache miss rate. Evaluation experiments conducted in this thesis to verify this explanation
based on different stencils and unit combinations did not showed a strong impact on the
overall performance. This result was expected because DASH already takes care of cache
access in its framework. Finally, a more satisfying explanation of the behavior was found:
The main performance impact is caused by loading pixels which are not locally available
using single MPI calls and going through the whole software stack builded up by DASH

Finally, a more satisfactory explanation for the behaviour was found: The main impact
on performance is caused by loading pixels by working on the global DASH array. First, for
every single pixel which is not available locally, the access results in a background MPI call
while the processor waits for the result of the call and is not able to calculate more data.
On the other hand for each pixel the software stack (DASH,DART,MPI...) is run through
once, which adds a delay on the software side. Because of this, the unit spends a lot of
time waiting for remote pixels which slows down the complete calculation. If no network
communication is necessary the execution time is much faster as demonstrated by ST1 with
BN and ST2 with NB depicted in Figure 5.7 but still slow because of the software side
latency. At the first sight, the total processing time for both stencils using 128 cores looks
quite fast with 45s, which is a speedup of about the factor 100 compared to the solutions
which generate the most network communication. But only 1.2 GB of data were processed
with 128 cores, which is not a lot of data in this time frame. It turns out that work on the
global PGAS DASH array is terribly slow. This was the reason to investigate an alternative
implementation v2 which copies the local data sets with a halo region to a local array and
is able to calculate using this array without any MPI calls.

The results of the experiments with implementation v2 show an improved overall perfor-
mance compared to implementation v1. The fastest execution time was achieved with layout
BN, regardless which stencil was chosen. At the point of 32 used units the HR-Cluster stops
to scale further. As a reason he bottleneck in the network infrastructure preventing the
application from scaling up was estimated. ut this can not be the only reason for the bad
performance of NB, because similar network issues would be expected when using a BN
layout with a not aligned stencil. Furthermore, the slightly worse execution time on the
SuperMUC-NG would not be explained by this. So what is the difference in the execution
between the BN and NB layout? It was observed that the issue lies inside the function
copy dash to local of implementation v2. In the main part of this function, the data is
copied from the DASH array to the local buffer in a line wise manner. For the BN layout
this means that the function will copy full lines of the image, so each unit will generate extx

u
copy calls each with the size of extx pixels. For the NB layout, each unit will generate the
same amount of copy calls, in particular the count of pixels in the first dimension, regardless
of how many units we are added to the problem solution. The calls will shrink in size by
extx
u + sexty. The sexty stays the same, with increasing number of units and this result in

more data to transfer over the network, because the halo become large in relation to the
shrinking block size in y . The amount of copy calls remains the same. The correlation is
shown in Figure 5.21. Again each dash::copy call will also add the software-side latency to
the total execution time.

61



5 Results & Discussion

0 20 40 60 80 100 120
Units/Cores

0

25000

50000

75000

100000

125000

150000

175000

200000

Si
ze

 in
 B

yt
e

Size per dash::copy call

BB
BN
NB

Figure 5.21: Comparison of the amount of byte which are copied per dash::copy call between
the different layouts [B = BLOCKED, N = NONE]

For the HR-Cluster we suspect the problem with the performance of small copy calls is
due to the network protocol transport control protocol (TCP) and also trough the latency
stack which results from DASH and MPI because each call has to go through the whole
software stack once through. On the basis of this assumptions the estimated communication
on the TCP level in the network for the HR-Cluster is calculated and shown in Figure 5.22.
As parameters the an maximum transmission unit (MTU ) of 1500 is assumed and for
simplification the overhead from the MPI - or IP -Headers is ignored. The Figure 5.22 shows
how network communication with an increasing number of units under different patterns
develops with the ST3. In the left plots, it can be seen that the total amount of data to
transfer and resulting TCP -Segments strongly increasing with more units, in the case of
the NB pattern. On the BN pattern everything stays constant. The BB patterns shows
a slightly increase in data to transfer. On the right side at the top, the utilization of the
maximal MTU size is shown. The BN and BB pattern are resulting in large calls and so
they can utilize the network better in comparison to the NB which generates much smaller
calls then the MTU size. This estimation is not true for the SuperMUC-NG, the network is
not based on TCP communication. But the statement with the increasing data to transfer,
and amount of calls is also valid for the SuperMUC-NG.

In the end it is better to make fewer calls copying larger data chunks instead of more calls
copying only small parts of the data. The reason is a better network utilization with larger
calls, because smaller calls generate more overhead by not fully filling the data packets as
well as adding the communication latency of all calls trough the whole software and hardware
network stack to the execution time. The SuperMUC-NG dose not use TCP so only the
accumulated software latency stack seems to be the reason why the NB layout is slightly
worse than the other layouts on, despite the faster and strong interconnect. But it is to

62



5.4 Discussion

0 50 100
Units/Cores

106

Nu
m

be
r

Number of TCP-Segments

0 50 100
Units/Cores

20%

40%

60%

80%

100%
TCP Segment size

MTU

0 50 100
Units/Cores

4.0

4.1

4.2

By
te

1e8 Data to transfer

0 50 100
Units/Cores

5

10

Nu
m

be
r

TCP-Segments per dash::copy

NB
BN
BB

Figure 5.22: Calculated behavior of the TCP traffic on the network with a MTU of 1500.
Top left: shows how many TCP-Segments are generated in total. Top right:
show the utilization of the MTU size. Bottom left: the amount of data to
communicate. Bottom right: shows the number of generated TCP-Segments
per dash::copy call

63



5 Results & Discussion

mentioned, that the other technology of the network in the SuperMUC-NG can also have
other influences. It can be concluded that with the BB and BN layout it is possible to
reduce the amount of calls with an increasing number of units to be able to transfer more
data per call which results in a better performance than with the NB layout.

This results in the open issue remains the chosen interaction between the DASH framework
and the implementation of the copy dash to local function. The way of copying the halo for
NB layout have to be improved to be able to weight the execution times of the stencils in
relation to the layouts correctly. The implementation can be improved by adding a halo
synchronization which copies the data in a bulk, so only one large copy call for the halo is
generated, which is split up to the 8 neighbors of the unit. This would allow the DASH
framework to handle the MPI calls in an optimized way in the background. In a next step
the implementation can be extended to allow the calculations to work on the local pixels
while the halo region can be synchronized in parallel in an asynchronous task, which will hide
the communication latency. This would hide a part of the latency of accessing the remote
pixels by calculating in parallel on the local pixels. The DASH framework will provide this
feature in a future release.

A theoretically solution for not using the the NB layout to avoid the discussed limitations,
is to use the BN layout instead on a transposed image with a transposed stencil. This
approach results in improved execution times for the ST2 stencil. Of course transposing the
image generates additional overhead, but this is neglected for this theoretical view on the
problem. The results of applying this solution to the evaluated perfomance values of the
copy dash to local function for the ST2 stencil on the HR-Cluster are depicted in Figure 5.23.
Through transposing both the image and the stencil, ST2 is aligned to the layout and the
copy process performs much better now allowing to have similar execution times as ST1
on a BN layout. But still the overall network saturation and latency is an issue on the
HR-Cluster compared to the SuperMUC-NG. Especially for a Beowolf like cluster, a bulk
copy should bring a better network utilization compared to line wise copying.

In the end the line wise copy remains a main issue of the current implementation both on
the BB as well as the BN layout. For the BN layout the implementation for a bulk copy is
trivial because the data to copy is stored consecutively in the memory and so a copy of all
lines in one large call is possible with dash::copy allowing DASH to optimize the copying in
the background. First evaluation experiments showed no large performance gain which is was
attributed to the fact that the existing calls were already big enough to utilize the network.
Implementing the solution for the other layouts is out of scope of this thesis because of the
more complex implementation that needs to consider the none consecutively memory access
in the DASH array. In the next DASH release a feature for halo synchronization will be
supported which generating a separate memory space for the halo which can be synchronized
in the background while calculating on the local data.

The results show that with each added unit the application generates more communication
and so the total execution slowly grows. Because of this, a perfect weak scaling is not
achieved. This is expected as demonstrated by the experiments on the SuperMUC-NG
in Figure 5.20. But nevertheless perfect weak scaling is not achievable at all, due too
Amdahl’s Law. To come near the perfect scaling, this could only be possible if no neighbor
communication happens. In this case the neighbor communication is increasing with the
amount of units and this results in an increased total execution time from 1.15s with 16
units to 3.38s with 512 units on the SuperMUc-NG.

For the strong scaling the result looks different. With an increasing number of units

64



5.4 Discussion

0 20 40 60 80 100 120
Units/Cores

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 ti
m

e 
in

 s

Copy data from DASH to local buffer for ST2
NB
BN
BB

Figure 5.23: Theoretically layout performance for ST2 on 2 nodes in the HR-Cluster with
transposed data.

the workload per unit is decreasing and dominates the increasing stencil communication
overhead. Within the strong scaling experiment a speedup of 24.16s from 16 units to 512
units was achieved on the SuperMUC-NG, where the perfect speedup would be 32. The
speedup could be further increased with a more optimized calculation step, because the
largest part of the execution time is spent in the calculation step. But for this purpose first
real RS algorithms have to be implemented, otherwise this is a pointless effort.

A focus of this thesis lied on the proposed optimization model, which makes a minimum
optimization for the network communication which occurs in the whole multi-channel RS
image processing chain. The network communication includes the initial loading of the
individual bricks into the PGAS shared memory as well as the resulting communication
during the calculation, caused by the potentially large stencils. From this starting point,
an optimization model was created that determines optimization costs by the amount of
transferred pixels. Each pixel which needs to be transmitted over network between nodes
while calculating or switching the layout increases the total cost while all local pixels reduce
the total cost. Inside the optimization model the layout switching cost and communication
cost are treated equally. In the experiment executed in Section 5.3.2 it was found that
the resulting costs, see Figure 4.3, of the implementation v1 matches in the trends with
the execution times. We can only compare the trends because of it is not possible for the
cost function to reflect the whole behavior of the hardware and software stack, its just a
simplification. The only concern of the optimization function is to reduce communication.

Because this implementation does not perform good on larger data sets, the experiments
were conducted using only a small data set. For the used stencils ST1, ST2 and ST3, the
optimization model was dominated by the choice of the layout in the first processing step.
This layout was propagated through the complete processing chain regardless of which layout

65



5 Results & Discussion

will result in the best performance. If the initialization locality was ignored or the stencils
communication overhear were enlarged, the layout changes fitted the best execution times
for the processing step.

It can be concluded from the first experiments in Section 5.3.2 that the optimization model
described in Section 4 has a few weaknesses: The locality of the initial distribution has a
too strong impact on the first layout in comparison to the stencil communication overhead.
(2) If the stencil is not large enough, the model tend to do not change the layout inside
the processing chain. One solution for both (1) and (2) is to weight the cost for initializing
data/switching the layout while processing and the communication costs of the halo regions
differently. In order to do so, we tried to estimate weights in the Section 5.3.3 but its was
not possible due to performance issue in the HR-Cluster while scaling up further then 36
units and the overall better performance of NB on the SuperMUC-NG. If the results of
the SuperMUC-NG experiments applied into weights it is suspected that the optimization
function will show to use the NB pattern in the most time and it would also the best to
store the data directly line wise to match the NB layout. At this point we could conclude,
we find out that storing the data line wise is the best option. But the generated weights
are strongly effected by the kind of implementation and the evaluated problems with v2. So
to make this conclusions, the issue have to be removed from the implementation first. Also,
it would the best to generate respective weightings with real RS image processing to have
real context between calculating time on the data and the time for loading the data from
the disk with initialization to a PGAS memory to be able to draw this conclusion.

But we can conclude the optimization function really reduce the network traffic in the
context of pixel which have to transferred over the network, nevertheless it results in bad
execution times. But for a real proof a measurement of the network traffic in an enclosed
environment is necessary, which could not be achieved while the evaluation of this thesis.

Anyway the implementation v2 even showed the capability to process large data sets by
processing an evaluation data set of 70 GB in only 305 seconds allowing to use this version
in future real-world RS image processing applications. But again, the real execution time
will differ if we apply real RS image processing on the array which will result in another
algorithm complexity then just a smoothing and so we suspect higher execution times.

Another result of the evaluation experiments is that the total execution time of the pro-
cessing task depends on the slowest node. This is because while the slowest node is still
working on the task, all other nodes wait at the synchronization point. This is a general
problem of this kind of work distribution on a heterogeneous platform like the HR-Cluster.
On the SuperMUC-NG the results were more stable, because of the homogeneity of the
system.

66



6 Outlook - Interaction with Python

The scientists in the DLR HR Institute use the Python programming language for scientific
analysis of data. To allow them to interact with the DASH framework, or another distributed
computing back-end, the development of a Python library is considered. There is already a
DASH interface library developed by Josef Schaeffer called pydash. These Python bindings
expose the DASH data types to Python scripts and can therefore serve as a basis for a new
interface.

The envisioned light weighted library should implement the following features:

• small programmatic overhead

• interaction with Python libraries like Pandas and Numpy

• abstraction of distributed file handling

• accelerate processing without knowledge of the infrastructure

• set of processing algorithms for radar data

The small programmatic overhead allows the user to process files with only a few pa-
rameters, e.g. either the input image name, the task with its stencils and the operation or
a Numpy array or Pandas data-frame with the respective operation. The algorithms are
directly implemented in C++ and will be accessed via a Python API. Because most of the
RS algorithms are currently implemented using old programming languages like Interactive
Data Language (IDL) a C++ re-implementation is inevitable and is expected to be costly.
Nevertheless, it is important to have a basic set of algorithms implemented to cover the most
RS processing procedures to create acceptance for the newly developed library and facilitate
productive use.

The library should support the user to gain as much acceleration from the computation
hardware infrastructure as possible while not bothering with the infrastructure itself. On the
basis of the input parameters passed to the library, a DASH array with the initial data will
be created followed by the execution of the operation with the stencil fulfilling the following
requirements:

• choose the amount of units to generate a good performance on the given data set

• choose the nodes so that the block locality per node is the highest

• free resources on the node for processing

The library should split up the interaction into three steps: (1) Inputting raw data,
segmenting it into multiple bricks, and distributing it to the cluster. (2) Processing the
bricks distributed on the cluster inside the desired framework (e.g. DASH ). (3) Outputting
bricks into a product file. Inside the library each file is identified by a unique id. It could be

67



6 Outlook - Interaction with Python

a benefit to store the raw data in Hierachical Data Format, as HDF5 [Gro19] files, to make
parallel I/O available. The raw data as well as the resulting products need to be stored on
a persistent system with a reliable backup for data failure protection. This should not be
done with the data that is distributed on the cluster.

This abstraction should allow the scientist to easily interact with the DASH framework
and process tasks in a fast and reliable way. Furthermore, the abstraction allows to change
the back-end while keeping the processing scripts of the scientists. This interface with DASH
as an back-end is envisioned to replace the currently used single node processing frameworks
in the future.

68



7 Conclusion

Current developments, as stated in the introduction, suggest that remote sensing data pro-
cessing is increasing and becoming an important topic in the world of Big Data. However,
this is results in a variety of implications in efficient management, loading distributed data
I/O, irregular data access and complex dependencies between several data sets. Furthermore,
handling of this fore points together in efficiently way on a operating processing system is a
huge challenge. The focus is on techniques to support multi-stage processing chains for ex-
tremely large, multi-channel remote sensing data. Particular attention is given to supporting
computations that involves potentially large neighborhoods, or stencils. For this purpose,
the storing locality of the data on disk in the context of the initial PGAS memory layout and
of the followed layouts in the further processing chain was investigated. In contrast to tradi-
tional cluster computing approaches, which use a centralized network storage such as NFS,
the thesis investigates forms of distributed storage. The motivation is to improve scalability
of the overall system by removing the centralized storage as a potential bottleneck.

The results of the brick locality experiments, Section 5.3.1, show that it is possible to
improve the initialization speed of large image data by exploiting the local disk speed of
multiple nodes in comparison to the initialization of the data images from a central NFS
server with a RAID system in the background. A speedup of 25% was achieved while using
100% brick locality against 0% brick locality. The 0% brick locality is also four times faster
than reading form NFS. The reason for this, is the gained speed of brick reading from
several disks outperform the RAID system in the background of the NFS server. Network
bandwidth and saturation is also to concern, but was not the main reason for the better
performance in this particular experiment.

Based on the first performance measurements on the layouts, an optimization model was
developed with the goal of reducing network traffic. Network traffic occurs in the context
of the initialization of a distributed data structure from disk to a PGAS memory layout
and when performing computations with potentially large stencils on the shared memory
layout. The network traffic was calculated based on pixels that must be transmitted over
the network when initializing or switching between PGAS memory layouts. On basis of
this model a Python software was developed to calculate the memory layouts with the
least network communication cost for a given multi-channel remote sensing data processing
workflow and the given data distribution on the nodes. The results of this optimization was
evaluated in an experiment, see Section 5.3.2. The evaluation shows that this optimization
approach correctly identifies the processing strategy corresponding to the minimum inter-
node network traffic. For very small stencils, however, the optimization did not reproduce
the real-world optimum because the underlying model is not able to reflect the behavior of
the certain types of overhead that occur in the particular implementation of the distributed
processing framework. In real world implementations, it might be desirable to extend the
optimization model to reflect these implementation-dependent sources of overhead.

In the layout experiments with different stencil extents in Section 5.3.3 the performance
behavior of the stencils is analyzed. For these experiments an application, called Remote

69



7 Conclusion

Sensing Image Distributor and Processor (RSIDP) was implemented in order to process
huge arrays on a distributed system. RSIDP is based on the DASH library, a C++ Tem-
plate Library for Distributed Data Structures with Support for Hierarchical Locality for
High Performance Computing and Data-Driven Science [FFK16]. During the execution of
the experiments several performance issues were solved and the total performance of the
application could be improved. Implementation v2 of the software RSIDP outperformed
implementation v1 by a speedup of 40 to 150 depending on the used stencils and PGAS
memory layout. This was achieved by using a more efficient way in interaction with the
DASH framework to handle the inter-node communication at block borders in the PGAS
memory. However, in the end it was not possible to extract weights from the layout perfor-
mance experiments, see Section 5.3.3, to handle the stencil communication overhead of the
different layouts or weigh the stencil overhead against the brick locality due to the behavior
of implementation v2 (I.e. it performance the best one certain memory layout) and due to
missing real remote sensing processing workload.

The general usage of the DASH library works very well for parallel processing and gen-
erally provides an interface that simplifies the implementation of the distributed algorithms
considered relevant to remote sensing applications. This is primarily done by an abstraction
layer for the data access simplifying the respective implementation compared to a plain MPI
solution. At no point during the experiments a problem with the size of the arrays was
encountered. Relying on a framework like DASH to handle the abstraction of extensive
infrastructure in order to process large arrays is therefore a valid approach for future data-
intensive remote sensing processing tasks. Nevertheless, the developer still needs detailed
insight knowledge on both his own application as well as the utilized framework itself. The
issues revealed in the experiments in Section 5.3.3 highlight some of the pitfalls which might
otherwise occur.

The existing or envisioned hardware infrastructure thus plays an important role in selecting
the appropriate distributed computing framework. The DASH framework itself performs
best on a homogeneous node and network infrastructure, e.g. a real HPC infrastructure like
implemented by the SuperMUC-NG. On the more Beowulf -like HR-Cluster, the determining
factor of the execution time was the node with the slowest CPU or disk speed because the
other nodes had to wait for its operations to finish before continuing the processing after a
synchronization point. Data locality will, however, be a consideration in any environment.

In the future the DLR’s Microwaves and Radar Institute will invest more effort in bringing
remote sensing processing into the world of distributed computing. Another approach with a
Big Data framework was already implemented with SPARK [Apa20], which also allows dis-
tributed calculation of remote sensing data. In the future a comparison between the solution
with the library DASH and SPARK is envisioned. To facilitate this comparison, the next
step is to translate part of the SAR radar signal processing algorithms from IDL or Python
into C++. Beyond the actual comparison, another goal is to speed up the initialization
process of SPARK with the developed optimization approach as well.

The processing of large data sets remains a challenge because existing solutions are often
task-specific or require expert-knowledge of the system and infrastructure. With the given
optimization model it is possible to reduce the communication overhead throughout an entire
processing chain. However, a further investigation for analyzing the difference between the
stencil operations on the given layouts is necessary. The approach to abstract MPI with
the DASH framework shows already promising results, see Section 5.3, towards a more
easy to implementation of flexible, generic and reliable solutions. Also loading the data

70



distributed from several nodes instead of a monolithic network file system approach and the
consideration of the brick locality while initializing a PGAS memory layout show promising
results.

This thesis presented some approaches towards such solutions that can be used for real-
world remote sensing imaging applications and contribute towards solving the challenges of
the modern Big Data world for future scientific data exploitation.

71





Symbols

p Pixel of an image

lp Local pixel of an image

rp Remote pixel of an image

cp Communication pixel

extx Image extents in x

exty Image extents in y

I Image consists extx ∗ exty pixel

bextx Block extents in x

bexty Block extents in y

B Block consists bextx ∗ bexty pixel

brextx Brick extents in x

brexty Brick extents in y

Br Brick consists brextx ∗ brexty pixel

d Data distirbution

b Brick distirbution

dnext Next data distributino

sextx Stencil extents in x

sexty Stencil extents in y

s Stencil consists sextx ∗ sexty
S Surface of a brick/block

V Volume of a brick/block

H Heigth in pixel

W Witdh in pixel

PC Pixel count

LPC Local pixel count

RPC Remote pixel count

SO StencilcCommunication overhead

C Cost function

RS/V Surfacet to volume ratio

RH/W Higth to width ratio

o Operation to generate workload

u Number of used units

N Number of used nodes

73





List of Figures

1.1 The dimensionality of the multi-temporal RS data. . . . . . . . . . . . . . . . 2

2.1 Schema of von Neumann Computer Model . . . . . . . . . . . . . . . . . . . . 8

2.2 Growth in processor performance over 40 years [HP11] . . . . . . . . . . . . . 8

2.3 Simple abstract schema of a task distribution on distributed system with four
nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 A SAR image segmented in 20 data bricks with a size of 2048 · 2048 pixels
each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 3 · 3 stencil operation on a small array. . . . . . . . . . . . . . . . . . . . . . 15

3.3 Different DASH patterns with 8 units on a segmented image in 8 · 8 bricks.
Each color shade represents a block on an different unit. . . . . . . . . . . . . 17

3.4 Multi-channel RS processing workflow . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Different stencil operations: (ST1) with high extent in dimension 1, (ST2)
stencil with high extent in dimension 0 and (ST3) stencil with small and
similar extent in both dimensions. Color shade represent a unit. . . . . . . . 19

3.6 Visualization of an image segmented in 8 · 8 bricks loaded into a BB, BN and
NB patterns in DASH using eight units. The different block colors shades
correspond to the different units and the brick number corresponds to the
respective node. Red highlighted brick numbers are locally available on the
disk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Visualization of an image segmented in 8 · 8 and already loaded into a DASH
array with BB pattern. The different block colors shades and numbers cor-
respondent to the different units/nodes. Red highlighted brick numbers are
available in the local memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Schema of image segmentation into bricks on the left side and example for a
single stencil operation on the right side. . . . . . . . . . . . . . . . . . . . . 24

4.2 Random data distribution on 8 nodes. Each shade of gray represents an
assigned node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 SO(d, s) for the different patterns with ST1, ST2 and ST3. Assumed 100%
brick locality while initialization. Right side the layout examples with the
stencils to show alignment. Bottom plot: BN = NB. . . . . . . . . . . . . . . 28

4.4 SO(d, s) for the BB with different stencil extents. . . . . . . . . . . . . . . . . 28

4.5 Filtered SO(d, s) for the different units with ST3. Assumed 100% brick lo-
cality while initialization. BN = NB. . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 HR-Cluster Hardware overview . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Comparison of read/write speed of local bricks with NFS on multi nodes.
Green lines are summed average read/write performance of the single nodes. . 39

75



List of Figures

5.3 Average Initialization time on 3 nodes on the HR-Cluster in seconds by read
image and copy to DASH with different brick localities, standard deviation
displayed on top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Example optimization result for 64 bricks distributed to 3 nodes and processed
with 64 units. Each gray tone represents data located on the specific node. . 43

5.5 Example optimization result for 64 bricks distributed to 3 nodes and processed
with 64 units without considering brick locality. Each gray tone represents
data located on the specific node. . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Example optimization result for 64 bricks distributed to 3 nodes and processed
with 64 units without considering brick locality using large stencils. Each gray
tone represents data located on the specific node. . . . . . . . . . . . . . . . 45

5.7 Average execution time in seconds of ST1, ST2 and ST3 with 2 nodes with
implementation v1 on the HR-Cluster. . . . . . . . . . . . . . . . . . . . . . 46

5.8 Comparison of BB and NB pattern distribution on two nodes with eight units.
Numbers display the node assignment of each brick. The block colors show
the unit. The red lines mark borders where network communication is necessary. 47

5.9 RS/V ratio compare to the execution time in seconds of ST2 with 3 nodes for
the patterns BB and NB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.10 Average execution time in seconds of ST1, ST2 and ST3 with 2 nodes with
implementation v2 on the HR-Cluster. . . . . . . . . . . . . . . . . . . . . . 50

5.11 (1) Average time for copying a DASH array to the local buffer in seconds for
the ST1, ST2 and ST3 stencil. The experiment facilitated implementation
(v2) running on 2 nodes of the HR-Cluster. The confidence intervals show
minimum and maximum copy times. . . . . . . . . . . . . . . . . . . . . . . . 51

5.12 (2) Average time for calculating in seconds for ST1, ST2 and ST3. The
experiment facilitated implementation (v2) running on 2 nodes of the HR-
Cluster. The confidence intervals show minimum and maximum calculation
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.13 (3) Average time for copying the local buffer to a DASH array in seconds for
ST1, ST2 and ST3. The experiment facilitated implementation (v2) running
on 2 nodes of the HR-Cluster. The confidence intervals show minimum and
maximum copy times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.14 Average execution time in seconds of ST1,ST2 and ST3 with 2 nodes with
implementation v2 on the SuperMUC-NG. Confidence interval show min and
max execution time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.15 Average execution time in seconds of ST3 with 16 nodes with implementation
v2 on the SuperMUC-NG. Confidence interval show min and max copy time. 54

5.16 (1) Average copy DASH to local buffer time in seconds of ST{500, 500},
16 nodes and implementation v2 on the SuperMUC-NG. Confidence interval
show min and max copy time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.17 Weak/Strong scaling shown on a single node and in multi node environments
with implementation v1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.18 Weak scaling shown on four nodes divided for the different stencils with im-
plementation v1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.19 Weak/Strong scaling shown on a single node and multi node environments
with implementation v2 on the HR-Cluster. . . . . . . . . . . . . . . . . . . . 59

76



List of Figures

5.20 Weak/Strong scaling shown on the SuperMUC-NG with implementation v2
on 16 nodes divided for the different stencils. . . . . . . . . . . . . . . . . . . 59

5.21 Comparison of the amount of byte which are copied per dash::copy call be-
tween the different layouts [B = BLOCKED, N = NONE] . . . . . . . . . . . 62

5.22 Calculated behavior of the TCP traffic on the network with a MTU of 1500.
Top left: shows how many TCP-Segments are generated in total. Top right:
show the utilization of the MTU size. Bottom left: the amount of data to
communicate. Bottom right: shows the number of generated TCP-Segments
per dash::copy call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.23 Theoretically layout performance for ST2 on 2 nodes in the HR-Cluster with
transposed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

77





List of Tables

1.1 Satellite data center: the volume and velocity of RS data [MWW+15], [Sen18],
(*Projected based on [RMW+18]) . . . . . . . . . . . . . . . . . . . . . . . . 2

4.1 RS/V and RH/W for the given examples. [B = BLOCKED, N = NONE] . . . 25

5.1 Server in the DLR hardware configuration overview . . . . . . . . . . . . . . . 36
5.2 SuperMUC-NG hardware configuration overview . . . . . . . . . . . . . . . . 36
5.3 Stencil Set 1: used in divers experiments as basis stencils. [N = None, B =

Blocked] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Average execution times of 10 tests for the different stencils/layout combina-

tions with implementation v1 on a 8000 ∗ 8000 pixel image in the HR-Cluster. 43
5.5 Stencil Set 2: larger stencils in comparison to set 1 to increase the stencils

communication overhead SO. [N = None, B = Blocked] . . . . . . . . . . . . 45
5.6 Average cache-misses and standard deviation captured with perf with, 20.000 ∗

20.000 pixel image, with implementation v1. [N = None, B = Blocked] . . . . 49
5.7 Example execution times for both implementations on several different tasks

with 2 nodes and a 20.000 ∗ 20.000 pixel image. [N = None, B = Blocked] . 53

79





Bibliography

[ABA+17] Emilio Arnieri, Luigi Boccia, Giandomenico Amendola, Chunxu Mao, Steven
Gao, Tobias Rommel, Srdjan Glisic, Piotr Penkala, Milos Krstic, Anselm Ho,
Uroschanit Yodprasit, Oliver Schrape, and Marwan Younis. A 60-channels adc
board for space borne dbf-sar applications. In International Symposium on
Antennas and Propagation (ISAP). IEEE, Januar 2017.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York,
NY, USA, 1967. ACM.

[Apa19] Apache. Apache Hadoop. Website, 2019. [last visited 02. Dezember 2019].

[Apa20] Apache. Apache Spark - Lightning-fast unified analytics engine. Website, July
2020. [last visited 5. January 2020].

[BAZ12] Nicolas Baghdadi, Maelle Aubert, and Mehrez Zribi. Use of TerraSAR-X Data
to Retrieve Soil Moisture Over Bare Soil Agricultural Fields. IEEE Geoscience
and Remote Sensing Letters, 9:512–516, 05 2012.

[BCPS13] Mamta Bhojne, Abhishek Chakravarti, A Pallav, and V Sivakumar. High per-
formance computing for satellite image processing and analyzing–a review. In-
ternational Journal of Computer Applications Technology and Research, 2:424
– 430, 07 2013.

[BDK+17] Ujwala Bhangale, Surya S. Durbha, Roger L. King, Nicolas H. Younan, and
Rangaraju Vatsavai. High performance gpu computing based approaches for
oil spill detection from multi-temporal remote sensing data. Remote Sensing of
Environment, 202:28 – 44, 2017. Big Remotely Sensed Data: tools, applications
and experiences.

[BFS89] William Bolosky, Robert Fitzgerald, and Michael Scott. Simple but effective
techniques for NUMA memory management. ACM SIGOPS Operating Systems
Review, 23(5):19–31, 1989.

[BKBB18] P. Bastian, D. Kranzlmüller, H. Brülchle, and M. Brehm. High Perfor-
mance Computing in Science and Engineering. Bayerische Akademie der Wis-
senschaften, 2018.

[Bok87] Shahid H. Bokhari. Assignment Problems in Parallel and Distributed Comput-
ing. Kluwer Academic Publishers, Norwell, MA, USA, 1987.

81



Bibliography

[Bon00] André B Bondi. Characteristics of scalability and their impact on performance.
In Proceedings of the 2nd international workshop on Software and performance,
pages 195–203, 2000.

[CCZ07] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and
the chapel language. Int. J. High Perform. Comput. Appl., 21(3):291–312,
August 2007.

[CGH94] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The mpi message passing
interface standard. In Karsten M. Decker and René M. Rehmann, editors,
Programming Environments for Massively Parallel Distributed Systems, pages
213–218, Basel, 1994. Birkhäuser Basel.

[ETS14] H. Edwards, Christian Trott, and Daniel Sunderland. Kokkos: Enabling many-
core performance portability through polymorphic memory access patterns.
Journal of Parallel and Distributed Computing, 74, 07 2014.

[FF16] Tobias Fuchs and Karl Fuerlinger. Expressing and exploiting multi-dimensional
locality in dash. In Software for Exascale Computing, volume 113, pages 341–
359, 01 2016.

[FFK16] K. Fuerlinger, T. Fuchs, and R. Kowalewski. Dash: A c++ pgas library for
distributed data structures and parallel algorithms. In 2016 IEEE 18th Inter-
national Conference on High Performance Computing and Communications;
IEEE 14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 983–
990, Dec 2016.

[GHD+17] Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau,
and Rebecca Moore. Google earth engine: Planetary-scale geospatial analysis
for everyone. Remote Sensing of Environment, 202:18 – 27, 2017. Big Remotely
Sensed Data: tools, applications and experiences.

[GMÜ+17] N. Gorelick, M. Marconcini, S. Üreyen, J. Zeidler, V. Svaton, and T. Esch.
Mapping the Urban Side of the Earth- the new GUF+ Layer. In AGU Fall
Meeting Abstracts, volume 2017, pages IN51H–05, Dec 2017.

[Gro19] HDF Group. The HDF5 Library & File Format. Website, November 2019. [last
visited 20. November 2019].

[HJ13] Pascal Hitzler and Krzysztof Janowicz. Linked data, big data, and the 4th
paradigm. Semantic Web, 4(3):233–235, 2013.

[HK14] Richard D Hornung and Jeffrey A Keasler. The raja portability layer: overview
and status. Technical report, Lawrence Livermore National Lab.(LLNL), Liv-
ermore, CA (United States), 2014.

[HP11] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative
Approach. The Morgan Kaufmann Series in Computer Architecture and Design.
Elsevier Science, 2011.

82



Bibliography

[HSHH15] Jasim Hiba, Ammar Hameed Shnainm, Sarah Hadishaheed, and Azizahbt Haji.
Big Data and Five Vs Characteristics. International Journal of Advances in
Electronics and Computer Science, 2(1):16–23, 01 2015.

[IBM19] IBM. IBM - Spectrum Scale Overview. Website, July 2019. [last visited 28.
November 2019].

[Int19] Intel. Technical Details: INTEL XEON GOLD-PROZESSOR 6212U. Website,
July 2019. [Online; last visited 15. July 2019].

[ISO12] ISO. ISO/IEC 14882:2011 Information technology — Programming languages
— C++. International Organization for Standardization, Geneva, Switzerland,
February 2012.

[JDT+15] Jennifer Jay, Francisco Delgado, Jose Torres, Matthew Pritchard, Orlando
Macedo, and Victor Aguilar. Deformation and seismicity near sabancaya vol-
cano, southern peru, from 2002-2015. Geophysical Research Letters, 42, 03
2015.

[LGP+11] C. A. Lee, S. D. Gasster, A. Plaza, C. Chang, and B. Huang. Recent devel-
opments in high performance computing for remote sensing: A review. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
4(3):508–527, Sep. 2011.

[LM19] MNM-Team LMU Munich. DASH-Project. Website, November 2019. [last
visited 20. November 2019].

[LSBBH11] J. M. Lopez-Sanchez, J. D. Ballester-Berman, and Irena Hajnsek. First Results
of Rice Monitoring Practices in Spain by Means of Time Series of TerraSAR-X
Dual-Pol Images. IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 4(2):412–422, Juni 2011.

[MML17] Mabule Mabakane, Daniel Moeketsi, and Anton Lopis. Scalability of DL POLY
on High Performance computing platform. South African Computer Journal,
29, 12 2017.

[MWW+14] Yan Ma, Haiping Wu, Lizhe Wang, Bormin Huang, R. Ranjan, Albert Zomaya,
and Wei Jie. Remote sensing big data computing: challenges and opportunities.
Future Generation Computer Systems, 51, 11 2014.

[MWW+15] Yan Ma, Haiping Wu, Lizhe Wang, Bormin Huang, Rajiv Ranjan, Albert
Zomaya, and Wei Jie. Remote sensing big data computing. Future Gener.
Comput. Syst., 51(C):47–60, October 2015.

[oBC19] University of British Columbia. MPICH — High-Performance Portable MPI.
Website, November 2019. [last visited 20. November 2019].

[PDCK11] A. Plaza, Q. Du, Y. Chang, and R. L. King. High performance computing
for hyperspectral remote sensing. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 4(3):528–544, Sep. 2011.

[Pro19] Prometeus. Top 500 - the list. Website, 2019. [last visited 20. November 2019].

83



Bibliography

[Rec19] Leibniz Rechenzentrum. SuperMUC-NG - System Description. Website, 2019.
[last visited 10. Dezember 2019].

[RMW+18] Achim Roth, Ursula Marschalk, Karina Winkler, Birgit Schaettler, Martin Hu-
ber, Isabel Georg, Claudia Kuenzer, and Stefan Dech. Ten Years of Experience
with Scientific TerraSAR-X Data Utilization. Remote Sensing, 10:1170, 07
2018.

[SBL+17] Peter Strobl, Peter Baumann, Adam Lewis, Zoltan Szantoi, Brian Killough,
Matthew Purss, Max Craglia, Stefano Nativi, Alex Held, and Trevor Dhu. The
six faces of the data cube. In Proc. Conf. on Big Data from Space (BiDS’17),
pages 28–30, 2017.

[Sen18] Sentinel-2 Team. Sentinel-2 Mission Status Report 153. Technical report, Eu-
ropean Space Agency, 2018.

[SKF18] Joseph Schuchart, Roger Kowalewski, and Karl Fuerlinger. Recent experiences
in using MPI-3 RMA in the DASH PGAS runtime. In Proceedings of Workshops
of HPC Asia, pages 21–30, 2018.

[SSPP11] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and West Pomeranian.
Impact of system and cache bandwidth on stencil computations across multiple
processor generations. In Proceedings of the Workshop on Applications for
Multi-and Many-Core Processors (A4MMC) at ISCA, volume 3, page 2, 2011.

[UPC05] UPC Consortium. UPC Language Specifications, v1.2. Tech Report LBNL-
59208, Lawrence Berkeley National Lab, 2005.

[Vel16] Domenico Velotto. Oil spill and ship detection using high resolution polarimetric
X-band SAR data. PhD thesis, Technische Universität München, 2016.

[von93] J. von Neumann. First draft of a report on the edvac. IEEE Annals of the
History of Computing, 15(4):27–75, 1993.

[WMZ+15] L. Wang, Y. Ma, A. Y. Zomaya, R. Ranjan, and D. Chen. A parallel file system
with application-aware data layout policies for massive remote sensing image
processing in digital earth. IEEE Transactions on Parallel and Distributed
Systems, 26(6):1497–1508, June 2015.

[YBC+07] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta,
Jason Duell, Susan L Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands,
et al. Productivity and performance using partitioned global address space lan-
guages. In Proceedings of the 2007 international workshop on Parallel symbolic
computation, pages 24–32, 2007.

[YIL+13] Fumio Yamazaki, Yoji Iwasaki, Wen Liu, Takashi Nonaka, and Tadashi
Sasagawa. Detection of damage to building side-walls in the 2011 Tohoku,
Japan earthquake using high-resolution TerraSAR-X images. In Lorenzo Bruz-
zone, editor, Image and Signal Processing for Remote Sensing XIX, volume
8892, pages 299 – 307. International Society for Optics and Photonics, SPIE,
2013.

84



Bibliography

[YSP+98] Katherine A. Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben
Liblit, Arvind Krishnamurthy, Paul N. Hilfinger, Susan L. Graham, David Gay,
Phillip Colella, and Alexander Aiken. Titanium: A high-performance java
dialect. Concurrency: Practice and Experience, 10(11-13):825–836, 1998.

[ZKD+14] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick. UPC++: A PGAS
Extension for C++. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 1105–1114, May 2014.

[ZMB+16] M. Zink, A. Moreira, M. Bachmann, B. Bräutigam, T. Fritz, I. Hajnsek,
G. Krieger, and B. Wessel. TanDEM-X mission status: The complete new
topography of the earth. In 2016 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), pages 317–320, July 2016.

85


	Introduction
	Task and Definition of Goals
	Structure

	Processing of Large Scale Multi-Channel Remote Sensing Data
	Remote Sensing Images and Processing Images
	Efficient Management of the Large Data Volumes
	Loading and Distribution of RS Data
	Irregular Data Access on Parallel File Systems
	Complex Dependencies between Tasks and Data
	Efficient and Productive Programming of RS Applications on Distributed Systems

	Hardware Limitations
	Distributed Computing

	Distributed RS Image Processing
	Problem Statement
	Data Description
	Stencil Computation
	DASH - a PGAS Framework
	Patterns in DASH
	Multi-channel RS Processing Workflow
	Brick and Data Locality

	Optimization Model for Data Locality
	Parameter Definition
	Surface-to-volume and height-to-width Ratio
	Costfunction
	Optimization Model
	Optimization and Worker Software
	Locality Optimizer for Remote Sensing Data
	Remote Sensing Image Distributor and Processor


	Results & Discussion
	System Description
	Performance Evaluation
	Read/Write Speed
	Speedup
	Efficiency
	Strong and Weak Scaling

	Experiments
	Brick Locality
	Locality in Multi-Channel RS Image Processing with Potentially Large Stencils
	Layout Performance with Different Stencils
	Weak/Strong Scaling

	Discussion

	Outlook - Interaction with Python
	Conclusion
	Symbols
	List of Figures
	List of Tables
	Bibliography

