1,033 research outputs found

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Accessing natural history:Discoveries in data cleaning, structuring, and retrieval

    Get PDF

    User-centered semantic dataset retrieval

    Get PDF
    Finding relevant research data is an increasingly important but time-consuming task in daily research practice. Several studies report on difficulties in dataset search, e.g., scholars retrieve only partial pertinent data, and important information can not be displayed in the user interface. Overcoming these problems has motivated a number of research efforts in computer science, such as text mining and semantic search. In particular, the emergence of the Semantic Web opens a variety of novel research perspectives. Motivated by these challenges, the overall aim of this work is to analyze the current obstacles in dataset search and to propose and develop a novel semantic dataset search. The studied domain is biodiversity research, a domain that explores the diversity of life, habitats and ecosystems. This thesis has three main contributions: (1) We evaluate the current situation in dataset search in a user study, and we compare a semantic search with a classical keyword search to explore the suitability of semantic web technologies for dataset search. (2) We generate a question corpus and develop an information model to figure out on what scientific topics scholars in biodiversity research are interested in. Moreover, we also analyze the gap between current metadata and scholarly search interests, and we explore whether metadata and user interests match. (3) We propose and develop an improved dataset search based on three components: (A) a text mining pipeline, enriching metadata and queries with semantic categories and URIs, (B) a retrieval component with a semantic index over categories and URIs and (C) a user interface that enables a search within categories and a search including further hierarchical relations. Following user centered design principles, we ensure user involvement in various user studies during the development process

    Towards Cleaning-up Open Data Portals: A Metadata Reconciliation Approach

    Full text link
    This paper presents an approach for metadata reconciliation, curation and linking for Open Governamental Data Portals (ODPs). ODPs have been lately the standard solution for governments willing to put their public data available for the society. Portal managers use several types of metadata to organize the datasets, one of the most important ones being the tags. However, the tagging process is subject to many problems, such as synonyms, ambiguity or incoherence, among others. As our empiric analysis of ODPs shows, these issues are currently prevalent in most ODPs and effectively hinders the reuse of Open Data. In order to address these problems, we develop and implement an approach for tag reconciliation in Open Data Portals, encompassing local actions related to individual portals, and global actions for adding a semantic metadata layer above individual portals. The local part aims to enhance the quality of tags in a single portal, and the global part is meant to interlink ODPs by establishing relations between tags.Comment: 8 pages,10 Figures - Under Revision for ICSC201

    TraitBank : practical semantics for organism attribute data

    Get PDF
    © IOS Press and The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semantic Web 7 (2016): 577-588, doi:10.3233/SW-150190.Encyclopedia of Life (EOL) has developed TraitBank (http://eol.org/traitbank), a new repository for organism attribute (trait) data. TraitBank aggregates, manages and serves attribute data for organisms across the tree of life, including life history characteristics, habitats, distributions, ecological relationships and other data types. We describe how TraitBank ingests and manages these data in a way that leverages EOL’s existing infrastructure and semantic annotations to facilitate reasoning across the TraitBank corpus and interoperability with other resources. We also discuss TraitBank’s impact on users and collaborators and the challenges and benefits of our lightweight, scalable approach to the integration of biodiversity data.Support for TraitBank was provided by the Alfred P. Sloan Foundation, the Smithsonian Institution, the Marine Biological Laboratory, and the John D. and Catherine T. MacArthur Foundation

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    Applications of Natural Language Processing in Biodiversity Science

    Get PDF
    Centuries of biological knowledge are contained in the massive body of scientific literature, written for human-readability but too big for any one person to consume. Large-scale mining of information from the literature is necessary if biology is to transform into a data-driven science. A computer can handle the volume but cannot make sense of the language. This paper reviews and discusses the use of natural language processing (NLP) and machine-learning algorithms to extract information from systematic literature. NLP algorithms have been used for decades, but require special development for application in the biological realm due to the special nature of the language. Many tools exist for biological information extraction (cellular processes, taxonomic names, and morphological characters), but none have been applied life wide and most still require testing and development. Progress has been made in developing algorithms for automated annotation of taxonomic text, identification of taxonomic names in text, and extraction of morphological character information from taxonomic descriptions. This manuscript will briefly discuss the key steps in applying information extraction tools to enhance biodiversity science
    corecore