6,214 research outputs found

    Improving Availability of Mobile Code Systems by Decoupling Interaction from Mobility

    Get PDF
    Resource availability in pervasive environments is restricted by many either mobility- and/or security-related factors. Multi-agent systems deployed in such environments would have to rely on a potentially low number of hosts allowing and supporting the arrival and execution of foreign code. To address this issue, this paper proposes to decouple interaction of executing programs and services from the actual software mobility pattern used to realize this interaction. The proposed system (MoDeS - Mobility Decision System) dynamically decides on the best mobility method to implement a series of software interactions while satisfying the appropriate software constraints. The system takes as input an interaction plan and produces the corresponding mobility plan. A series of simulations were performed on single- and multi-hop scenarios which showed that MoDeS can significantly increase the availability of software interactions even in highly constraint environments.</p

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Cross-layer Peer-to-Peer Computing in Mobile Ad Hoc Networks

    Get PDF
    The future information society is expected to rely heavily on wireless technology. Mobile access to the Internet is steadily gaining ground, and could easily end up exceeding the number of connections from the fixed infrastructure. Picking just one example, ad hoc networking is a new paradigm of wireless communication for mobile devices. Initially, ad hoc networking targeted at military applications as well as stretching the access to the Internet beyond one wireless hop. As a matter of fact, it is now expected to be employed in a variety of civilian applications. For this reason, the issue of how to make these systems working efficiently keeps the ad hoc research community active on topics ranging from wireless technologies to networking and application systems. In contrast to traditional wire-line and wireless networks, ad hoc networks are expected to operate in an environment in which some or all the nodes are mobile, and might suddenly disappear from, or show up in, the network. The lack of any centralized point, leads to the necessity of distributing application services and responsibilities to all available nodes in the network, making the task of developing and deploying application a hard task, and highlighting the necessity of suitable middleware platforms. This thesis studies the properties and performance of peer-to-peer overlay management algorithms, employing them as communication layers in data sharing oriented middleware platforms. The work primarily develops from the observation that efficient overlays have to be aware of the physical network topology, in order to reduce (or avoid) negative impacts of application layer traffic on the network functioning. We argue that cross-layer cooperation between overlay management algorithms and the underlying layer-3 status and protocols, represents a viable alternative to engineer effective decentralized communication layers, or eventually re-engineer existing ones to foster the interconnection of ad hoc networks with Internet infrastructures. The presented approach is twofold. Firstly, we present an innovative network stack component that supports, at an OS level, the realization of cross-layer protocol interactions. Secondly, we exploit cross-layering to optimize overlay management algorithms in unstructured, structured, and publish/subscribe platforms

    Smart Cities or Smart About Cities?

    Get PDF
    This paper builds on the one towards CORP 2104 'Plan it Smart' which attempted to define 'smart cities' for the purpose of planning and against other city typologies. It concentrates on how ICT or 'smart technology' is applied in cities and discusses its critiques. It explores who benefits from 'smart' interventions: the ICT industry, governments or the users and whether there are inherent contradictions between top down and bottom up urban interventions. It explores the preconditions of improving living conditions for all by 'smart' technologies, including the role of discourse analysis, and raises issues of equity and social justice. Lastly, the paper discusses Hajer's alternative of 'smart urbanism' expressed in his agenda for planning and design in 'Smart about cities' and concludes that the growth ideology still prevails despite promising excursions into decoupling it from urban resources

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    LIME: A Coordination Middleware Supporting Mobility of Agents and Hosts

    Get PDF
    LIME (Linda in a Mobile Environment) is a middleware supporting the development of applications that exhibit physical mobility of hosts, logical mobility of agents, or both. LIME adopts a coordination perspective inspired by work on the Linda model. The context for computation, represented in Linda by a globally accessible, persistent tuple space, is refined in LIME to transient sharing of identically-named tuple spaces carried by individual mobile units. Tuple spaces are also extended with a notion of location and programs are given the ability to react to specified states. The resulting model provides a minimalist set of abstractions that promise to facilitate rapid and dependable development of mobile applications. In this paper, we illustrate the model underlying LIME, provide a formal semantic characterization for the operations it makes available to the application developer, present its current design and implementation, and discuss lessons learned in developing applications that involve physical mobility
    corecore