977 research outputs found

    An Improved Differential Evolution Algorithm for Numerical Optimization Problems

    Get PDF
    The differential evolution algorithm has gained popularity for solving complex optimization problems because of its simplicity and efficiency. However, it has several drawbacks, such as a slow convergence rate, high sensitivity to the values of control parameters, and the ease of getting trapped in local optima. In order to overcome these drawbacks, this paper integrates three novel strategies into the original differential evolution. First, a population improvement strategy based on a multi-level sampling mechanism is used to accelerate convergence and increase the diversity of the population. Second, a new self-adaptive mutation strategy balances the exploration and exploitation abilities of the algorithm by dynamically determining an appropriate value of the mutation parameters; this improves the search ability and helps the algorithm escape from local optima when it gets stuck. Third, a new selection strategy guides the search to avoid local optima. Twelve benchmark functions of different characteristics are used to validate the performance of the proposed algorithm. The experimental results show that the proposed algorithm performs significantly better than the original DE in terms of the ability to locate the global optimum, convergence speed, and scalability. In addition, the proposed algorithm is able to find the global optimal solutions on 8 out of 12 benchmark functions, while 7 other well-established metaheuristic algorithms, namely NBOLDE, ODE, DE, SaDE, JADE, PSO, and GA, can obtain only 6, 2, 1, 1, 1, 1, and 1 functions, respectively. Doi: 10.28991/HIJ-2023-04-02-014 Full Text: PD

    Cloud Service Selection System Approach based on QoS Model: A Systematic Review

    Get PDF
    The Internet of Things (IoT) has received a lot of interest from researchers recently. IoT is seen as a component of the Internet of Things, which will include billions of intelligent, talkative "things" in the coming decades. IoT is a diverse, multi-layer, wide-area network composed of a number of network links. The detection of services and on-demand supply are difficult in such networks, which are comprised of a variety of resource-limited devices. The growth of service computing-related fields will be aided by the development of new IoT services. Therefore, Cloud service composition provides significant services by integrating the single services. Because of the fast spread of cloud services and their different Quality of Service (QoS), identifying necessary tasks and putting together a service model that includes specific performance assurances has become a major technological problem that has caused widespread concern. Various strategies are used in the composition of services i.e., Clustering, Fuzzy, Deep Learning, Particle Swarm Optimization, Cuckoo Search Algorithm and so on. Researchers have made significant efforts in this field, and computational intelligence approaches are thought to be useful in tackling such challenges. Even though, no systematic research on this topic has been done with specific attention to computational intelligence. Therefore, this publication provides a thorough overview of QoS-aware web service composition, with QoS models and approaches to finding future aspects

    A Hybrid Fish – Bee Optimization Algorithm for Heart Disease Prediction using Multiple Kernel SVM Classifier

    Get PDF
    International audienceThe patient's heart disease status is obtained by using a heart disease detection model. That is used for the medical experts. In order to predict the heart disease, the existing technique use optimal classifier. Even though the existing technique achieved the better result, it has some disadvantages. In order to improve those drawbacks, the suggested technique utilizes the effective method for heart disease prediction. At first the input information is preprocessed and then the preprocessed result is forwarded to the feature selection process. For the feature selection process a proficient feature selection is used over the high dimensional medical data. Hybrid Fish Bee optimization algorithm (HFSBEE) is utilized. Thus, the proposed algorithm parallelizes the two algorithms such that the local behavior of artificial bee colony algorithm and global search of fish swarm optimization are effectively used to find the optimal solution. Classification process is performed by the transformation of medical dataset to the Multi kernel support vector machine (MKSVM). The process of our proposed technique is calculated based on the accuracy, sensitivity, specificity, precision, recall and F-measure. Here, for test analysis, the some datasets used i.e. Cleveland, Hungarian and Switzerland etc., that are given based on the UCI machine learning repository. The experimental outcome show that our presented technique is went better than the accuracy of 97.68%. This is for the Cleveland dataset when related with existing hybrid kernel support vector machine (HKSVM) method achieved 96.03% and optimal rough fuzzy classifier obtained 62.25%. The implementation of the proposed method is done by MATLAB platform. Rundown phrases-Artificial bee colony algorithm, Fish swarm optimization, Multi kernel support vector machine, Optimal rough fuzzy, Cleveland, Hungarian and Switzerland

    Metaheuristic Algorithms for Spatial Multi-Objective Decision Making

    Get PDF
    Spatial decision making is an everyday activity, common to individuals and organizations. However, recently there is an increasing interest in the importance of spatial decision-making systems, as more decision-makers with concerns about sustainability, social, economic, environmental, land use planning, and transportation issues discover the benefits of geographical information. Many spatial decision problems are regarded as optimization problems, which involve a large set of feasible alternatives, multiple conflicting objectives that are difficult and complex to solve. Hence, Multi-Objective Optimization methods (MOO)—metaheuristic algorithms integrated with Geographical Information Systems (GIS) are appealing to be powerful tools in these regards, yet their implementation in spatial context is still challenging. In this thesis, various metaheuristic algorithms are adopted and improved to solve complex spatial problems. Disaster management and urban planning are used as case studies of this thesis.These case studies are explored in the four papers that are part of this thesis. In paper I, four metaheuristic algorithms have been implemented on the same spatial multi-objective problem—evacuation planning, to investigate their performance and potential. The findings show that all tested algorithms were effective in solving the problem, although in general, some had higher performance, while others showed the potential of being flexible to be modified to fit better to the problem. In the same context, paper II identified the effectiveness of the Multi-objective Artificial Bee Colony (MOABC) algorithm when improved to solve the evacuation problem. In paper III, we proposed a multi-objective optimization approach for urban evacuation planning that considered three spatial objectives which were optimized using an improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved algorithms (MOABC and MOCS) proved to be efficient in solving evacuation planning when compared to their standard version and other algorithms. Moreover, Paper IV proposed an urban land-use allocation model that involved three spatial objectives and proposed an improved Non-dominated Sorting Biogeography-based Optimization algorithm (NSBBO) to solve the problem efficiently and effectively.Overall, the work in this thesis demonstrates that different metaheuristic algorithms have the potential to change the way spatial decision problems are structured and can improve the transparency and facilitate decision-makers to map solutions and interactively modify decision preferences through trade-offs between multiple objectives. Moreover, the obtained results can be used in a systematic way to develop policy recommendations. From the perspective of GIS - Multi-Criteria Decision Making (MCDM) research, the thesis contributes to spatial optimization modelling and extended knowledge on the application of metaheuristic algorithms. The insights from this thesis could also benefit the development and practical implementation of other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for tackling complex spatial multi-objective decision problems in the future

    Review and Classification of Bio-inspired Algorithms and Their Applications

    Get PDF
    Scientists have long looked to nature and biology in order to understand and model solutions for complex real-world problems. The study of bionics bridges the functions, biological structures and functions and organizational principles found in nature with our modern technologies, numerous mathematical and metaheuristic algorithms have been developed along with the knowledge transferring process from the lifeforms to the human technologies. Output of bionics study includes not only physical products, but also various optimization computation methods that can be applied in different areas. Related algorithms can broadly be divided into four groups: evolutionary based bio-inspired algorithms, swarm intelligence-based bio-inspired algorithms, ecology-based bio-inspired algorithms and multi-objective bio-inspired algorithms. Bio-inspired algorithms such as neural network, ant colony algorithms, particle swarm optimization and others have been applied in almost every area of science, engineering and business management with a dramatic increase of number of relevant publications. This paper provides a systematic, pragmatic and comprehensive review of the latest developments in evolutionary based bio-inspired algorithms, swarm intelligence based bio-inspired algorithms, ecology based bio-inspired algorithms and multi-objective bio-inspired algorithms

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Context-Aware Clustering and the Optimized Whale Optimization Algorithm: An Effective Predictive Model for the Smart Grid

    Get PDF
    For customers to participate in key peak pricing, period-of-use fees, and individualized responsiveness to demand programmes taken from multi-dimensional data flows, energy use projection and analysis must be done well. However, it is a difficult study topic to ascertain the knowledge of use of electricity as recorded in the electricity records' Multi-Dimensional Data Streams (MDDS). Context-Aware Clustering (CAC) and the Optimized Whale Optimization Algorithm were suggested by researchers as a fresh power usage knowledge finding model from the multi-dimensional data streams (MDDS) to resolve issue (OWOA). The proposed CAC-OWOA framework first performs the data cleaning to handle the noisy and null elements. The predictive features are extracted from the novel context-aware group formation algorithm using the statistical context parameters from the pre-processed MDDS electricity logs. To perform the energy consumption prediction, researchers have proposed the novel Artificial Neural Network (ANN) predictive algorithm using the bio-inspired optimization algorithm called OWOA. The OWOA is the modified algorithm of the existing WOA to overcome the problems of slow convergence speed and easily falling into the local optimal solutions. The ANN training method is used in conjunction with the suggested bio-inspired OWOA algorithm to lower error rates and boost overall prediction accuracy. The efficiency of the CAC-OWOA framework is evaluated using the publicly available smart grid electricity consumption logs. The experimental results demonstrate the effectiveness of the CAC-OWOA framework in terms of forecasting accuracy, precision, recall, and duration when compared to underlying approaches

    Stochastic Fractal Based Multiobjective Fruit Fly Optimization

    Get PDF
    The fruit fly optimization algorithm (FOA) is a global optimization algorithm inspired by the foraging behavior of a fruit fly swarm. In this study, a novel stochastic fractal model based fruit fly optimization algorithm is proposed for multiobjective optimization. A food source generating method based on a stochastic fractal with an adaptive parameter updating strategy is introduced to improve the convergence performance of the fruit fly optimization algorithm. To deal with multiobjective optimization problems, the Pareto domination concept is integrated into the selection process of fruit fly optimization and a novel multiobjective fruit fly optimization algorithm is then developed. Similarly to most of other multiobjective evolutionary algorithms (MOEAs), an external elitist archive is utilized to preserve the nondominated solutions found so far during the evolution, and a normalized nearest neighbor distance based density estimation strategy is adopted to keep the diversity of the external elitist archive. Eighteen benchmarks are used to test the performance of the stochastic fractal based multiobjective fruit fly optimization algorithm (SFMOFOA). Numerical results show that the SFMOFOA is able to well converge to the Pareto fronts of the test benchmarks with good distributions. Compared with four state-of-the-art methods, namely, the non-dominated sorting generic algorithm (NSGA-II), the strength Pareto evolutionary algorithm (SPEA2), multi-objective particle swarm optimization (MOPSO), and multiobjective self-adaptive differential evolution (MOSADE), the proposed SFMOFOA has better or competitive multiobjective optimization performance
    • …
    corecore