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Abstract 

The differential evolution algorithm has gained popularity for solving complex optimization problems because of its 

simplicity and efficiency. However, it has several drawbacks, such as a slow convergence rate, high sensitivity to the values 

of control parameters, and the ease of getting trapped in local optima. In order to overcome these drawbacks, this paper 

integrates three novel strategies into the original differential evolution. First, a population improvement strategy based on 

a multi-level sampling mechanism is used to accelerate convergence and increase the diversity of the population. Second, 

a new self-adaptive mutation strategy balances the exploration and exploitation abilities of the algorithm by dynamically 

determining an appropriate value of the mutation parameters; this improves the search ability and helps the algorithm 

escape from local optima when it gets stuck. Third, a new selection strategy guides the search to avoid local optima. Twelve 

benchmark functions of different characteristics are used to validate the performance of the proposed algorithm. The 

experimental results show that the proposed algorithm performs significantly better than the original DE in terms of the 

ability to locate the global optimum, convergence speed, and scalability. In addition, the proposed algorithm is able to find 

the global optimal solutions on 8 out of 12 benchmark functions, while 7 other well-established metaheuristic algorithms, 

namely NBOLDE, ODE, DE, SaDE, JADE, PSO, and GA, can obtain only 6, 2, 1, 1, 1, 1, and 1 functions, respectively. 
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1. Introduction 

Most of our real-life problems are complex optimization problems [1] due to the high dimensionality, nonlinearity, 

discontinuity, and multimodality of the problems. Metaheuristic techniques have been used effectively to solve complex 

optimization problems, replacing the mathematical programming techniques that have limited success in solving the 

incrasingly complex optimization problems due to several drawbacks such as limited global strength, dependency on 

gradient information, and considerable computation time [2]. Metaheuristic techniques can be classified into two 

categories [3]. The first is a neighborhood-based algorithm, often known as a local search algorithm. Two well-known 

neighborhood-based algorithms are simulated annealing and tabu search [4]. The second category is the population-

based algorithm, most of which is inspired by natural evolution. 

Examples of population-based algorithms are the genetic algorithm introduced by Holland [5], the differential 

evolution by Storn and Price [6], the particle swarm optimization by Kennedy and Eberhart [7], the ant colony 

optimization by Dorigo et al. [8], the firefly algorithm by Yang [9], and the artificial bee colony algorithm proposed by 

Karaboga and Basturk [10]. Nowadays, researchers are working on further improving the performance of population-

based algorithms. Several improved population-based optimization algorithms are reviewed and discussed in the 

following paragraphs. 
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Sheng et al. [11] presented a particle swarm optimizer (PSO) with multi-level population sampling and a dynamic p-

learning mechanism for solving large-scale optimization problems. The particle learning strategy used in the original 

PSO had limited capability to archive a balanced evolutionary search; thus, a multi-level population sampling mechanism 

was proposed to solve this problem. The mechanism divided the population into L levels based on the fitness values 

before evolution. The higher level corresponded to a smaller index and contained particles with higher fitness, while the 

lower level associated with a larger index contained particles with lower fitness. Then a sub-swarm was dynamically 

selected from the particles at different levels. During the early evolution stage, particles from lower levels had a higher 

probability of being selected; this increased the exploration ability. However, in the later evolution stage, the exploitation 

ability was increased by selecting particles from higher levels. Finally, the dynamic p-learning mechanism was adopted 

to support efficient search while preserving swarm diversity. 

Ali et al. [12] designed three different strategies to improve the real-coded genetic algorithm (GA). In the first 

strategy, a new multi-parent crossover based on a differential evolution algorithm, called DEx, was used to improve the 

crossover operator in a genetic algorithm. In this strategy, the new differential evolution crossover increased the 

population diversity of the real-code genetic algorithm to avoid premature convergence and stagnation stage. The second 

strategy was GA-DExSPS, which provided an alternative way to select a parent during the differential evolution crossover 

process, DEx. The last strategy, called GA-αDExSPS, used an adaptive parameter setting scheme to set the value of α in 

the proposed DEx crossover. The parameter setting was adaptively based on the aging mechanism and the history of 

successful parent selection to increase the search's effectiveness during the optimization process. 

Chu et al. [13] proposed an adaptive heterogeneous competition for solving global optimization problems based on 

the artificial bee colony (ABC) algorithm, which had slow convergence and poor generalization drawbacks. The 

proposed ABC-AHC algorithm divided the population into two bee swarms and conducted two heterogeneous searching 

approaches, a superior tracking strategy (STS) and a sub-gradient strategy (SGS) in each swarm. STS enhanced the 

exploration ability of the algorithm, while SGS was used to improve the convergence speed and the local exploitation. 

During the optimization process, an adaptive competition and migration mechanism (ACM) was adopted to dynamically 

balance the heterogeneous processes of the two bee swarms. 

She et al. [14] presented a self-adaptive and gradient-based cuckoo search algorithm (HAGCS) for solving global 

optimization problems. The original cuckoo search (CS) algorithm was inspired by the reproduction strategy of cuckoos, 

which laid their eggs in other birds’ nests. Having fewer control parameters and an efficient exploration ability became 

the CS algorithm’s advantages. However, the CS algorithm was not sufficiently effective in solving multimodal 

optimization problems. To address this issue, the authors provided a method to increase convergence speed and enhance 

the capability of the CS algorithm to solve a wide range of high-dimensional problems. The HAGCS took advantage of 

three variants of the CS algorithm, i.e., the gradient-based cuckoo search (GBCS) algorithm, the hybrid self-adaptive 

cuckoo search (HSACS) algorithm, and the gradient-based local optimization (GBLO) algorithm. Additionally, self-

adaptation and diversity promotion schemes were adopted to prevent the premature convergence effect caused by the 

gradient method. 

Wu et al. [15] improved the exploitation and exploration abilities of the firefly algorithm (FA) with a logarithmic-

spiral path and an adaptive switch. In the proposed adaptive logarithmic spiral-Levy FA (AD-IFA), a Levy-flight FA 

(LF-FA), one of many variants of FA, was used as the core algorithm. LF-FA, which used a levy distribution approach 

to strengthen its exploration ability, had poor exploitation ability. Therefore, the authors adopted the logarithmic spiral 

approach to improve the exploitation ability of LF-FA. Furthermore, to balance the exploration mode of the Levy flight 

approach and the exploitation mode of the logarithmic spiral approach, an adaptive switch was used to determine which 

approach should be applied in the next iteration. If the best fitness value of the current iteration was significantly greater 

than that of the previous iteration, the exploitation mode would be chosen for the next iteration. However, if the best 

fitness value of the current iteration was significantly worse than that of the previous iteration, the exploration mode 

would be chosen for the next iteration. 

Chen and Pi [16] proposed a flower pollination algorithm based on cloud mutation (CMFPA) to solve the continuous 

optimization problems. The original flower pollination algorithm (FPA), inspired by the natural pollination phenomenon 

of flowering plants, had poor exploitation ability and slow convergence speed. To overcome these drawbacks, CMFPA 

divided the evolution into two stages: global exploration and local mining. First, the new global search equation, designed 

to direct each individual solution toward the current population optimal solution and each individual’s own historical 

optimal solution, was introduced to improve the search ability of each individual in the population and to expand the 

population’s in-depth search of the problem space. Next, the cloud mutation deeply mined the current solution 

information to increase the chance of finding a better solution within the allowed number of iterations. 

Sun et al. [17] proposed an adaptive differential evolution algorithm with two mutation strategies for global numerical 

optimization, called CSDE. First, a new dynamic adjustment strategy was used to balance the global and local search 

abilities of DE/current-to-pbest/1. The value of the scaling factor was adaptively adjusted, relying on the individual-

independence macro-control parameter in the early stage and on the individual-dependence function in the later stage. 
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Second, to boost the exploitation ability around the promising pbest, a new mutation strategy called DE/pbest-to-rand/1, 

was introduced. In this mutation strategy, the value of the scaling factor relied on the individual-independence macro-

control parameter in the early stage but depended on the modulo-based periodic parameter in later stages. Finally, the 

historical success rate of each mutation strategy was used to determine which one of the two mutation strategies would 

be selected to generate the mutant vector. 

Deng et al. [18] presented the differential evolution algorithm with neighborhood mutation operators and opposition-

based learning, namely NBOLDE. To overcome the limitation of DE/current-to-pbest/1, the new mutation strategy 

DE/neighbor-to-neighbor/1, which aimed to improve the convergence speed and accuracy, was presented. In contrast to 

DE/current-to-pbest/1, this new strategy selected individuals only from the local neighborhood. Furthermore, opposition-

based learning was used to optimize the quality of the random initial population. The opposition-based learning selected 

the better solutions from current and reverse solutions and filtered out individuals with poor performance. It provided 

more opportunities to reach global optimal solutions, corrected the convergence direction, and increased stability in high-

dimensional problems. 

Zeng et al. [19] introduced a new selection operator to enhance the performance of the differential evolution 

algorithm. The authors focused on the drawbacks of the commonly used greedy selection operator. When the best 

solution was not trapped in a local optimum, a new selection operator acted the same as the greedy selection operator, 

for which the better vector between the trial and parent vectors was chosen to survive to the next generation. However, 

when the algorithm was trapped in a local optimum or in a stagnation state, three candidate vectors were selected. The 

best and second-best vectors of all discarded trial vectors were the first and second candidates, respectively. The third 

candidate was randomly selected from the successfully updated solutions. If none of the above three candidate vectors 

were able to guide the algorithm to escape from the stagnation state, the current value of the parent vector was replaced 

by the best value in the history of the parent vector. 

Meng & Yang [20] solved real-parameter optimization problems using a two-stage differential evolution (TDE). TDE 

consisted of two stages; each stage employed different mutation strategies. A historical-solution-based mutation strategy 

that had better perception of the landscape of the objective function was used in the earlier stage of the evolution, while 

an inferior-solution-based mutation strategy that had the ability to balance the diversity of trial vector candidates and 

convergence speed was used in the later stage of the evolution. The TDE algorithm also included a population 

enhancement technique to solve the stagnation problem. The authors conducted experiments using a test suite containing 

88 benchmarks from CEC2013, CEC2014, and CEC2017. The performance of the TDE algorithm was compared with 

several state-of-the-art differential evolution variants. The results showed that the TDE algorithm outperformed the other 

methods on most of the benchmarks tested. 

Kumar et al. [21] identified a gap in the literature regarding the less explored initialization and selection operators of 

DE compared to mutation and crossover operators. To address this gap, they proposed a comprehensive approach that 

includes an orthogonal-array-based initialization, an ensemble of four mutation strategies, a parameter adaptation 

technique, and a conservative selection scheme. The authors conducted experiments to analyze the influence of the 

proposed initialization and selection schemes on several DE variants. They also compared the performance of their 

approach with that of other state-of-the-art approaches. The results showed that their proposed approach significantly 

improved the searchability and convergence speed of the DE. 

Houssein et al. [22] proposed a modified version of the Adaptive Guided Differential Evolution (AGDE), called 

mAGDE. They integrated three mutation mechanisms and adapted control parameters into the original AGDE algorithm 

to get rid of its weaknesses–premature convergence and failing to maintain diversity in evolutionary processes. The 

effectiveness of the proposed algorithm was tested using CEC2020 benchmark problems. The results of the mAGDE 

algorithm demonstrated its effectiveness and robustness in solving complex engineering problems. 

Deng et al. [23] proposed an improved adaptive differential evolution algorithm, called ACDE/F. Their main 

objective was to overcome the issues of premature convergence and local optimization that were common in traditional 

DE algorithms. The authors introduced three strategies—belief space strategy, generalized opposition-based learning 

strategy, and parameter adjustment strategy—to enhance the performance of the differential evolution algorithm. The 

experimental results showed that ACDE/F outperformed other state-of-the-art algorithms in terms of convergence speed 

and solution quality on a set of benchmark functions. In practical applicability, ACDE/F also effectively solved the real-

world problem of airport gate allocation. 

Yi et al. [24] presented a novel algorithm known as EJADE (Adaptive Differential Evolution with Ensembling 

Populations), designed to tackle continuous optimization problems. EJADE, built upon the JADE algorithm, employed 

two sets of mutation and crossover operators to achieve a better balance between exploration and exploitation 

capabilities. Additionally, an adaptive parameter control strategy was utilized to dynamically adjust the algorithm's 

parameter settings. Experimental results demonstrated that EJADE achieved competitive performance against several 

state-of-the-art DE algorithms on benchmark functions and a real-world wireless sensor localization application. It 

exhibited strong global search ability and rapid convergence speed.  
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According to the above-reviewed research, metaheuristic techniques typically suffer from two main problems: slow 

convergence speed and getting stuck in local optima. Researchers managed to overcome these two problems by 

proposing methods to increase population diversity and balance exploration and exploitation in metaheuristic searches. 

As the optimization problems get more complex, the current metaheuristic algorithms are not as effective as they used 

to be. In this paper, we focus on improving the performance of the differential evolution algorithm, which is known 

as one of the best metaheuristic algorithms. For the past 14 years, various DE variants have emerged as the top three 

best-performing optimizers in most Congress of Evolutionary Computation (CEC) competitions [2, 25]; they even 

ranked first in more than half of those competitions. Our proposed DE introduces three strategies to improve the 

performance of differential evolution. The first is the population improvement strategy, which adopts a multi -level 

sampling mechanism. This strategy aims to improve convergence speed and reduce the chance of being trapped in 

local optima. The new self-adaptive mutation strategy is introduced as the second strategy, which helps determine an 

appropriate value of the mutation parameters. Third, a new selection strategy with an external archive guides the search 

to avoid local optima.  

The rest of this paper is organized as follows. Section II describes the original differential evolution algorithm. 

Section III explains our proposed algorithm. The experiments and discussion are reported in Section IV. In the end, 

Section V contains the conclusion. 

2. Differential Evolution 

Differential evolution (DE) is known as one of the best metaheuristic algorithms. Executing DE to solve optimization 

problems usually needs four steps: Population initialization, Mutation, Crossover, and Selection. A brief explanation of 

the four steps is explained below. 

2.1. Population Initialization 

In the first step, the DE algorithm randomly generates the initial population which comprises NP target vectors 𝑋𝑖
𝐺 =

(𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑗 , . . . , 𝑥𝑖,𝑑), where G is the number of generations, i = 1, 2, …, NP; NP is the number of target vectors in 

the population, and d is the number of dimensions of the problem. The initial target vectors are generated within the 

bound of the search space by using Equation 1: 

min max min

, [0,1] ( )i j j j jx S rand S S     (1) 

where 𝑆𝑗
𝑚𝑎𝑥 and 𝑆𝑗

𝑚𝑖𝑛 is the maximum and minimum values of the search space on the jth dimension respectively. 

2.2. Mutation 

After initializing the candidate solution within a specific dimension and search space, the second step performs the 

mutation operation. This step generates mutant vectors 𝑉𝑖
𝐺 = (𝑣𝑖,1, 𝑣𝑖,2, . . . , 𝑣𝑖,𝑗 , . . . , 𝑣𝑖,𝑑) from the target vectors. Many 

of the mutation strategies are known for their efficient performance. Some of them are described as follows: 

a) DE/best/1 

𝑉𝑖
𝐺 = 𝑋𝑏𝑒𝑠𝑡

𝐺 + 𝐹(𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 )  (2) 

b)  DE/best/2 

𝑉𝑖
𝐺 = 𝑋𝑏𝑒𝑠𝑡

𝐺 + 𝐹(𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 ) + 𝐹(𝑋𝑟3
𝐺 − 𝑋𝑟4

𝐺 )  (3) 

c) DE/current-to-best/1 

𝑉𝑖
𝐺 = 𝑋𝑖

𝐺 + 𝐹(𝑋𝑏𝑒𝑠𝑡
𝐺 − 𝑋𝑟1

𝐺 ) + 𝐹(𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 )  (4) 

d) DE/current-to-pbest/1 

𝑉𝑖
𝐺 = 𝑋𝑖

𝐺 + 𝐹(𝑋𝑝𝑏𝑒𝑠𝑡
𝐺 − 𝑋𝑖

𝐺) + 𝐹(𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 )  (5) 

e) DE/rand/1 

𝑉𝑖
𝐺 = 𝑋𝑟1

𝐺 + 𝐹(𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 )  (6) 

f) DE/rand/2 

𝑉𝑖
𝐺 = 𝑋𝑟1

𝐺 + 𝐹(𝑋𝑟2
𝐺 − 𝑋𝑟3

𝐺 ) + 𝐹(𝑋𝑟4
𝐺 − 𝑋𝑟5

𝐺 )  (7) 
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where 𝑋𝑏𝑒𝑠𝑡
𝐺  is the best target vector in the current population while 𝑋𝑟1

𝐺 ,𝑋𝑟2
𝐺 ,𝑋𝑟3

𝐺 ,𝑋𝑟4
𝐺  and 𝑋𝑟5

𝐺  are randomly chosen target 

vectors from the current population. It is important to note that the randomly chosen target vector must not be 𝑋𝑖
𝐺. F, a 

scale factor used to control the step size of the mutation, is a real number in the range (0,1]. As can be observed from 

the above mutation strategies, all of them consist of two types of components. The first type is a base vector used as the 

center of the search area, and the second type is a differential variation between two target vectors used to determine the 

search direction. For example, in the DE/best/1 strategy, the first term is the base vector 𝑋𝑏𝑒𝑠𝑡
𝐺  and the second term is the 

differential variation between the target vectors 𝑋𝑟1
𝐺  and 𝑋𝑟2

𝐺 . 

2.3. Crossover 

The third step generates the trial vector 𝑈𝑖
𝐺 = (𝑢𝑖,1, 𝑢𝑖,2, . . . , 𝑢𝑖,𝑗 , . . . , 𝑢𝑖,𝑑) by using the crossover operator to combine 

the target vector with the mutant vector. The most popular crossover strategy for DE algorithm is the binary crossover, 

described as follows: 

𝑢𝑖,𝑗 = {
𝑣𝑖,𝑗; 𝑖𝑓(𝑟𝑎𝑛𝑑[0,1] ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑖,𝑗; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        
  (8) 

where the crossover parameter CR is a random real number in the range (0,1]; it controls the number of elements in the 

trial vector chosen from the mutant vector. 𝑗𝑟𝑎𝑛𝑑, a random integer number in the range [1, d], is used to ensure that the 

generated trial vector is different from the target vector. 

2.4. Selection 

The last step selects the better one between the target and the trial vectors to fill up the population for the next 

generation. The selection strategy can be expressed as follows: 

𝑋𝑖
𝐺+1 = {

𝑈𝑖
𝐺 ; 𝑖𝑓 𝑓(𝑈𝑖

𝐺) ≤ 𝑓(𝑋𝑖
𝐺)

𝑋𝑖
𝐺; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

  (9) 

where 𝑓(𝑈𝑖
𝐺) is the objective value of the trial vector i and 𝑓(𝑋𝑖

𝐺) denotes the objective value of the target vector i. The 

goal of this strategy is to ensure that the population always gets better or at least maintains the same state, but never 

becomes worse in every evolution process. 

3. Proposed Algorithm 

Although DE offers many advantages over other metaheuristic algorithm, it still has 2 major disadvantages. First, it 

has the possibility of being trapped in local optima that leads to premature convergence. Second, the performance of DE 

is very sensitive to the values of control parameters. The bad choice of control parameters causes an imbalance between 

exploration and exploitation of the algorithm, resulting in the inability to converge and premature convergence. Our 

proposed algorithm introduces three new strategies aimed to further increase the convergence speed of the DE and to 

overcome the above 2 disadvantages. 

This section is divided into 4 subsections. Details of our three proposed strategies are described in the first three 

subsections. The first strategy is the population improvement strategy. The second strategy is the adaptive mutation 

strategy, and the third is the new selection strategy. The fourth subsection presents the step-by-step process of the 

proposed algorithm. 

3.1. Population Improvement Strategy 

In this subsection, a population improvement strategy is proposed. The purpose of this strategy is to increase the 

convergence speed of the DE algorithm and to reduce the chance of being trapped in local optima. This strategy employs 

a multi-level sampling mechanism. In the beginning of each iteration, before the mutation process, the second population 

is generated by using Equation 10. 

𝑋2,𝑖
𝐺 = 𝑋𝑖

𝐺 × 𝑢𝑝  (10) 

where up is a random number in the range (0, 1). Then, the second population is combined with the current population. 

The combined population of size 2NP is then sorted by fitness value from best to worst. Next, the sorted population is 

divided into L levels, L0 to LL-1. Next, we calculate the sampling probability of each level as follows: 

  , , ,

max

k k Final k Initial k Initial

G
PL PL PL PL

G
    (11) 

where G and Gmax is the current generation and the maximum number of generations, respectively. 𝑃𝐿𝑘,𝐼𝑛𝑖𝑡𝑖𝑎𝑙  denotes 

the initial sampling probability of Lk and 𝑃𝐿𝑘,𝐹𝑖𝑛𝑎𝑙 is the final sampling probability of Lk. They can be calculated by 

using Equations 12 and 13. 
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𝑃𝐿𝑘,𝐼𝑛𝑖𝑡𝑖𝑎𝑙 =
𝑘

𝐿−1
  (12) 

𝑃𝐿𝑘,𝐹𝑖𝑛𝑎𝑙 = 1 − 𝑃𝐿𝑘,𝐼𝑛𝑖𝑡𝑖𝑎𝑙   (13) 

After that, a new population of size N is generated by randomly selecting SLk vectors from each level k, k = 0, 1, 2, …, 

L-1. The number of vectors selected from the level k is determined by Equation 14: 

𝑆𝐿𝑘 = ⌊𝑃𝐿𝑘 × 𝐿 × 2⌋  (14) 

By using this strategy, in the early generation, the probability of the lower index level will be higher than the 

probability of the higher index level. Meaning that, we select more vectors with high fitness to accelerate the algorithm's 

speed in the early evolution of generation. In contrast, in the later generation, the probability of the higher index level 

will be higher than the probability of the lower index level; this causes the algorithm to select more vectors with low 

fitness to increase the diversity of the population. In other words, this strategy focuses on the exploitation ability to 

increase the algorithm's convergence in the early generation. The later generations focus on exploration ability to find a 

more promising solution and avoid local optima. 

3.2. Adaptive Mutation Strategy 

A mutation process is one of the most critical processes in the differential evolution algorithm. Finding appropriate 

values for the mutation parameters, which is time-consuming and very difficult, is essential to the convergence of the 

DE. Instead of using a trial-and-error method, the most common method to determine parameter values, a self-adaptive 

strategy is introduced in this research. The proposed self-adaptive strategy is an improved version of our preliminary 

research [26], a modified DE/current-to-best/1 strategy. 

𝑉𝑖
𝐺 = 𝑋𝑖

𝐺 + 𝜆(𝑋𝑏𝑒𝑠𝑡
𝐺 − 𝑋𝑖

𝐺) + 𝐹(𝑋𝑟1
𝐺 − 𝑋𝑟2

𝐺 )  (15) 

where 𝑋𝑏𝑒𝑠𝑡
𝐺  is the target vector with the best fitness value in the generation G. λ and F denote the first and second 

mutation parameters, which is used to scale the difference between the best and the target vectors and the difference 

between two random target vectors, respectively. In each generation during evolution, the values of λ and F are self-

adapted as follows: 

𝜆𝐺+1 = {
𝜆𝐺 + (𝜆𝐺 × 𝐶1);  𝑖𝑓 𝑠𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 ℎ𝑎𝑝𝑝𝑒𝑛𝑠

𝜆𝐺 − (𝜆𝐺 × 𝐶1);  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
  (16) 

𝐹𝐺+1 = {
𝐹𝐺 − (𝐹𝐺 × 𝐶2);  𝑖𝑓 𝑠𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 ℎ𝑎𝑝𝑝𝑒𝑛𝑠

𝐹𝐺 + (𝐹𝐺 × 𝐶2);  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
  (17) 

where C1 and C2 are adapting rate of the mutation parameters λ and F, respectively. λ and F have to be in the range of 0 

to 1. If they are out of the range after self-adaptation, they are reset back to 0.5. For the first generation, the values of C1 

and C2 are set to: 

𝐶1 = 𝐶2 = |𝑁(𝜇, 𝜎)|  (18) 

where 𝑁(𝜇, 𝜎) generates a random number from the normal distribution with mean of  and standard deviation of . For 

subsequent generations, however, the values of C1 and C2 are dynamically adapted according to the percentage of 

improvement from the previous generation. 

𝐶1 = 𝐶2 = 𝜂 |
𝑓(𝑋𝑏𝑒𝑠𝑡

𝐺 )−𝑓(𝑋𝑏𝑒𝑠𝑡
𝐺−1)

𝑓(𝑋𝑏𝑒𝑠𝑡
𝐺−1)+𝜀

|  (19) 

where  is a scaling factor in the range [0, 1]. 𝑓(𝑋𝑏𝑒𝑠𝑡
𝐺 ) is a fitness value of the best target vector in the current generation 

and 𝑓(𝑋𝑖
𝐺−1) denotes the fitness value of the best target vector in the previous generation.  is a very small number to 

avoid division by zero. 

3.3. Selection with External Archive Strategy 

The differential evolution typically uses a greedy selection operator to generate a new population for the next 

generation. That means a better one between the trial vector and the target vector is selected to fill up the new population. 

The issue is that when the algorithm falls into a local optimum, the generated trial vectors are most likely not better than 

their counterpart target vectors. The target vectors are then selected to fill up the new population. As a result, the 

algorithm is not able to escape from the local optimum. 

Our new selection strategy addresses this problem by introducing an external archive to store promising solutions 

obtained during the search. That is, during each generation, all mutant vectors as well as the target vectors and trial 
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vectors not selected to be in the next generation population are added to the external archive. When the algorithm does 

not select the trial vector to fill up the new population, the algorithm will select the vector with the best fitness value 

from the external archive to fill up the new population. In this way, the diversity of the population is increased and the 

chance of being trapped in local optima is reduced. 

3.4. Differential Evolution with Population Improvement, Adaptive Mutation, and New Selection Strategies 

Our proposed algorithm combines the above three strategies to the DE algorithm. The goals of these three strategies 

are to increase the algorithm's performance in terms of convergence speed, exploration and exploitation abilities, and 

avoid falling too quickly in the local optimum. The flowchart of the PASDE algorithm is displayed in Figure 1, and the 

pseudocode of the PASDE algorithm is shown in Algorithm 1 and described below: 

Step 1: Define the values of the parameters, such as the number of population (NP), the number of dimension (d), the 

boundary of the search space, the external archive size, and the maximum number of generations (Gmax). 

Step 2: Randomly generate the initial population by using (1). 

Step 3: Perform the population improvement strategy as follows: 

o Generate the second population by using (10).  

o Combine the second population with the current population. Then the combined population is sorted by fitness 

value from best to worst.  

o Divide the sorted population into L levels. Then calculate the sampling probability of each level by using (11). 

o Randomly select vectors from each of the L levels to form a new population. 

Step 4: Perform the mutation operation to generate the mutant vector by using (15). 

Step 5: Add the mutant vector to the external archive and check the size of the external archive. If the size of the 

external archive is bigger than the allowed size, randomly delete one vector from the external archive to maintain the 

size of the external archive to the allowed size.   

Step 6: Perform the crossover operation to generate a trial vector by using (8). 

Step 7: Perform the selection operation as follows: 

o Compare the fitness of the target vector with that of the trial vector. If the trial vector is better than the target 

vector, the trial vector is added to the next generation population while the target vector is stored in the external 

archive. However, if the target vector is better than the trail vector, store both the trial vector and the target vector 

in the external archive. Then the best vector in the external archive is added to the next generation population. 

o Check the size of the external archive. If the size of the external archive is bigger than the allowed size, randomly 

delete one vector from the external archive to maintain the size of the external archive to the allowed size.  

Step 8: Update the values of the mutation parameters, λ and F, by using (16) and (17). 

Step 9: Repeat step 3-8 until the stopping criteria are met 

Algorithm 1. Pseudocode of the PASDE Algorithm 

1: Set the values of the parameters; 

2: Randomly generate the initial population by using (1); 

3: G = 1 

4: WHILE (G < Gmax) 

5:  Generate the second population by using (10); 

6:  Combine the second population with the current population; 

7:  Sort the combined population based on fitness value from best to worst; 

8:  Split the sorted population into L levels; 

9:  Calculate the sampling probability of each level by using (11); 

10:  Generate a new population by randomly selecting vectors from each of the L levels; 

11:  FOR i = 1: NP 

12:       Generate the mutant vector 𝑉𝑖
𝐺 by using (15); 

13:       Store 𝑉𝑖
𝐺 in the external archive; 

14:       IF the size of the external archive > the allowed size 
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15:   Delete one random vector from the external archive; 

16:       END IF 

17:       Generate the trial vector 𝑈𝑖
𝐺 by using (8); 

18:       IF 𝑓(𝑈𝑖
𝐺) ≤ 𝑓(𝑋𝑖

𝐺) 

19:   𝑋𝑖
𝐺+1 ← 𝑈𝑖

𝐺; 

20:   Store 𝑋𝑖
𝐺 in the external archive; 

21:       ELSE 

22:   Store 𝑈𝑖
𝐺 and 𝑋𝑖

𝐺 in the external archive; 

23:   𝑋𝑖
𝐺+1 the best vector in the external archive; 

24:       END IF 

25:       IF the size of the external archive > the allowed size 

26:   Delete one random vector from the external archive; 

27:       END IF 

28:  END FOR 

29:  Update the values of λ and F by using (16) and (17); 

30:  G = G + 1; 

31: END WHILE 

32: Output the best fitness of the population. 

 

Figure 1. Flowchart of PASDE Algorithm 

4. Experiments and Discussion 

In order to validate the performance of the proposed algorithm, experiments have been carried out in three parts. The 

first part validated the effects of the three proposed strategies. In the second part, the performance of the proposed 

algorithm was compared with that of other DE variants and that of recent state-of-the-art algorithms. The last part 
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evaluated the scalability of the proposed algorithm. Twelve benchmark functions shown in Table 1 were used to validate 

the performance of the proposed algorithm. Functions F1 – F4, F9 and F12 are unimodal functions while functions F5 – 

F8, F10 and F11 are multimodal functions. For each function, thirty experimental repetitions were performed with 

different initial populations each time. The parameters of each algorithm were set to the values shown in Table 2. For 

the experiments in the first and second parts, the number of populations is set to 100, and the dimension is set to 30. In 

the third part, the dimension is set to 100, 200, 500, and 1000. The minimum, maximum, mean, and standard deviation 

from 30 runs are reported in Tables 3 to 5. The best results obtained among all algorithms are shown in bold. 

Table 1. The benchmark functions used for evaluation 

 Name Equation 
Search space and 
Global optimum 

F1 Sphere function 𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝑑

𝑖=1

 [−100,100]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F2 Schwefel’s problem 2.22 function 𝑓2(𝑥) = ∑|𝑥|

𝑑

𝑖=1

+ ∏|𝑥|

𝑑

𝑖=1

 [−10,10]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F3 Schwefel’s problem 1.2 function 𝑓3(𝑥) = ∑ (∑ 𝑥𝑗

𝑖

𝑗=1

)

𝑑

𝑖=1

2

 [−100,100]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F4 Sum square’s function 𝑓4(𝑥) = ∑ 𝑖𝑥𝑖
2

𝑑

𝑖=1

 [−1.28,1.28]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F5 Generalized Rosenbrock’s function 𝑓5(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥1
2)2 + (𝑥𝑖 − 1)2]

𝑑−1

𝑖=1

 [−30,30]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F6 Rastrigin’s function 𝑓6(𝑥) = ∑(𝑥𝑖
2 − 10 𝑐𝑜𝑠𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10)

𝑑

𝑖=1

 [−5.12,5.12]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F7 Ackley’s function 𝑓7(𝑥) = −20 𝑒𝑥𝑝 (−0.2
∑ 𝑥𝑖

2𝑑
𝑖=1

𝑑
) − 𝑒𝑥𝑝 (

∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)𝑑
𝑖=1

𝑑
) + 20 + 𝑒𝑥𝑝(1) [−32,32]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F8 Generalized Griewank Function 𝑓8(𝑥) =
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

 [−600,600]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F9 Step function 𝑓9(𝑥) = ∑⌊𝑥𝑖 + 0.5⌋2

𝑑

𝑖=1

 [−100,100]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F10 Quartic function 𝑓10(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑅𝑎𝑛𝑑𝑜𝑚[0,1)

𝑑

𝑖=1

 [−1.28,1.28]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F11 Alpine function 𝑓11(𝑥) = ∑|𝑥𝑖 𝑠𝑖𝑛(𝑥𝑖) + 0.1𝑥𝑖|

𝑑

𝑖=1

 [−10,10]𝑑, 𝑓𝑚𝑖𝑛 = 0 

F12 Sum of different power function 𝑓12(𝑥) = ∑|𝑥𝑖|(𝑖+1)

𝑑

𝑖=1

 [−1,1]𝑑 , 𝑓𝑚𝑖𝑛 = 0 

Table 2. The parameter settings 

Algorithm Parameter Values 

PSO F = 0.5; CR = 0.9; C1= C2 = 2; w = 1 

GA F = 0.3; CR = 0.9 

Basic DE F = 0.5; CR = 0.9 

ODE F = 0.5; CR = 0.9; Jr = 0.3 

JADE F = 0.5; CR = 0.5; P = 0.05; c = 0.1 

SaDE F = N(0.5,0.3); CR = 0.5, CR ~ N (0.5,0.1) 

NBOLDE F1 = F2 = 0.4; CR = 0.9; Jr = 0.3 

PIDE F = 0.5; CR = 0.9; L = 10 

AMDE F = λ = 0.5; CR = 0.9 

NSDE F = 0.5; CR = 0.9 

PASDE F = λ = 0.5; CR = 0.9; L = 10 
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Table 3. Comparative results of DE, PIDE, AMDE, NSDE and PASDE on 12 benchmark functions 

 Algorithms Min Max Mean S.D. 

F1 

DE 1.6974E-14 2.2623E-13 7.3014E-14 5.5012E-14 

PIDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

AMDE 7.0950E-18 1.3022E-16 2.9284E-17 2.4714E-17 

NSDE 6.3854E-12 5.9747E-01 3.0579E-02 1.1187E-01 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F2 

DE 1.9259E-07 8.1106E-07 4.4049E-07 1.6771E-07 

PIDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

AMDE 3.0319E-15 2.1799E-14 7.0535E-15 4.3455E-15 

NSDE 9.5112E-12 3.2420E-01 1.5694E-02 6.4003E-02 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F3 

DE 2.5385E-01 4.8211E+00 9.7540E-01 7.9109E-01 

PIDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

AMDE 9.8445E-14 2.4544E-11 2.8544E-12 4.6750E-12 

NSDE 1.0544E-03 6.4700E+01 2.1942E+00 1.1806E+01 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F4 

DE 1.9499E-17 4.4486E-16 1.3307E-16 1.0132E-16 

PIDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

AMDE 7.5002E-17 3.5929E-15 4.6002E-16 6.6421E-16 

NSDE 6.7649E-19 3.4488E-02 2.9517E-03 8.6791E-03 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F5 

DE 1.4901E+01 1.8444E+01 1.6928E+01 1.0445E+00 

PIDE 1.6598E+01 1.8298E+01 1.7580E+01 4.6479E-01 

AMDE 3.8555E-05 7.1740E+01 1.2337E+01 1.2665E+01 

NSDE 1.6605E+01 1.1737E+04 7.2760E+02 2.1460E+03 

PASDE 1.0440E+01 1.9112E+01 1.4149E+01 2.1704E+00 

F6 

DE 3.8581E+01 4.8054E+01 4.2358E+01 2.2517E+00 

PIDE 1.8656E+00 2.8607E+00 1.8990E+00 1.8164E-01 

AMDE 7.9157E+00 2.4284E+01 1.8990E+00 4.2033E+00 

NSDE 1.5368E+01 4.3218E+01 2.6939E+01 7.7741E+00 

PASDE 1.8655E+00 2.8605E+00 1.9485E+00 2.2940E-01 

F7 

DE 2.9947E-08 1.2770E-07 7.1808E-08 2.5095E-08 

PIDE 4.4409E-16 4.4409E-16 4.4409E-16 1.5044E-31 

AMDE 2.0000E+01 2.0299E+01 2.0066E+01 8.9036E-02 

NSDE 2.0000E+01 2.0363E+01 2.0023E+01 7.9240E-02 

PASDE 4.4409E-16 4.4409E-16 4.4409E-16 1.5044E-31 

F8 

DE 4.1189E-19 1.5768E-12 2.9950E-13 3.4158E-13 

PIDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

AMDE 0.0000E+00 4.9176E-02 4.9176E-02 1.2613E-02 

NSDE 7.0409E-03 8.3365E-01 2.0886E-01 2.3265E-01 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F9 

DE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

PIDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

AMDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

NSDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F10 

DE 1.1926E-01 4.2119E-01 2.3608E-01 7.3156E-02 

PIDE 2.9972E-04 6.2865E-02 9.8887E-03 1.2185E-02 

AMDE 1.5260E-03 2.1866E-02 7.4927E-03 5.2448E-03 

NSDE 2.9010E-03 5.9100E-02 1.2370E-02 1.0190E-02 

PASDE 1.6042E-07 1.0086E-02 1.9438E-03 2.3193E-03 
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F11 

DE 1.2985E-02 2.9831E-02 2.3668E-02 3.4492E-02 

PIDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

AMDE 1.0677E-15 7.0420E-01 2.3473E-02 1.2857E-01 

NSDE 5.4226E-13 7.8361E-01 9.3256E-02 2.0797E-01 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F12 

DE 6.4180E-54 3.2805E-42 1.0935E-43 5.9893E-43 

PIDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

AMDE 1.0677E-15 3.0509E-33 3.0395E-34 6.3549E-34 

NSDE 5.4226E-13 3.5117E-07 3.4692E-08 8.8562E-08 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

Table 4. Comparative results of PASDE and 7 state-of-the-art algorithms on functions F1 – F12 

 Algorithms Min Max Mean S.D. 

F1 

DE 1.6974E-14 2.2623E-13 7.3014E-14 5.5012E-14 

ODE 1.2035E-32 3.1663E-30 6.1306E-31 7.1195E-31 

SaDE 6.5747E-39 1.1440E-36 1.1440E-36 2.3291E-37 

JADE 1.8597E-39 9.5777E-59 9.5770E-59 2.4897E-59 

NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

PSO 4.9851E-13 6.5667E-03 2.2704E-04 1.1975E-03 

GA 6.7656E-05 1.2830E-03 4.4893E-04 3.4940E-04 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F2 

DE 1.9259E-07 8.1106E-07 4.4049E-07 1.6771E-07 

ODE 6.0467E-15 3.6581E-14 1.4927E-14 7.5454E-15 

SaDE 2.3008E-21 1.9501E-20 7.7798E-21 4.6736E-21 

JADE 2.6280E-31 2.6770E-29 4.4648E-30 5.3048E-30 

NBOLDE 1.4989E-257 2.8506E-255 5.3820E-256 0.0000E+00 

PSO 2.2130E-07 9.7273E-01 8.2694E-02 1.8724E-01 

GA 3.3296E-03 1.9861E-02 9.6612E-03 3.9225E-03 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F3 

DE 2.5385E-01 4.8211E+00 9.7540E-01 7.9109E-01 

ODE 6.1595E-04 4.2961E-02 6.9023E-03 8.3055E-03 

SaDE 3.1726E-03 1.4528E-01 3.2358E-02 3.0733E-02 

JADE 3.0187E-19 8.5610E-15 3.3336E-16 1.5579E-15 

NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

PSO 9.0496E+02 1.8472E+04 1.0017E+04 4.2837E+03 

GA 4.5208E-02 7.3656E+00 8.6820E-01 1.3769E+00 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F4 

DE 1.9499E-17 4.4486E-16 1.3307E-16 1.0132E-16 

ODE 8.6914E-35 3.9016E-32 2.9731E-33 7.0927E-33 

SaDE 6.0256E-41 8.0002E-39 1.0062E-39 1.6003E-39 

JADE 1.5816E-64 5.4011E-62 1.1997E-62 1.3785E-62 

NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

PSO 5.3649E-28 1.1911E-05 4.7184E-07 2.1803E-06 

GA 1.5183E-07 3.1684E-06 9.1843E-07 7.6932E-07 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F5 

DE 1.4901E+01 1.8444E+01 1.6928E+01 1.0445E+00 

ODE 2.4395E+01 2.7761E+01 2.6489E+01 7.0182E-01 

SaDE 9.5510E+00 7.6368E+01 2.5173E+01 1.0113E+01 

JADE 5.5512E-16 3.9866E+00 6.6444E-01 1.5111E+00 

NBOLDE 2.8584E+01 2.8836E+01 2.8728E+01 7.2436E-02 

PSO 2.2267E+00 2.4017E+02 6.2576E+01 4.9405E+01 

GA 3.1192E-03 5.2238E+01 1.6178E+01 1.5627E+01 

PASDE 1.0440E+01 1.9112E+01 1.4149E+01 2.1704E+00 
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F6 

DE 3.8581E+01 4.8054E+01 4.2358E+01 2.2517E+00 

ODE 1.9227E+01 3.9403E+01 3.1637E+01 5.1056E+00 

SaDE 1.8823E+00 1.9149E+00 1.8956E+00 9.1411E-03 

JADE 1.8661E+00 1.8681E+00 1.8668E+00 5.5391E-04 

NBOLDE 1.7895E+01 3.8793E+01 3.2122E+01 4.8062E+00 

PSO 4.3668E+00 3.9020E+01 1.2684E+01 6.2202E+00 

GA 1.8656E+00 1.8657E+00 1.8656E+00 3.7206E-05 

PASDE 1.8655E+00 2.8605E+00 1.9485E+00 2.2940E-01 

F7 

DE 2.9947E-08 1.2770E-07 7.1808E-08 2.5095E-08 

ODE 4.4409E-15 7.9936E-15 6.5725E-15 1.7702E-15 

SaDE 4.4409E-15 9.3130E-01 3.1043E-02 1.7003E-01 

JADE 4.4409E-15 1.1551E+00 1.0805E-01 3.3144E-01 

NBOLDE 8.8818E-16 4.4409E-15 4.3225E-15 6.4863E-16 

PSO 2.0000E+01 2.0085E+01 2.0003E+01 1.5524E-02 

GA 2.4175E-05 2.0000E+01 1.0667E+01 1.0148E+01 

PASDE 4.4409E-16 4.4409E-16 4.4409E-16 1.5044E-31 

F8 

DE 4.1189E-19 1.5768E-12 2.9950E-13 3.4158E-13 

ODE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

SaDE 0.0000E+00 7.3960E-03 4.9307E-04 1.8764E-03 

JADE 0.0000E+00 1.9690E-02 3.5312E-03 5.7369E-03 

NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

PSO 0.0000E+00 1.1778E-01 3.7167E-02 3.7461E-02 

GA 1.0532E-04 3.3516E-03 9.8277E-04 8.3058E-04 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F9 

DE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

ODE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

SaDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

JADE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

PSO 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

GA 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F10 

DE 1.1926E-01 4.2119E-01 2.3608E-01 7.3156E-02 

ODE 9.6422E-02 3.5449E-01 2.3909-01 5.8055E-02 

SaDE 1.1583E-03 7.5251E-03 3.6490E-03 1.4981E-03 

JADE 2.7253E-02 1.0342E+00 1.7611E-01 2.2069E-01 

NBOLDE 2.8253E-04 1.9839E-02 5.4950E-03 5.8967E-03 

PSO 4.2142E-02 1.5618E-01 8.9729E-02 3.1233E-02 

GA 1.2134E-02 4.0849E-02 2.5947E-02 8.5751E-03 

PASDE 1.6042E-07 1.0086E-02 1.9438E-03 2.3193E-03 

F11 

DE 1.2985E-02 2.9831E-02 2.3668E-02 3.4492E-02 

ODE 1.0738E-02 2.1359E-02 1.7502E-02 2.1971E-03 

SaDE 2.0005E-07 1.1145E-04 2.1164E-05 2.2453E-05 

JADE 4.4374E-32 6.1062E-16 2.2945E-16 2.6552E-16 

NBOLDE 2.4301E-258 2.1230E-256 3.5999E-257 0.0000E+00 

PSO 5.9425E-08 6.4402E+00 8.6268E-01 1.8420E+00 

GA 6.0349E-05 7.1342E-04 3.9119E-04 1.7319E-04 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F12 

DE 6.4180E-54 3.2805E-42 1.0935E-43 5.9893E-43 

ODE 1.6380E-118 3.7777E-112 4.0795E-113 9.4811E-113 

SaDE 5.5304E-79 2.3642E-54 9.5760E-56 4.3786E-55 

JADE 1.1946E-140 1.7699E-128 1.0134E-129 3.7803E-129 

NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

PSO 2.2237E-37 6.4402E+00 8.6268E-01 1.8420E+00 

GA 6.0349E-05 7.1342E-04 3.9119E-04 1.7319E-04 

PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 
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Table 5. Scalability performance of PASDE and NBOLDE on functions F1 – F12 

 d Algorithms Min Max Mean S.D. 

F1 

100 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

100 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F2 

100 NBOLDE 7.5051E-222 3.9941E-219 2.4768E-220 0.0000E+00 

100 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 NBOLDE 1.2643E-212 2.6420E-211 6.7907E-212 0.0000E+00 

200 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 NBOLDE 6.4314E-207 8.3671E-205 1.4241E-205 0.0000E+00 

500 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 NBOLDE - - - - 

1000 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F3 

100 NBOLDE 1.7530E-304 2.8343E-299 1.6960E-300 0.0000E+00 

100 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 NBOLDE 2.7620E-279 1.3134E-273 9.1736E-275 0.0000E+00 

200 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 NBOLDE 6.0908E-262 1.5434E-255 6.1412E-257 0.0000E+00 

500 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 NBOLDE 4.6201E-258 8.7852E-250 7.3256E-251 0.0000E+00 

1000 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F4 

100 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

100 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F5 

100 NBOLDE 9.8560E+01 9.8812E+01 9.8699E+01 6.2063E-02 

100 PASDE 8.5791E+01 9.8041E+01 9.3194E+01 2.7279E+00 

200 NBOLDE 1.9847E+02 1.9875E+02 1.9864E+02 6.5760E-02 

200 PASDE 1.9040E+02 1.9776E+02 9.3194E+01 2.7279E+00 

500 NBOLDE 4.9847E+02 4.9878E+02 4.9863E+02 6.6567E-02 

500 PASDE 4.9259E+02 4.9666E+02 4.9544E+02 1.1143E+00 

1000 NBOLDE 9.9852E+02 9.9877E+02 9.9862E+02 5.8996E-02 

1000 PASDE 9.9169E+02 9.9546E+02 9.9463E+02 8.7931E-01 

F6 

100 NBOLDE 1.5091E+02 1.8345E+02 1.6958E+02 8.6816E+00 

100 PASDE 6.2188E+00 2.0690E+01 1.0499E+01 5.0933E+00 

200 NBOLDE 3.4141E+02 4.0938E+02 3.7762E+02 1.8603E+01 

200 PASDE 3.8498E+01 1.1485E+02 7.1384E+01 2.0981E+01 

500 NBOLDE 9.2901E+02 1.0751E+03 1.0290E+03 3.2119E+01 

500 PASDE 2.4040E+02 3.6266E+02 2.9226E+02 3.2214E+01 

1000 NBOLDE 2.0481E+03 2.2551E+03 2.1651E+03 5.1766E+01 

1000 PASDE 7.3618E+02 9.9003E+02 8.7673E+02 6.1535E+01 



HighTech and Innovation Journal         Vol. 4, No. 2, June, 2023 

447 

 

F7 

100 NBOLDE 4.4409E-15 4.4409E-15 4.4409E-15 0.0000E+00 

100 PASDE 4.4409E-16 4.4409E-16 4.4409E-16 0.0000E+00 

200 NBOLDE 4.4409E-15 4.4409E-15 4.4409E-15 0.0000E+00 

200 PASDE 4.4409E-16 4.4409E-16 4.4409E-16 0.0000E+00 

500 NBOLDE 4.4409E-15 4.4409E-15 4.4409E-15 0.0000E+00 

500 PASDE 4.4409E-16 4.4409E-16 4.4409E-16 0.0000E+00 

1000 NBOLDE 4.4409E-15 4.4409E-15 4.4409E-15 0.0000E+00 

1000 PASDE 4.4409E-16 4.4409E-16 4.4409E-16 0.0000E+00 

F8 

100 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

100 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F9 

100 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

100 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F10 

100 NBOLDE 1.8759E-04 4.6191E-02 1.0658E-02 9.9934E-03 

100 PASDE 2.3012E-05 3.0379E-02 2.5379E-03 6.3269E-04 

200 NBOLDE 3.4430E-04 3.3818E-02 1.3005E-02 9.8052E-03 

200 PASDE 1.9758E-05 1.5293E-02 2.2715E-03 3.1804E-03 

500 NBOLDE 2.7261E-04 3.0671E-02 9.7690E-02 8.1717E-03 

500 PASDE 1.9057E-05 2.1619E-02 4.3916E-03 5.6523E-03 

1000 NBOLDE 4.7578E-04 3.0716E-02 8.9893E-03 7.4480E-03 

1000 PASDE 7.9943E-06 3.9352E-02 3.4372E-03 7.7102E-03 

F11 

100 NBOLDE 1.0904E-222 4.3578E-221 1.1465E-221 0.0000E+00 

100 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 NBOLDE 5.2442E-214 3.2061E-212 8.3541E-213 0.0000E+00 

200 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 NBOLDE 6.9040E-208 6.9135E-206 1.4510E-206 0.0000E+00 

500 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 NBOLDE 1.5242E-205 1.0209E-203 2.6189E-204 0.0000E+00 

1000 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

F12 

100 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

100 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

200 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

500 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 NBOLDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

1000 PASDE 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

‘‘–’’ means that the value exceeds the maximum word length of Matlab 2018b and cannot be displayed. 
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4.1. Effects of the Proposed Strategies 

The purpose of this first part is to validate the effects of the three strategies in improving the DE’s performance. To 

determine this, we compare the original DE with the proposed PASDE algorithm and each of the three proposed DE 

strategies, i.e., DE with population improvement strategy (PIDE), DE with adaptive mutation strategy (AMDE) and DE 

with new selection strategy (NSDE). 

The results of the experiments are shown in Table 3. The results of the PASDE show that the combination of three 

proposed strategies significantly improves DE performance. The PASDE is the best performer on all benchmark 

functions; it is able to find the global optimal solution on 8 benchmark functions, which are F1 – F4, F8, F9, F11 and 

F12. For F5 – F7 and F10, PASDE and the three proposed DE strategies cannot reach the global optimum. While 

examining each of the three proposed strategies individually, PIDE is the most promising strategy, followed by AMDE 

and NSDE. The results in Table 3 show that the first strategy, PIDE, has similar results to the PASDE on most functions. 

However, from Figure 2, we can see that the PASDE converges faster than PIDE and much faster than DE, AMDE and 

NSDE. In summary, PASDE is the best among all algorithms in terms of the ability to locate the global optimum and 

the convergence rate. 
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Figure 2. Convergence curves of DE, PIDE, AMDE, NSDE and PASDE on 12 benchmark functions 

4.2. Result Comparison with Other Algorithms 

In order to validate the optimization performance of PASDE, this second part compares the performance of PASDE 

with seven other algorithms. They are the original DE, four other popular DE variants, i.e., ODE [27], SaDE [28], JADE 

[29], NBOLDE [18] and two other meta-heuristic algorithms, i.e., PSO and GA. We choose these algorithms for 

comparison because they have some similar processes and strategies to our proposed algorithm. 

The results which are reported in Table 4 can be summarized as follows. In general, the PASDE has the best 

performance, closely followed by NBOLDE. PASDE, NBOLDE and ODE obtain the global optimal solutions on 8, 6 

and 2 benchmark functions respectively; DE, SaDE, JADE, PSO and GA obtain the global optimal solutions on only 1 

function, F9. To be more precise, PASDE performs better than DE, ODE, SaDE, JADE, PSO and GA on 9 benchmark 

functions, F1-F4, F7-F8 and F10-F12, and performs equally well on F9. In comparison with NBOLDE, PASDE performs 

better on F2, F5, F6, F7, F10 and F11, and performs equally well on F1, F3, F4, F8, F9 and F12. JADE outperforms 

PASDE on F5, and GA slightly outperforms PASDE on F6.  
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Next, we examine how well each algorithm performs on the unimodal and multimodal functions. For all unimodal 

functions, both PASDE and NBOLDE can achieve the global optimal solutions; they perform equally well and better 

than the rest of the algorithms. For multimodal functions, PASDE has better performance than other algorithms on F7, 

F10 and F11; JADE has the best performance on F5 and GA has the best performance on F6; PASDE, NBOLDE and 

ODE are the best performers on F8. 

4.3. Scalability Evolution 

This last part reports the scalability of PASDE. The experiments are conducted to evaluate the performance of PASDE 

in solving the above 12 functions with different dimensions (d = 100, 200, 500 and 1000). Table 5 shows the scalability 

performance of PASDE in comparison with that of NBOLDE. The results in Table 5 show that PASDE has stable 

performance and can outperform NBOLDE across all dimensions. For F5, F6 and F10, the increase in dimension worsens 

the performance of PASDE slightly. 

In comparison with NBOLDE, PASDE is better on F2, F3, F5 – F7, F10 and F11. On F1, F4, F8, F9 and F12, both 

PASDE and NBOLDE can obtain the global optimal solutions. 

5. Conclusion 

An improved differential evolution algorithm with population improvement, adaptive mutation, and new selection 

strategies (PASDE) is proposed in this paper. A multi-level sampling mechanism is used in the population improvement 

strategy to accelerate the convergence speed in the early stage of the search and to increase the exploration, which in 

turn reducing the chance of getting trap in local optima, in the later stage of the search. The adaptive mutation perturbs 

the solution to enable it to jump out of local optima when trapped. A new selection strategy introduces more diverse 

solutions to the population to help avoid local optima. Among the three proposed strategies, the population improvement 

strategy improves the performance of DE the most. The adaptive mutation strategy and the new selection strategy by 

itself are not very effective in improving the performance of DE. However, when they are combined with the population 

improvement strategy, the resulted PASDE performs extremely well both in terms of the ability to locate the global 

optimum and the convergence speed. 

The performance of PASDE is compared with three classical metaheuristic algorithms, i.e., the original DE, PSO and 

GA, and four recent DE variants, i.e., ODE, SaDE, JADE and NBOLDE. The results on 12 benchmark functions show 

that the overall performance of PASDE is the best among all algorithms. Moreover, the scalability of the PASDE is also 

very good. On 9 out of 12 functions, PASDE can maintain its excellent performance as the dimension of the search space 

is increased. 
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