4,011 research outputs found

    Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation

    Get PDF
    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter

    Adaptive multibeam antennas for spacelab. Phase A: Feasibility study

    Get PDF
    The feasibility was studied of using adaptive multibeam multi-frequency antennas on the spacelab, and to define the experiment configuration and program plan needed for a demonstration to prove the concept. Three applications missions were selected, and requirements were defined for an L band communications experiment, an L band radiometer experiment, and a Ku band communications experiment. Reflector, passive lens, and phased array antenna systems were considered, and the Adaptive Multibeam Phased Array (AMPA) was chosen. Array configuration and beamforming network tradeoffs resulted in a single 3m x 3m L band array with 576 elements for high radiometer beam efficiency. Separate 0.4m x 0.4 m arrays are used to transmit and receive at Ku band with either 576 elements or thinned apertures. Each array has two independently steerable 5 deg beams, which are adaptively controlled

    Coherent fibre-optic link: applications in Time and Frequency metrology, Geodesy, Radio Astronomy and Seismology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Effects of control laws and relaxed static stability on vertical ride quality of flexible aircraft

    Get PDF
    State variable techniques are utilized to generate the RMS vertical load factors for the B-52H and B-1 bombers at low level, mission critical, cruise conditions. A ride quality index is proposed to provide meaningful comparisons between different controls or conditions. Ride quality is shown to be relatively invariant under various popular control laws. Handling quality variations are shown to be major contributors to ride quality variations on both vehicles. Relaxed static stability is artificially implemented on the study vehicles to investigate its effects on ride quality. The B-52H ride quality is generally degraded when handling characteristics are automatically restored by a feedback control to the original values from relaxed stability conditions. The B-1 airplane shows little ride quality sensitivity to the same analysis due to the small rigid body contribution to load factors at the flight condition investigated

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Advances In Internal Model Principle Control Theory

    Get PDF
    In this thesis, two advanced implementations of the internal model principle (IMP) are presented. The first is the identification of exponentially damped sinusoidal (EDS) signals with unknown parameters which are widely used to model audio signals. This application is developed in discrete time as a signal processing problem. An IMP based adaptive algorithm is developed for estimating two EDS parameters, the damping factor and frequency. The stability and convergence of this adaptive algorithm is analyzed based on a discrete time two time scale averaging theory. Simulation results demonstrate the identification performance of the proposed algorithm and verify its stability. The second advanced implementation of the IMP control theory is the rejection of disturbances consisting of both predictable and unpredictable components. An IMP controller is used for rejecting predictable disturbances. But the phase lag introduced by the IMP controller limits the rejection capability of the wideband disturbance controller, which is used for attenuating unpredictable disturbance, such as white noise. A combination of open and closed-loop control strategy is presented. In the closed-loop mode, both controllers are active. Once the tracking error is insignificant, the input to the IMP controller is disconnected while its output control action is maintained. In the open loop mode, the wideband disturbance controller is made more aggressive for attenuating white noise. Depending on the level of the tracking error, the input to the IMP controller is connected intermittently. Thus the system switches between open and closed-loop modes. A state feedback controller is designed as the wideband disturbance controller in this application. Two types of predictable disturbances are considered, constant and periodic. For a constant disturbance, an integral controller, the simplest IMP controller, is used. For a periodic disturbance with unknown frequencies, adaptive IMP controllers are used to estimate the frequencies before cancelling the disturbances. An extended multiple Lyapunov functions (MLF) theorem is developed for the stability analysis of this intermittent control strategy. Simulation results justify the optimal rejection performance of this switched control by comparing with two other traditional controllers

    Vibration Reduction and Performance Enhancement of Helicopter Rotors Using an Active/Passive Approach

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76405/1/AIAA-2008-2178-413.pd

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Experimental and theoretical investigation of a multi-mode cooling scheme using multiple EIT resonances

    Full text link
    We introduce and demonstrate double-bright electromagnetically induced transparency (D-EIT) cooling as a novel approach to EIT cooling. By involving an additional ground state, two bright states can be shifted individually into resonance for cooling of motional modes of frequencies that may be separated by more than the width of a single EIT cooling resonance. This allows three-dimensional ground state cooling of a 40^{40}Ca+^+ ion trapped in a linear Paul trap with a single cooling pulse. Measured cooling rates and steady-state mean motional quantum numbers for this D-EIT cooling are compared with those of standard EIT cooling as well as concatenated standard EIT cooling pulses for multi-mode cooling. Experimental results are compared to full density matrix calculations. We observe a failure of the theoretical description within the Lamb-Dicke regime that can be overcome by a time-dependent rate theory. Limitations of the different cooling techniques and possible extensions to multi-ion crystals are discussed.Comment: 18 pages, 13 figures. We have decided to merge the contents of our submission arXiv:1711.00738 with this paper into one comprehensive work. New titl
    corecore