14,370 research outputs found

    Convex Optimization Approaches for Blind Sensor Calibration using Sparsity

    Get PDF
    We investigate a compressive sensing framework in which the sensors introduce a distortion to the measurements in the form of unknown gains. We focus on blind calibration, using measures performed on multiple unknown (but sparse) signals and formulate the joint recovery of the gains and the sparse signals as a convex optimization problem. We divide this problem in 3 subproblems with different conditions on the gains, specifially (i) gains with different amplitude and the same phase, (ii) gains with the same amplitude and different phase and (iii) gains with different amplitude and phase. In order to solve the first case, we propose an extension to the basis pursuit optimization which can estimate the unknown gains along with the unknown sparse signals. For the second case, we formulate a quadratic approach that eliminates the unknown phase shifts and retrieves the unknown sparse signals. An alternative form of this approach is also formulated to reduce complexity and memory requirements and provide scalability with respect to the number of input signals. Finally for the third case, we propose a formulation that combines the earlier two approaches to solve the problem. The performance of the proposed algorithms is investigated extensively through numerical simulations, which demonstrates that simultaneous signal recovery and calibration is possible with convex methods when sufficiently many (unknown, but sparse) calibrating signals are provided

    Power-Constrained Sparse Gaussian Linear Dimensionality Reduction over Noisy Channels

    Get PDF
    In this paper, we investigate power-constrained sensing matrix design in a sparse Gaussian linear dimensionality reduction framework. Our study is carried out in a single--terminal setup as well as in a multi--terminal setup consisting of orthogonal or coherent multiple access channels (MAC). We adopt the mean square error (MSE) performance criterion for sparse source reconstruction in a system where source-to-sensor channel(s) and sensor-to-decoder communication channel(s) are noisy. Our proposed sensing matrix design procedure relies upon minimizing a lower-bound on the MSE in single-- and multiple--terminal setups. We propose a three-stage sensing matrix optimization scheme that combines semi-definite relaxation (SDR) programming, a low-rank approximation problem and power-rescaling. Under certain conditions, we derive closed-form solutions to the proposed optimization procedure. Through numerical experiments, by applying practical sparse reconstruction algorithms, we show the superiority of the proposed scheme by comparing it with other relevant methods. This performance improvement is achieved at the price of higher computational complexity. Hence, in order to address the complexity burden, we present an equivalent stochastic optimization method to the problem of interest that can be solved approximately, while still providing a superior performance over the popular methods.Comment: Accepted for publication in IEEE Transactions on Signal Processing (16 pages

    Optimized Compressed Sensing Matrix Design for Noisy Communication Channels

    Get PDF
    We investigate a power-constrained sensing matrix design problem for a compressed sensing framework. We adopt a mean square error (MSE) performance criterion for sparse source reconstruction in a system where the source-to-sensor channel and the sensor-to-decoder communication channel are noisy. Our proposed sensing matrix design procedure relies upon minimizing a lower-bound on the MSE. Under certain conditions, we derive closed-form solutions to the optimization problem. Through numerical experiments, by applying practical sparse reconstruction algorithms, we show the strength of the proposed scheme by comparing it with other relevant methods. We discuss the computational complexity of our design method, and develop an equivalent stochastic optimization method to the problem of interest that can be solved approximately with a significantly less computational burden. We illustrate that the low-complexity method still outperforms the popular competing methods.Comment: Submitted to IEEE ICC 2015 (EXTENDED VERSION

    Modulated Unit-Norm Tight Frames for Compressed Sensing

    Full text link
    In this paper, we propose a compressed sensing (CS) framework that consists of three parts: a unit-norm tight frame (UTF), a random diagonal matrix and a column-wise orthonormal matrix. We prove that this structure satisfies the restricted isometry property (RIP) with high probability if the number of measurements m=O(slog2slog2n)m = O(s \log^2s \log^2n) for ss-sparse signals of length nn and if the column-wise orthonormal matrix is bounded. Some existing structured sensing models can be studied under this framework, which then gives tighter bounds on the required number of measurements to satisfy the RIP. More importantly, we propose several structured sensing models by appealing to this unified framework, such as a general sensing model with arbitrary/determinisic subsamplers, a fast and efficient block compressed sensing scheme, and structured sensing matrices with deterministic phase modulations, all of which can lead to improvements on practical applications. In particular, one of the constructions is applied to simplify the transceiver design of CS-based channel estimation for orthogonal frequency division multiplexing (OFDM) systems.Comment: submitted to IEEE Transactions on Signal Processin

    Uniform Recovery from Subgaussian Multi-Sensor Measurements

    Full text link
    Parallel acquisition systems are employed successfully in a variety of different sensing applications when a single sensor cannot provide enough measurements for a high-quality reconstruction. In this paper, we consider compressed sensing (CS) for parallel acquisition systems when the individual sensors use subgaussian random sampling. Our main results are a series of uniform recovery guarantees which relate the number of measurements required to the basis in which the solution is sparse and certain characteristics of the multi-sensor system, known as sensor profile matrices. In particular, we derive sufficient conditions for optimal recovery, in the sense that the number of measurements required per sensor decreases linearly with the total number of sensors, and demonstrate explicit examples of multi-sensor systems for which this holds. We establish these results by proving the so-called Asymmetric Restricted Isometry Property (ARIP) for the sensing system and use this to derive both nonuniversal and universal recovery guarantees. Compared to existing work, our results not only lead to better stability and robustness estimates but also provide simpler and sharper constants in the measurement conditions. Finally, we show how the problem of CS with block-diagonal sensing matrices can be viewed as a particular case of our multi-sensor framework. Specializing our results to this setting leads to a recovery guarantee that is at least as good as existing results.Comment: 37 pages, 5 figure

    Sparse Recovery Analysis of Preconditioned Frames via Convex Optimization

    Get PDF
    Orthogonal Matching Pursuit and Basis Pursuit are popular reconstruction algorithms for recovery of sparse signals. The exact recovery property of both the methods has a relation with the coherence of the underlying redundant dictionary, i.e. a frame. A frame with low coherence provides better guarantees for exact recovery. An equivalent formulation of the associated linear system is obtained via premultiplication by a non-singular matrix. In view of bounds that guarantee sparse recovery, it is very useful to generate the preconditioner in such way that the preconditioned frame has low coherence as compared to the original. In this paper, we discuss the impact of preconditioning on sparse recovery. Further, we formulate a convex optimization problem for designing the preconditioner that yields a frame with improved coherence. In addition to reducing coherence, we focus on designing well conditioned frames and numerically study the relationship between the condition number of the preconditioner and the coherence of the new frame. Alongside theoretical justifications, we demonstrate through simulations the efficacy of the preconditioner in reducing coherence as well as recovering sparse signals.Comment: 9 pages, 5 Figure
    corecore