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Abstract—We investigate a power-constrained sensing matrix
design problem for a compressed sensing framework. We adopt
a mean square error (MSE) performance criterion for sparse
source reconstruction in a system where the source-to-sensor
channel and the sensor-to-decoder communication channel are
noisy. Our proposed sensing matrix design procedure relies upon
minimizing a lower-bound on the MSE. Under certain conditions,
we derive closed-form solutions to the optimization problem.
Through numerical experiments, by applying practical sparse
reconstruction algorithms, we show the strength of the proposed
scheme by comparing it with other relevant methods. We discuss
the computational complexity of our design method, and develop
an equivalent stochastic optimization method to the problem of
interest that can be solved approximately with a significantly
less computational burden. We illustrate that the low-complexity
method still outperforms the popular competing methods.

I. INTRODUCTION

Compressed sensing (CS) [1]–[3] is an emerging tool for
simultaneous signal acquisition and compression that signifi-
cantly reduces the cost due to sampling, leading to low-power
consumption and low-bandwidth communication. CS is indeed
a mathematical framework, based on linear dimensionality
reduction, and builds upon the fact that the source signal can be
represented in a sparse form, which is true for many physically
observed signals.

In order to clarify the concept of CS in relation to the
objectives of our work, let us consider the linear reduction
model y = Ax+ n, where x ∈ RN is a sparse vector (in a
known basis) with a size higher than that of the measurement
vector y ∈ RM . Further, A ∈ RM×N is a fat sensing matrix
(i.e., M < N ), and n ∈ RM is the measurement noise
vector. It should be mentioned that a careful design of the
sensing matrix A is crucial in order to achieve promising
performance of sparse reconstruction algorithms. Moreover, as
shown analytically in [4], the sensing matrix has an important
role in not only determining the amount of estimation error,
but also in characterizing the amount of distortion due to
quantization and transmission of CS measurements over noisy
communication channels. Therefore, in this paper, we are
interested in the optimized design of the sensing matrix A
with respect to an appropriate performance criterion reflecting
the mean square estimation error due to transmission over a
noisy communication channel.

In the literature, available approaches for designing sensing
matrices for estimation purposes can be divided into three
main kinds:

1) In the first category, the design method is linked to a
fundamental feature of the sensing matrix A, called mutual

coherence [5], which is defined as follows

µ ! max
i̸=j

|A⊤
i Aj |

∥Ai∥2∥Aj∥2
, 1 ≤ i, j ≤ N, (1)

where Ai denotes the ith column of A. One of the early works
within this category is [6] which studied algorithmic methods
in order to minimize the mutual coherence.

2) In the second category, in order to analytically address
the sensing matrix design problem in a more tractable manner,
and to reduce the amount of mutual coherence, the sensing
matrix A is optimized with respect to satisfying

minimize
A

∥A⊤A− IN∥F , (2)

where ∥ ·∥F denotes the Frobenius norm, and (·)⊤ denotes the
matrix transpose. Some works in this category are [7]–[11].

3) While in the first and second categories, the sensing
matrix is mainly designed in a way to address the worst-case
performance of sparse reconstruction, the actual performance,
such as mean square error (MSE) of sparse reconstruction, is
typically far less. Thus, one might consider minimization of

MSE ! E[∥x− x̂∥22], (3)

under relevant constrains. Here, ∥ · ∥2 denotes the ℓ2 norm,
and x̂ represents the output of decoder (e.g, a linear or non-
linear estimator, sparse reconstruction algorithms etc.). Some
examples within this category are [12]–[15].

Following the third category, we are interested in the
optimized sensing matrix design with respect to minimizing
reconstruction MSE criterion given that the source can be
represented in a sparse form with known statistical moments.

We study a scenario that a correlated sparse source vector
(i.e., the non-zero components of the source signal are corre-
lated) is scaled linearly and becomes corrupted by additive
noise before compression/encoding via a CS-based sensing
matrix. The resulting CS measurements are transmitted over a
noisy (analog) communication channel, modeled by channel
gain and additive noise, under available average transmit
power constraint. At the receiving-end, the source signal
is decoded using an estimator in order to reconstruct the
sparse source. In this scenario, we aim at optimizing the
sensing matrix with respect to minimizing a lower-bound on
the MSE incurred by using the MMSE estimator (which by
definition minimizes the MSE) of a sparse source signal. We
propose a two-stage sensing matrix optimization procedure
that combines semi-definite relaxation (SDR) programming as
well as low-rank approximation problem. The solution to the
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Fig. 1. System model for CS over a noisy communication channel.

low-rank approximation problem can be derived analytically,
further, the SDR programming can be solved using convex
optimization techniques. Also, under certain conditions, we
derive closed-form solutions to the SDR problem. Through
numerical experiments, by applying practical sparse recon-
struction algorithms, we compare our proposed scheme with
other relevant methods. Experimental results show that the
proposed approach improves the MSE performance by a
large margin compared to other methods. This performance
improvement is achieved at the price of higher computational
complexity. In order to tackle the complexity issue, we develop
an equivalent stochastic optimization method to the problem
of interest, which can be approximately solved, and still shows
a superior performance over the competing methods.

The proofs of the results in the current paper have been
omitted due to the page limit. The extended version with
proofs and details can be found in [16].

II. SYSTEM DESCRIPTION

A. System Model and Key Assumptions

We study the setup shown in Figure 1. We consider a K-
sparse (in a known basis) vector x ∈ RN which is comprised
of exactly K random non-zero components (K ≪ N ). We
define the support set, i.e., the locations of the non-zero
component, for the vector x ! [x1, . . . , xN ]⊤ as S ! {n ∈
{1, 2, . . . , N} : xn ̸= 0} with |S| = K , where | · | denotes the
cardinality of a set. We assume that the non-zero components
of the source vector x are distributed according to a Gaussian
distribution N (0K ,R), where R = E[xSx

⊤
S ] ∈ RK×K is

the covariance matrix of the K non-zero components of x,
and xS ∈ RK denotes the components of x indexed by
the support set S. Note that R is a positive definite matrix
which is not necessarily scaled identity, i.e., the nonzero off-
diagonal elements of R allow the non-zero components of x
to be correlated. The elements of the support set S are drawn
uniformly at random from the set of all

(
N
K

)
possibilities,

denoted by Ω, i.e., |Ω| =
(N
K

)
. In other words, p(S) = 1/

(N
K

)
,

where p(S) represents the probability that a support set S is
chosen from the set Ω. The uniform distribution is chosen
for simplicity of presentation, however, extensions to other
types of distributions are straightforward. We also denote
the covariance matrix of the whole sparse source vector by
Rx ! E[xx⊤] ∈ RN×N .

We model the uncertainty or mismatch in some physical
aspect via a source-to-sensor channel described as following.
The source is linearly scaled via a fixed matrix H ∈ RL×N

whose output is corrupted by an additive noise v ∈ RL

uncorrelated with the source, where v ∼ N (0L,σ2
vIL). For

transmission over noisy channel, the noisy observations should
be compressed and then encoded. Here, we assume that the
bandwidth of the noisy observation z ! Hx+ v ∈ RL is
compressed via a full row-rank compressed sensing trans-
formation matrix A ∈ RM×L, where M < L. We also

assume that M < N . The compressed measurements are
simultaneously encoded under the constraint of the available
average transmit power, and then transmitted over a channel,
represented by a fixed channel matrix G ∈ RM×M and
additive noise w ∈ RM . We assume that the channel matrix
is given by G = gIM , and we let the additive channel noise
be distributed as w ∼ N (0M ,σ2

wIM ), which is uncorrelated
with the source x and source-to-sensor additive noise v. The
rational behind the scaled identity assumption on the channel
matrix is that there is no inter-symbol interference between
message transmissions over the communication link, and the
channel is assumed to remain constant during each observation
period [13]. This technical assumption also makes our design
procedure tractable. In a more compact way, we write

y = GAz+w = gAHx+ gAv +w︸ ︷︷ ︸
!n

.
(4)

Denoting the total noise in the system by n ! gAv +w ∈
RM , its covariance matrix Rn ∈ RM×M can be calculated as

Rn ! E{nn⊤} = g2σ2
vAA⊤ + σ2

wIM . (5)

Finally, at the receiving end, the decoder which is character-
ized by a (potentially non-linear) mapping RM →RN provides
the estimate of the source from corrupted measurements.

B. Developing MMSE Estimation and Lower-bound on MSE

We are interested in designing an optimized compressed
sensing matrix A with respect to minimizing the MSE of
sparse source reconstruction. Based on the aforementioned
assumptions in Section II-A, it is possible (see e.g. [17]) to
find a closed-form expression for the MMSE estimation of
the source given the received signal vector y. The MMSE
estimator, denoted by x̂⋆ ∈ RN , minimizes the MSE by
definition, and inherits the following structure (see e.g. [17])

x̂⋆ =
∑

S⊂Ω

β(S,y)E[x|y,S], (6)

where Ω is the set of all sparsity patterns, and β(S,y) is
the weighting coefficient (possibly non-linear in y) such that∑

S β(S,y) = 1. Further, E[x|y,S] is the conditional mean
of the source given a possible support set S and observation
y. The conditional mean in (6) can be expressed as (see [17])
E[x|y,S] =

g
(
R−1+ g2

(
H⊤A⊤

)
S

R−1
n (AH)S

)−1 (
H⊤A⊤

)
S

R−1
n y,

(7)
where (·)S denotes the columns of a matrix indexed by the
support set S. The MMSE estimator (6) gives the lowest
possible MSE for a sparse source in the system of Figure 1.
However, the MSE itself does not have a closed-form expres-
sion, which makes it difficult to find a tractable way in order to
optimize the sensing matrix. Thus, we propose an alternative
sensing matrix optimization method by minimizing a lower-
bound on the MSE.

We bound the MSE of the MMSE estimator by that of the
oracle MMSE estimator, i.e., an ideal estimator which has the
perfect knowledge of the support set a priori. By definition,
the oracle estimator is calculated as the conditional expectation
x̂(or) ! E[x|y,S], as shown in (7), given a priori known (but
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random) support set S and noisy observations y. Notice that
the conditional expectation given the support set is Gaussian
distributed which gives the following MSE

MSE(lb) = E[∥x− x̂(or)∥22] = E[∥xS − x̂
(or)
S ∥22]

(a)
=

∑

S⊂Ω

p(S)Tr
{(

R−1 + g2(H⊤A⊤)S R−1
n (AH)S

)−1
}
,

(8)
where (a) follows by averaging over all random supports sets.
Further, p(S) = 1/

(N
K

)
.

To be able to formulate the MSE in (8) in terms of the
sensing matrix A, as in [12], we define the matrix ES ∈
RN×K , which is formed by taking an identity matrix of order
N ×N and deleting the columns indexed by the support set
S. Then, we rewrite

MSE(lb)=
∑

S

1
(N
K

)Tr
{(

R−1+g2E⊤
SH

⊤A⊤R−1
n AHES

)−1
}
.

(9)

III. DESIGN METHODOLOGY

In this section, we offer a design method for optimization
of the sensing matrix A with the objective of minimizing the
lower-bound (9). The optimization is performed at the decoder,
and we assume that the decoder knows the sensor observation
models and source-to-sensor and sensor-to-decoder channels.

We assume that the bandwidth is constrained, i.e., we have
M < N total number of observations. Also, the average
transmit power can be bounded by the total available power
P as follows

E[∥AHx+Av∥22] = Tr{AHE[xx⊤]H⊤A⊤+AE[vv⊤]A⊤}
= Tr{AHRxH

⊤A⊤ + σ2
vAA⊤} ≤ P.

(10)
Minimizing the lower-bound (9) subject to the average

power constraint (10) yields

minimize
A

MSE(lb)

subject to Tr{A(HRxH
⊤ + σ2

vIL)A
⊤} ≤ P.

(11)

The optimal solution to Problem (11) is equivalent to that of
the optimization problem given by the following theorem.

Theorem 1. Let Q ! A⊤A ∈ RL×L, then the optimization
problem (11) can be equivalently solved by

minimize
Q,XS ,Y

∑

S

Tr{XS}

subject to

[
R−1 +E⊤

SH
⊤( g2

σ2
w

Q−Y)HES IK

IK XS

]

≽ 0

[
Y g

σw
Q

g
σw

Q
σ2
w

g2σ2
v

IL +Q

]

≽ 0, S ⊂ Ω

Tr{(HRxH
⊤ + σ2

vIL)Q} ≤ P

Q ≽ 0, rank(Q) = M,
(12)

where the matrices Q, XS ∈ RK×K and Y ∈ RL×L are
optimization variables.

Remark 2. The last two constraints in (12) appear due to
the variable transformation Q = A⊤A which is a rank-
M positive semi-definite matrix. The difficulty of solving (12)

is due to the rank constraint which makes the optimization
problem non-convex in general. However, the constraint can
be relaxed making the remaining problem convex, a technique
which is usually called semi-definite relaxation (SDR). Note
also that the SDR can be only used to give a lower-bound on
the optimal cost of the original objective function in (12).

Next, we develop a two-stage procedure in order to approx-
imately solve for A in the non-convex optimization problem
(12).

1) Semi-definite relaxation (SDR): We first ignore the rank
constraint in (12), and solve the convex SDR problem for
the matrix Q. In some cases, closed-form solutions exist
which we discuss later in this section. After finding the
optimal Q⋆, we take the eigen-value decomposition (EVD)
Q⋆ = UqΓqU

⊤
q , where Uq ∈ RL×L is a unitary matrix and

Γq = diag (γq1 , . . . , γqL) ∈ RL×L such that γq1 > . . . > γqL .
2) Low-rank approximation: We approximately reconstruct

the rank–M sensing matrix A by solving

minimize
A

∥A⊤A−Q∥2F . (13)

It can be shown that the optimal sensing matrix A⋆ (with
respect to (13)) has the following structure [18]:

A⋆ = Ua

[
diag(

√
γq1 , . . . ,

√
γqM ) 0M×(L−M)

]
U⊤

q , (14)

where Ua ∈ RM×M is an arbitrary unitary matrix.
Since the eigenvalues γqM+1

,. . ., γqL are dropped
in (14), we finally scale the resulting A⋆ by√
P/Tr{(HRxH⊤+σ2

vIL)A
⋆⊤A⋆} in order to satisfy

the power constraint by equality.
Next, we investigate the optimization problem (12) in sev-

eral special cases.
1) Special Case I (R=σ2

xIK , H=IN ): The motivation is
to study a case where the non-zero components of the sparse
source are uncorrelated, i.e., R = σ2

xIK and the source-to-
sensor channel is only subject to additive noise, i.e., H=IN .

Proposition 3. Let R = σ2
xIK and H = IN , then the solution

to the two-stage optimization procedure is given by

A⋆ =

√
KP

M(σ2
x +Kσ2

v)
Ua[IM 0M×(N−M)]V

⊤
a , (15)

where Ua ∈ RM×M and Va ∈ RN×N are arbitrary unitary
matrices.

Remark 4. The structure of the sensing matrix in (15) is
normally referred to as tight frame. Such structure is also
optimal in certain cases, for example, the optimality of a
tight frame-structured sensing matrix has been shown in [12]
with respect to minimizing LS-based oracle estimator. Another
advantage of tight frames is that they can be efficiently
constructed in finite number of arithmetic operations.

2) Special Case II (R = σ2
xIK , v = 0,H : square full

rank): Now, we discuss a case where the non-zero components
of the sparse source are uncorrelated, i.e., R = σ2

xIK , the
observations before encoding are noiseless, i.e., v = 0 and H
is a full-rank matrix.
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Proposition 5. Let R = σ2
xIK and v = 0, and consider that

H is a square full-rank matrix such that its SVD can be written
as H = UhΓhV

⊤
h , where Uh and Vh are N × N unitary

matrices and Γh = diag(γh1
, γh2

, . . . , γhN
) is a diagonal

matrix containing singular values γh1
< γh2

< . . . < γhN
.

Then, the solution to the two-stage optimization procedure is
given by

A⋆ =

√
KP

Mσ2
x
Ua[Γa 0M×(N−M)]U

⊤
h , (16)

where Ua ∈ RM×M is an arbitrary unitary matrix, and Γa =
diag(γ−1

h1
, . . . , γ−1

hM
).

Remark 6. According to (16) in Proposition 5, the effective
received measurement matrix at the decoder, i.e., gAH, has a
tight-frame structure. Interestingly, it can also be shown (see
e.g. [19]) that the optimized sensing matrix derived in (16),
without the scaling factor, coincides with the optimal solution
to the optimization problem minimize

A
∥H⊤A⊤AH− IN∥F ,

which belongs to the second category of sensing matrix design
problems introduced in Section I.

3) Special Case III (w = 0, H = IN , R = σ2
xIK): Here,

we investigate a case where the additive channel noise in
the system is negligible, i.e., w = 0, the observations before
encoding are only subject to additive noise, i.e., H = IN ,
and the non-zero components of the sparse source vector are
uncorrelated, i.e., R = σ2

xIK . In this case, the optimal sensing
matrix to the original problem (11) is given by the following
proposition.

Proposition 7. Let w = 0, H = IN , R = σ2
xIK , then, the

solution to the optimization problem (11) is given by

A⋆ =

√
KP

Mσ2
x
Ua[IM 0M×(N−M)], (17)

where Ua ∈ RM×M is an arbitrary unitary matrix.

4) Special Case IV (v = 0, g2

σ2
w

→ 0): Now, we consider

an asymptotic case, where the communication channel is in a
noisy regime such that the ratio between the power of channel
gain over the power of additive channel noise tends to zero,
i.e., g2/σ2

w → 0.

Proposition 8. Let v = 0 and g2

σ2
w

→ 0, and define T !
∑

S DSR
2D⊤

S and Z ! T−1/2HRxH
⊤T−1/2 which has

the EVD Z = UzΓzU
⊤
z . The approximate solution to the

two-stage optimization procedure is asymptotically given by

A⋆ = Ua

[
diag

(√
γq, 0, . . . , 0

)
0M×(L−M)

]
U⊤

q , (18)

where Ua ∈ RM×M is an arbitrary unitary matrix, and γq is
the only non-zero eignevlaue of

Q⋆ = T−1/2Uzdiag

(
P

γz1
, 0, . . . , 0

)
U⊤

z T
−1/2. (19)

Further, Uq is the eigenvector associated with the EVD of Q⋆,
and γz1 is the smallest eigenvalue of Z.

Remark 9. From (18), it can be observed if channel condition
degrades, as g2/σ2

w → 0, the approximate sensing matrix has
only one active singular-value.

IV. COMPLEXITY CONSIDERATIONS

Here, we discuss the computational complexity of solving
the proposed optimization scheme for sensing matrix design,
and offer an approach in order to solve the optimization
problem with significantly less computational complexity.

The high computational complexity in the two-stage opti-
mization procedure proposed in Section III arises from the
first step, i.e., solving the SDR problem ((12) without the
rank constraint). More precisely, the optimization problem
consists of one matrix variable Q of size L × L,

(
N
K

)
matrix

variables XS of size K × K , and one matrix variable Y of
size L × L. Hence, it can be iteratively solved using interior
point methods with computational complexity growing at most

like O(2L6+
(
N
K

)3
K6) arithmetic operations in each iteration

[20]. Therefore, as N increases, the computational complexity
grows exponentially due to the term

(N
K

)
.

The computational complexity of solving the SDR problem
can be significantly reduced under certain assumptions (see,
e.g., the special cases I-IV), in which closed-form solutions
can be derived. Here, we offer an alternative in order to
solve the SDR problem of (12) with a reduced computational
complexity. Note that the objective function MSE(lb) in (9)
can be rewritten as

MSE(lb) = ES

[
Tr

{(
R−1+g2E⊤

SH
⊤A⊤R−1

n AHES

)−1
}]

,

(20)
where S is a random variable which picks a support set
S uniformly at random from the set of all possibilities Ω,
and ES means that the expectation is taken only over the
randomness of S. Notice that the expectation in (20) can be
(approximately) calculated using sample mean as

MSE(lb)≈ 1

|Ω′|
∑

S′∈Ω′

Tr
{(
R−1+g2E⊤

S′H⊤A⊤R−1
n AHES′

)−1
}

(21)
where S ′ is uniformly chosen from a set Ω′, which is a subset
of Ω. Note that the cardinality |Ω′| can be chosen to be
far less than

(
N
K

)
and still obtain a good approximation of

(20). As a result, the computational complexity of solving
the resulting SDR problem reduces to O(2L6 + |Ω′|3K6)
arithmetic operations, where |Ω′| ≪

(
N
K

)
.

V. NUMERICAL EXPERIMENTS

Now, we provide numerical experiments for evaluating the
performance of the proposed sensing matrix design scheme
in Section III, referred to as lower-bound minimizing sensing
matrix. We compare it with the following design methods:

• Upper-bound minimizing sensing matrix: Using this method,
which has been studied in [13], [14] in non-CS framework,
the MSE of the MMSE estimator of the sparse source vector
is upper-bounded by that of the linear MMSE (LMMSE) es-
timator. The MSE incurred by using the LMMSE estimator
can be written as [21]

MSE(ub) ! Tr
{(

R−1
x + g2H⊤A⊤R−1

n AH
)−1

}
,

(22)
which is minimized subject to a power constraint.

• Gaussian sensing matrix: Using this standard method, each
element of the Gaussian sensing matrix is generated ran-
domly according to the standard Gaussian distribution.
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• Tight frame: Using this method, the sensing matrix is chosen
as A = Ua

[
IM 0M×(L−M)

]
V⊤

a , where Ua ∈ RM×M

and Va ∈ RL×L are arbitrary unitary matrices.

Note that we scale the resulting sensing matrix, described
above, by

√
P/Tr{(HRxH⊤ + σ2

vIL)A⊤A} in order to sat-
isfy the power constraint. We also compare the actual MSE,
incurred by using the above methods, with the value of
the lower-bound (9) when the lower-bound sensing matrix
is applied. This will be referred to as lower-bound in our
experiments. It should be also mentioned that for solving the
convex SDR problems, we use the CVX solver [22] .

We evaluate the performance using the normalized MSE
(NMSE) criterion, defined as

NMSE !
E[∥x− x̂∥22]

K
.

We randomly generate a set of exactly K-sparse vector x,
where the support set S with |S| = K is chosen uniformly at
random over the set {1, 2, . . . , N}. The non-zero components
of x are drawn from Gaussian distribution N (0K ,R). The
covariance matrix R is generated according to the exponen-
tial model [23], where each entry at row i and column j
is chosen as ρ|i−j| in which 0 ≤ ρ < 1 is known as
the correlation coefficient. We Compute sample covariance
matrix for the sparse source vector, i.e., Rx = E[xx⊤]
using 105 random generation of the source vector x. We
also let v = 0 and H = IN . In order to implement the
decoder, we use two different sparse reconstruction methods:
the greedy orthogonal matching pursuit (OMP) algorithm [24],
and the Bayesian-based random–OMP algorithm [17], which
is a low-complexity approximation of the exact (exhaustive)
MMSE estimator. The actual performance of the proposed
design methods is assessed using Monte-Carlo simulations by
generating 5000 realizations of the input sparse vector x. In
our first two experiments, we use, at the decoder, random-
OMP algorithm for reconstruction of sparse source vector.

In our first experiment, we use the simulation parameters
N = 36,K = 3, P = 10 dB, g = 0.5,σw = 0.1, ρ = 0.25.
We plot the NMSE of the design methods as a function
of M in Figure 2, and observe that at all measurement
regions, the proposed lower-bound minimizing sensing matrix
outperforms the other competing methods by taking into
account the sparsity pattern of the source. As expected, as the
number of measurements increases, the performance of the
methods improves, however, it finally saturates and increasing
M further does not help to improve NMSE. This is because
at higher number of measurements, the NMSE is influenced
more by the additive noise in the system which is fixed. As M
increases, the performance of the tight frame approaches that
of the lower-bound minimizing sensing matrix, which shows
that the latter behaves like an orthogonal transform.

Using the same simulation parameters, by fixing M = 18,
we vary the transmission power P (in dB), and evaluate
the performance of the methods in terms of NMSE. The
results are reported in Figure 3. At the low power regime,
the performance of the competing methods are almost the
same, however, as P increases, the proposed lower-bound
minimizing sensing matrix outperforms the other schemes. For
example, at P = 10 dB, the proposed scheme gives a better
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Fig. 3. NMSE (in dB) as a function of transmission power P (in dB).

performance by more than 6 dB as compared to the other
methods.

In the previous experiments, we have used the random-
OMP algorithm (as the approximation of the exact MMSE
estimator) for reconstructing the sparse source. While this
algorithm is nearly optimal (in MSE sense), the reconstructed
vector might not be necessarily a sparse vector [17]. In some
applications, together with reconstruction accuracy, one might
desire a sparse representation at the receiving-end. Therefore,
we use the greedy OMP algorithm [24] which preserves the
sparse structure through reconstructing the source.

We compare the performance of the methods (in terms of
NMSE) as a function of channel signal to noise ratio (CSNR),
defined as CSNR ! g2/σ2

w, in logarithmic scale. The results
are reported in Figure 4. Simulation parameters are chosen as
N = 36,K = 3, P = 10 dB,M = 18, ρ = 0.5. We fix σw =
0.1, and vary the CSNR from 1 to 103 where the channel gains
g are chosen accordingly. It is observed that at CSNR = 102,
the lower-bound minimizing sensing matrix outperforms the
Gaussian sensing matrix by more than 8 dB, and the upper-
bound minimizing sensing matrix by more than 10 dB.

In our final experiment, we implement a higher-dimensional
system, and apply the proposed low-complexity approach
introduced in Section IV. For this purpose, we choose the
following simulation parameters: N = 100,K = 5,σw =
0.1, g = 0.5, P = 10 dB, ρ = 0.75, and plot the NMSE
by varying M in Figure 5. Further, the cardinality of the set
Ω′ in (21) is set to 2500, while the cardinality of the set of
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all sparsity patterns is |Ω| =
(
N
K

)
≈ 7.5 × 107. It can be

observed while the computational complexity of the lower-
bound minimizing scheme has been considerably reduced, it
still outperforms the other methods.

To observe the efficiency of the low-rank approximation in
the second stage of our proposed method, we also show the
performance of another design method, in the same figure,
labelled by ‘randomization’, where we use the randomization
technique from [25] instead of the second stage in our method,
given by (14). More precisely, using this method, we assume
that the resulting sensing matrix is given by A = VΓ1/2U⊤

q ,

where V ∈ RM×L is a random matrix whose elements [V]ij
are drawn from N (0, 1/

√
M) such that E[A⊤A] = Q. Note

that we rescale each realization of A to meet the power
constraint, and choose the one (out of 1000 realizations) which
gives the lowest MSE(lb).

VI. CONCLUSIONS

We have proposed an optimization procedure for designing
the sensing matrix, under a power constraint, in the CS
framework. The design aims to minimize a lower-bound on
MSE of sparse source reconstruction. Under certain condi-
tions, we have been able to address the optimization procedure
by deriving closed-form expressions for the sensing matrix.
Numerical results show the advantage of our proposed design
compared to other relevant schemes. This advantage has been
achieved at the price of higher computational complexity.
Therefore, we proposed an alternative approximation to the

MSE lower bound objective function that results in significant
complexity reduction.
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