545 research outputs found

    Some Results and Evaluation of Training for the Development of Students’ Spatial Visualization

    Get PDF
    This article discusses the results and evaluation of a training course focused on developing spatial visualization using interactive dynamic tools. The course aims to effectively integrate technology with the Descriptive Geometry course by combining content, pedagogy, and technology while considering the course's characteristics. The training course consists of three phases: seeing, imagining, and drawing. Each phase has different tasks that involve manipulating 3D objects in a virtual environment, corresponding to the level of geometric thinking and cognitive steps of mental rotation. The results of the organized training showed a statistically significant increase in student's spatial skills, and the evaluation of students using the SURE (Structure-Oriented Evaluation) model was deemed sufficient

    Teaching Neuroanatomy Virtually: Integrating an Interactive 3D E-Learning Resource for Enhanced Neuroanatomy Education

    Get PDF
    An interactive 3D e-learning module was developed to complement neuroanatomy instruction in both an undergraduate medicine neuroanatomy laboratory course, and an undergraduate systemic human anatomy course. The 3D e-learning resource provided students the opportunity to manipulate a dynamic 3D model to view structures from any desired angle, view deep cortical structures at high magnification, and add interactive structural labels. The study utilized a cross-over design, to separate participants into two groups. Each group completed baseline anatomy knowledge and spatial ability knowledge assessments, followed by access to either the 3D e-learning module or conventional learning resources. Participants completed a post-module anatomy knowledge assessment prior to accessing to the other learning modality. A final post-module knowledge assessment was administered following student exposure to the second learning modality. Students who initially accessed the 3D module scored significantly higher on the post-module knowledge assessment than the students who initially accessed the conventional anatomy resources. Participants who accessed the 3D learning resources following gross anatomy resources, significantly improved on the final post-module knowledge assessment. A negative correlation was observed between spatial ability and change in assessment score following access to the 3D module suggesting that students with low spatial ability experienced a greater positive effect on their learning of neuroanatomy following the use of the 3D learning module than students with higher spatial ability. A novel virtual syncretion assessment was also developed that assessed participants’ ability to place neuroanatomical structures in a partial 3D neuroanatomical model, rather than a conventional nominal response. Participants who initially utilized the 3D e-learning resource performed significantly better on the virtual syncretion assessment than participants who initially utilized the 2D e-learning resource. Participants who accessed the 3D e-learning resource subsequent to the 2D e-learning resource significantly improved their performance on the final virtual syncretion assessment. Results of this study could be used to inform the effective development and implementation of 3D e-learning resources to improve neuroanatomy instruction, particularly for students with low spatial ability

    CGAMES'2009

    Get PDF

    Performance Factors in Neurosurgical Simulation and Augmented Reality Image Guidance

    Get PDF
    Virtual reality surgical simulators have seen widespread adoption in an effort to provide safe, cost-effective and realistic practice of surgical skills. However, the majority of these simulators focus on training low-level technical skills, providing only prototypical surgical cases. For many complex procedures, this approach is deficient in representing anatomical variations that present clinically, failing to challenge users’ higher-level cognitive skills important for navigation and targeting. Surgical simulators offer the means to not only simulate any case conceivable, but to test novel approaches and examine factors that influence performance. Unfortunately, there is a void in the literature surrounding these questions. This thesis was motivated by the need to expand the role of surgical simulators to provide users with clinically relevant scenarios and evaluate human performance in relation to image guidance technologies, patient-specific anatomy, and cognitive abilities. To this end, various tools and methodologies were developed to examine cognitive abilities and knowledge, simulate procedures, and guide complex interventions all within a neurosurgical context. The first chapter provides an introduction to the material. The second chapter describes the development and evaluation of a virtual anatomical training and examination tool. The results suggest that learning occurs and that spatial reasoning ability is an important performance predictor, but subordinate to anatomical knowledge. The third chapter outlines development of automation tools to enable efficient simulation studies and data management. In the fourth chapter, subjects perform abstract targeting tasks on ellipsoid targets with and without augmented reality guidance. While the guidance tool improved accuracy, performance with the tool was strongly tied to target depth estimation – an important consideration for implementation and training with similar guidance tools. In the fifth chapter, neurosurgically experienced subjects were recruited to perform simulated ventriculostomies. Results showed anatomical variations influence performance and could impact outcome. Augmented reality guidance showed no marked improvement in performance, but exhibited a mild learning curve, indicating that additional training may be warranted. The final chapter summarizes the work presented. Our results and novel evaluative methodologies lay the groundwork for further investigation into simulators as versatile research tools to explore performance factors in simulated surgical procedures

    Interfaces for human-centered production and use of computer graphics assets

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Exploring spatial ability in veterinary students and the relationship to teaching methods

    Get PDF
    Anatomy is the foundation to most medical disciplines, and a sound understanding is required to underpin many aspects ranging from routine physical examination to complex surgical procedures. For qualified veterinary surgeons, anatomy knowledge is pivotal. The vast number of species dealt with, along with the fact that immediately after graduation veterinary graduates are permitted as a ‘Day One’ competency to perform surgical procedures further emphasises the necessity for strong anatomy knowledge. Anatomy by its very nature is a spatial subject; the human or animal body lives in a three-dimensional space and is, in itself, three-dimensional. It requires the mental manipulation of complex structures and an understanding of their topographical relationships. This spatially demanding aspect of anatomy is challenging to veterinary students, yet, despite the importance of the subject and the known challenges of learning anatomy, limited studies have researched the possible relationship of spatial ability to anatomy learning in veterinary medical students. The overall aim of this project was to investigate the possible relationship of spatial ability to the learning of anatomy, and the influence of different teaching methods on this learning in first-year veterinary medical students. Three well-validated tests of spatial ability (Card Rotation Test, Mental Rotation Test, and Surface Development Test) were given to four cohorts of undergraduate first-year students. Of the four cohorts, two cohorts were first-year veterinary medical students from the same academic institution but different academic year (University of Edinburgh first-year veterinary medical students cohort 1 (UoE Vet 1) and cohort 2 (UoE Vet 2)), one cohort of first-year veterinary medical students from a different academic institution to allow for between academic institution comparisons (University of Bristol first-year veterinary medical students (UoB Vet)), and lastly, one control cohort of first-year students studying psychology (University of Edinburgh first-year psychology students (UoE Psych)) to account for the re-test effect. All four cohorts were given the exact same spatial ability tests at the start of the academic year and 15-16 weeks later. The cohorts UoE Vet 1 and UoE Vet 2 additionally received a two-dimensional teaching method and a novel three-dimensional spatial teaching method respectively, and scores on an in-course spatial MCQ assessment and their end-of-course examinations were collected for comparison. The first study of this project aimed to investigate the baseline spatial ability of veterinary students to assess how consistent this ability is within one academic institution (UoE Vet 1 and UoE Vet 2), across institutions (UoB Vet), and to a control cohort of students who do not learn anatomy (UoE Psych). The second study compared a two-dimensional teaching method (UoE Vet 1) to a novel teaching method purposefully designed to teach anatomy spatially (UoE Vet 2), with the aim of improving anatomy knowledge and understanding. The third study involved the design and validation of a multiple choice question (MCQ) assessment to examine anatomy knowledge spatially and non-spatially and examined whether teaching spatially impacted on performance on the MCQ (UoE Vet 1 and UoE Vet 2). The fourth study investigated whether spatial ability improved in students who learn anatomy from two academic institutions (UoE Vet 1, UoE Vet 2, and UoB Vet) to a control cohort of psychology students (UoE Psych) who do not learn anatomy to account for the re-test effect observed with spatial ability tests. The fourth study also investigated whether the novel spatial teaching method had any additional significant impact on spatial ability improvement. The fifth study of this project qualitatively analysed student views and experiences of anatomy learning, the MCQ assessment, and spatial ability to provide a more in-depth qualitative insight (UoE Vet 1 and UoE Vet 2). The novel results of this project are as follows. An understanding that spatial ability appears to be relatively consistent across first-year veterinary medical students from the same academic institution and two different institutions (UoE Vet 1, UoE Vet 2, and UoB Vet) (p > 0.05). Comparison of spatial ability test scores of veterinary students to a control group of psychology students showed veterinary students scored higher on the Surface Development Test and exhibited a ceiling effect (OR = 1.85 – 1.69, p £ 0.004). The Mental Rotation Test exhibited gender differences with males scoring higher than females (p < 0.01) except for the UoB Vet cohort. The UoE Psych cohort exhibited a gender difference for all three spatial ability tests (p < 0.05). No statistical differences were observed for the demographic parameters handedness or age for each cohort. The successful design and delivery of a novel spatial teaching method resulted in improved student experience and improved anatomy test scores for short answer questions (OR = 1.18, p = 0.040) and an in-course oral exam (OR = 1.26, p = 0.005) compared to a two-dimensional teaching method. While the two-dimensional teaching method showed improved scores for interpretation style questions (OR = 1.35, p < 0.001) and in-course workbooks documenting dissection practicals (OR = 1.44, p < 0.001). The successful design of a novel MCQ containing items testing anatomy spatially, with the MCQ significantly predicting student performances on end-of-course examinations (OR 0.86 – 1.09, p < 0.05), and thus providing useful formative information to students on their progress. Student spatial ability scores for cohorts UoE Vet 2 and UoB Vet improved for the Card Rotation Test (RR = 1.05, p = 0.049 and RR = 1.06, p = 0.047, respectively). No improvement in spatial ability test scores was identified with the Mental Rotation Test for all four cohorts (p > 0.389). While cohorts UoE Vet 1 and 2 exhibited improvement for the Surface Development Test (OR = 1.46, p = 0.014 and OR = 1.86, p < 0.001, respectively). Overall indicating the 3D spatial teaching method improved spatial ability more than the 2D teaching method for the Card Rotation Test and Surface Development Test. However, post-hoc Tukey analysis directly comparing the post test scores of the two teaching methods identified no statistically significant differences. Further research should be carried out to investigate the 3D spatial teaching methods effect to improve spatial ability. The last novel finding of this project is the first identification and proposal, through student views and experiences, that spatial thinking is a threshold concept for anatomy learning. Overall, this research makes a novel contribution to veterinary anatomy education by exploring spatial ability in first-year veterinary medical students and relating it to their learning of anatomy both quantitatively and qualitatively. As one of the first detailed investigations into this aspect of cognitive ability in the context of Veterinary Medical Education, this work highlights the potential for this area of research to provide valuable insights into veterinary students learning and furthermore to inform curriculum and assessment development accordingly

    Development of a design feature database to support design for additive manufacturing (DfAM)

    Get PDF
    This research introduces a method to aid the design of products or parts to be made using Additive Manufacturing (AM), particularly the laser sintering (LS) system. The research began with a literature review that encompassed the subjects of design and AM and through this the need for an assistive design approach for AM was identified. Undertaking the literature review also confirmed that little has been done in the area of supporting the design of AM parts or products. Preliminary investigations were conducted to identify the design factors to consider for AM. Two preliminary investigations were conducted, the first investigation was conducted to identify the reasons for designing for AM, the need for a design support tool for AM and current challenges of student industrial designers designing parts or products for AM, and also to identify the type of design support they required. Further investigation were conducted to examine how AM products are developed by professional industrial designers and to understand their design processes and procedures. The study has identified specific AM enabled design features that the designers have been able to create within their case study products. Detailed observation of the case study products and parts reveals a number of features that are only economical or possible to produce with AM. A taxonomy of AM enabled design features was developed as a precursor for the development of a computer based design tool. The AM enabled design features was defined as a features that would be uneconomical or very expensive to be produced with conventional methods. The taxonomy has four top-level taxons based on four main reasons for using AM, namely user fit requirements, improved product functionality requirements, parts consolidation requirements and improvement of aesthetics or form requirements. Each of these requirements was expanded further into thirteen sub categories of applications that contained 106 examples of design features that are only possible to manufacture using AM technology. The collected and grouped design features were presented in a form of a database as a method to aid product design of parts or products for AM. A series of user trials were conducted that showed the database enabled industrial designers to visualise and gather design feature information that could be incorporated into their own design work. Finally, conclusions are drawn and suggestions for future work are listed. In summary, it can be concluded that this research project has been a success, having addressed all of the objectives that were identified at its outset. From the user trial results, it is clear to see that the proposed tool would be an effective tool to support product design for AM, particularly from an educational perspective. The tool was found to be beneficial to student designers to take advantage of the design freedom offered by AM in order to produce improved product design. As AM becomes more widely used, it is anticipated that new design features will emerge that could be included in future versions of the database so that it will remain a rich source of inspirational information for tomorrow s industrial designers

    Holistic Approach for Authoring Immersive and Smart Environments for the Integration in Engineering Education

    Get PDF
    Die vierte industrielle Revolution und der rasante technologische Fortschritt stellen die etablierten Bildungsstrukturen und traditionellen Bildungspraktiken in Frage. Besonders in der Ingenieurausbildung erfordert das lebenslange Lernen, dass man sein Wissen und seine FĂ€higkeiten stĂ€ndig verbessern muss, um auf dem Arbeitsmarkt wettbewerbsfĂ€hig zu sein. Es besteht die Notwendigkeit eines Paradigmenwechsels in der Bildung und Ausbildung hin zu neuen Technologien wie virtueller RealitĂ€t und kĂŒnstlicher Intelligenz. Die Einbeziehung dieser Technologien in ein Bildungsprogramm ist jedoch nicht so einfach wie die Investition in neue GerĂ€te oder Software. Es mĂŒssen neue Bildungsprogramme geschaffen oder alte von Grund auf umgestaltet werden. Dabei handelt es sich um komplexe und umfangreiche Prozesse, die Entscheidungsfindung, Design und Entwicklung umfassen. Diese sind mit erheblichen Herausforderungen verbunden, die die Überwindung vieler Hindernisse erfordert. Diese Arbeit stellt eine Methodologie vor, die sich mit den Herausforderungen der Nutzung von Virtueller RealitĂ€t und KĂŒnstlicher Intelligenz als SchlĂŒsseltechnologien in der Ingenieurausbildung befasst. Die Methodologie hat zum Ziel, die Hauptakteure anzuleiten, um den Lernprozess zu verbessern, sowie neuartige und effiziente Lernerfahrungen zu ermöglichen. Da jedes Bildungsprogramm einzigartig ist, folgt die Methodik einem ganzheitlichen Ansatz, um die Erstellung maßgeschneiderter Kurse oder Ausbildungen zu unterstĂŒtzen. Zu diesem Zweck werden die Wechselwirkung zwischen verschiedenen Aspekten berĂŒcksichtigt. Diese werden in den drei Ebenen - Bildung, Technologie und Management zusammengefasst. Die Methodik betont den Einfluss der Technologien auf die Unterrichtsgestaltung und die Managementprozesse. Sie liefert Methoden zur Entscheidungsfindung auf der Grundlage einer umfassenden pĂ€dagogischen, technologischen und wirtschaftlichen Analyse. DarĂŒber hinaus unterstĂŒtzt sie den Prozess der didaktischen Gestaltung durch eine umfassende Kategorisierung der Vor- und Nachteile immersiver Lernumgebungen und zeigt auf, welche ihrer Eigenschaften den Lernprozess verbessern können. Ein besonderer Schwerpunkt liegt auf der systematischen Gestaltung immersiver Systeme und der effizienten Erstellung immersiver Anwendungen unter Verwendung von Methoden aus dem Bereich der kĂŒnstlichen Intelligenz. Es werden vier AnwendungsfĂ€lle mit verschiedenen Ausbildungsprogrammen vorgestellt, um die Methodik zu validieren. Jedes Bildungsprogramm hat seine eigenen Ziele und in Kombination decken sie die Validierung aller Ebenen der Methodik ab. Die Methodik wurde iterativ mit jedem Validierungsprojekt weiterentwickelt und verbessert. Die Ergebnisse zeigen, dass die Methodik zuverlĂ€ssig und auf viele Szenarien sowie auf die meisten Bildungsstufen und Bereiche ĂŒbertragbar ist. Durch die Anwendung der in dieser Arbeit vorgestellten Methoden können Interessengruppen immersiven Technologien effektiv und effizient in ihre Unterrichtspraxis integrieren. DarĂŒber hinaus können sie auf der Grundlage der vorgeschlagenen AnsĂ€tze Aufwand, Zeit und Kosten fĂŒr die Planung, Entwicklung und Wartung der immersiven Systeme sparen. Die Technologie verlagert die Rolle des Lehrenden in eine Moderatorrolle. Außerdem bekommen die LehrkrĂ€fte die Möglichkeit die Lernenden individuell zu unterstĂŒtzen und sich auf deren kognitive FĂ€higkeiten höherer Ordnung zu konzentrieren. Als Hauptergebnis erhalten die Lernenden eine angemessene, qualitativ hochwertige und zeitgemĂ€ĂŸe Ausbildung, die sie qualifizierter, erfolgreicher und zufriedener macht

    Differences in Spatial Visualization Ability and Vividness of Spatial Imagery Between People With and Without Aphantasia

    Get PDF
    Mathematics education researchers have examined the relationship between visualization and mathematics for decades (e.g., Arcavi, 2003; Bishop, 1991; Duval, 1999; Fennema & Tartre, 1985; Presmeg, 1986). Studies have linked spatial visualization ability, such as measured in mental rotation tasks, directly to mathematics self-efficacy (Pajares & Kranzler, 1995; Weckbacher & Okamoto, 2014), which in turn influences mathematics achievement (Casey, Nuttall, & Pezaris, 1997). With the important role that spatial visualization plays in learning mathematics, the recent identification of congenital aphantasia (Zeman, Dewar, & Della Sala, 2015), which is the lack of mental imagery ability, has raised new questions for mathematics education researchers. This study investigated the differences in mental rotation test performance and vividness of spatial imagery between people who have aphantasia and people who do not as a first step toward examining how aphantasia may affect mathematics learning and education. Results confirmed prior aphantasia research showing that there was no significant difference in mental rotation test performance between people with aphantasia and those without aphantasia, despite people with aphantasia reporting significantly lower vividness of spatial imagery. Results also showed that there was less difference in mental rotation test performance between the genders for people with aphantasia, while gender played a significant role in mental rotation test performance for people without aphantasia. People with aphantasia also reported lower self-efficacy in the arts than people without aphantasia. Implications of these results will be discussed within the context of current research, and possible directions for future research will be offered
    • 

    corecore