61,201 research outputs found

    The crossing number of locally twisted cubes

    Full text link
    The {\it crossing number} of a graph GG is the minimum number of pairwise intersections of edges in a drawing of GG. Motivated by the recent work [Faria, L., Figueiredo, C.M.H. de, Sykora, O., Vrt'o, I.: An improved upper bound on the crossing number of the hypercube. J. Graph Theory {\bf 59}, 145--161 (2008)] which solves the upper bound conjecture on the crossing number of nn-dimensional hypercube proposed by Erd\H{o}s and Guy, we give upper and lower bounds of the crossing number of locally twisted cube, which is one of variants of hypercube.Comment: 17 pages, 12 figure

    Improved stick number upper bounds

    Get PDF
    2019 Spring.Includes bibliographical references.A stick knot is a mathematical knot formed by a chain of straight line segments. For a knot K, define the stick number of K, denoted stick(K), to be the minimum number of straight edges necessary to form a stick knot which is equivalent to K. Stick number is a knot invariant whose precise value is unknown for the large majority of knots, although theoretical and observed bounds exist. There is a natural correspondence between stick knots and polygons in R3. Previous research has attempted to improve observed stick number upper bounds by computationally generating such polygons and identifying the knots that they form. This thesis presents a new variation on this method which generates equilateral polygons in tight confinement, thereby increasing the incidence of polygons forming complex knots. Our generation strategy is to sample from the space of confined polygons by leveraging the toric symplectic structure of this space. An efficient sampling algorithm based on this structure is described. This method was used to discover the precise stick number of knots 935, 939, 943, 945, and 948. In addition, the best-known stick number upper bounds were improved for 60 other knots with crossing number ten and below

    On kk-Gons and kk-Holes in Point Sets

    Get PDF
    We consider a variation of the classical Erd\H{o}s-Szekeres problems on the existence and number of convex kk-gons and kk-holes (empty kk-gons) in a set of nn points in the plane. Allowing the kk-gons to be non-convex, we show bounds and structural results on maximizing and minimizing their numbers. Most noteworthy, for any kk and sufficiently large nn, we give a quadratic lower bound for the number of kk-holes, and show that this number is maximized by sets in convex position

    Bounds on the maximum multiplicity of some common geometric graphs

    Get PDF
    We obtain new lower and upper bounds for the maximum multiplicity of some weighted and, respectively, non-weighted common geometric graphs drawn on n points in the plane in general position (with no three points collinear): perfect matchings, spanning trees, spanning cycles (tours), and triangulations. (i) We present a new lower bound construction for the maximum number of triangulations a set of n points in general position can have. In particular, we show that a generalized double chain formed by two almost convex chains admits {\Omega}(8.65^n) different triangulations. This improves the bound {\Omega}(8.48^n) achieved by the double zig-zag chain configuration studied by Aichholzer et al. (ii) We present a new lower bound of {\Omega}(12.00^n) for the number of non-crossing spanning trees of the double chain composed of two convex chains. The previous bound, {\Omega}(10.42^n), stood unchanged for more than 10 years. (iii) Using a recent upper bound of 30^n for the number of triangulations, due to Sharir and Sheffer, we show that n points in the plane in general position admit at most O(68.62^n) non-crossing spanning cycles. (iv) We derive lower bounds for the number of maximum and minimum weighted geometric graphs (matchings, spanning trees, and tours). We show that the number of shortest non-crossing tours can be exponential in n. Likewise, we show that both the number of longest non-crossing tours and the number of longest non-crossing perfect matchings can be exponential in n. Moreover, we show that there are sets of n points in convex position with an exponential number of longest non-crossing spanning trees. For points in convex position we obtain tight bounds for the number of longest and shortest tours. We give a combinatorial characterization of the longest tours, which leads to an O(nlog n) time algorithm for computing them

    Improved bounds for the crossing numbers of K_m,n and K_n

    Full text link
    It has been long--conjectured that the crossing number cr(K_m,n) of the complete bipartite graph K_m,n equals the Zarankiewicz Number Z(m,n):= floor((m-1)/2) floor(m/2) floor((n-1)/2) floor(n/2). Another long--standing conjecture states that the crossing number cr(K_n) of the complete graph K_n equals Z(n):= floor(n/2) floor((n-1)/2) floor((n-2)/2) floor((n-3)/2)/4. In this paper we show the following improved bounds on the asymptotic ratios of these crossing numbers and their conjectured values: (i) for each fixed m >= 9, lim_{n->infty} cr(K_m,n)/Z(m,n) >= 0.83m/(m-1); (ii) lim_{n->infty} cr(K_n,n)/Z(n,n) >= 0.83; and (iii) lim_{n->infty} cr(K_n)/Z(n) >= 0.83. The previous best known lower bounds were 0.8m/(m-1), 0.8, and 0.8, respectively. These improved bounds are obtained as a consequence of the new bound cr(K_{7,n}) >= 2.1796n^2 - 4.5n. To obtain this improved lower bound for cr(K_{7,n}), we use some elementary topological facts on drawings of K_{2,7} to set up a quadratic program on 6! variables whose minimum p satisfies cr(K_{7,n}) >= (p/2)n^2 - 4.5n, and then use state--of--the--art quadratic optimization techniques combined with a bit of invariant theory of permutation groups to show that p >= 4.3593.Comment: LaTeX, 18 pages, 2 figure

    On arc index and maximal Thurston-Bennequin number

    Full text link
    We discuss the relation between arc index, maximal Thurston--Bennequin number, and Khovanov homology for knots. As a consequence, we calculate the arc index and maximal Thurston--Bennequin number for all knots with at most 11 crossings. For some of these knots, the calculation requires a consideration of cables which also allows us to compute the maximal self-linking number for all knots with at most 11 crossings.Comment: 10 pages, v4: corrected typo
    • …
    corecore