318 research outputs found

    Modeling EMI Resulting from a Signal Via Transition Through Power/Ground Layers

    Get PDF
    Signal transitioning through layers on vias are very common in multi-layer printed circuit board (PCB) design. For a signal via transitioning through the internal power and ground planes, the return current must switch from one reference plane to another reference plane. The discontinuity of the return current at the via excites the power and ground planes, and results in noise on the power bus that can lead to signal integrity, as well as EMI problems. Numerical methods, such as the finite-difference time-domain (FDTD), Moment of Methods (MoM), and partial element equivalent circuit (PEEC) method, were employed herein to study this problem. The modeled results are supported by measurements. In addition, a common EMI mitigation approach of adding a decoupling capacitor was investigated with the FDTD method

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 175)

    Get PDF
    This bibliography lists 467 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1984. Topics cover varied aspects of aeronautical engineering, geoscience, physics, astronomy, computer science, and support facilities

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 188)

    Get PDF
    This bibliography lists 477 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1985. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems

    Acoustic classification of buried objects with mobile sonar platforms

    Get PDF
    Thesis (Ph. D. in Ocean Engineering)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (p. 229-237).In this thesis, the use of highly mobile sonar platforms is investigated for the purpose of acoustically classifying compact objects on or below the seabed. The extension of existing strategies, including synthetic aperture sonar and conventional imaging, are explored within the context of the buried object problem. In particular, the need to employ low frequencies for seabed penetration is shown to have a significant impact both due to the relative length of the characteristic scattering mechanisms and due to the interface effects on the target scattering. New sonar strategies are also shown that exploit incoherent wide apertures that are created by multiple sonar platforms. For example, target shape can be inverted by mapping the scattered field from the target with a team of receiver vehicles. A single sonar-adaptive sonar platform is shown to have the ability to perform hunting and classification tasks more efficiently than its pre-programmed counterpart. While the monostatic sonar platform is often dominated by the source component, the bistatic or passive receiver platform behavior is controlled by the target response. The sonar-adaptive platform trajectory, however, can result in the platform finishing its classification effort out of position to complete further tasks.(cont.) Within the context of a larger mission, the use of predetermined adaptive behaviors is shown to provide improved detection and classification performance while minimizing the risk to the overall mission. Finally, it is shown that multiple sonar-adaptive platforms can be used to create new sonar strategies for hunting and classifying objects by shape and content. The ability to sample the scattered field from the target across a wide variety of positions allows an analysis of the aspect-dependent behavior of the target. The aspect-dependence of the specular returns indicate the shape of the target, while the secondary returns from an elastic target are also strongly aspect-dependent. These features are exploited for improved classification performance in the buried object hunting mission.by Joseph R. Edwards.Ph.D.in Ocean Engineerin

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 108

    Get PDF
    This bibliography lists 517 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1979

    The analysis of UWB Radar System for Microwave Imaging Application.

    Get PDF
    PhDMany research groups have conducted the investigation into UWB imaging radar system for various applications over the last decade. Due to the demanding security requirements, it is desirable to devise a convenient and reliable imaging system for concealed weapon detection. Therefore, this thesis presents my research into a low cost and compact UWB imaging radar system for security purpose. This research consists of two major parts: building the UWB imaging system and testing the imaging algorithms. Firstly, the time-domain UWB imaging radar system is developed based on a modulating scheme, achieving a receiver sensitivity of -78dBm and a receiver dynamic range of 69dB. A rotary UWB antenna linear array, comprising one central transmitting antenna and four side-by-side receiving antennas, is adopted to form 2D array in order to achieve a better cross-range resolution of the target. In operation, the rotation of the antenna array is automatically controlled through the computerised modules in LabVIEW. Two imaging algorithms have been extensively tested in the developed UWB radar system for a number of scenarios. In simulation, the “Delay and Sum (DAS)” method has been shown to be effective at mapping out the metallic targets in free space, but prone to errors in more complicated environments. However, the “Time Reversal (TR)” method can produce better images in more complex scenarios, where traditionally unfavorable multi-path interference becomes a valuable asset. These observations were verified in experiment in different testing environments, such as penetration through wooden boards, clutters and a stuffed sport bag. The detectable size of a single target is 8×8×1 cm3 with 30cm distance in a stuffed bag, while DAS can achieve the estimation of 7cm cross-range resolution and 15cm down-range resolution for two targets with sizes of 8×8×1 cm3 and 10×10×1 cm3, which fits within the theoretical prediction. In contrast, TR can distinguish them with a superior 4cm cross range resolution

    Annual Review of Progress in Applied Computational Electromagnetics

    Get PDF
    Approved for public release; distribution is unlimited
    • …
    corecore